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Introduction

Fire danger ratings are used to prepare the community and fire management agencies 
for the relative likelihood of fire occurrence, and the likely rate of spread and difficulty 
of suppressing fires once they occur. They can trigger fire bans and operational fire 
preparations, and affect activities such as prescribed burning. Fire danger ratings are 
currently primarily based on fire danger indices (FDIs) calculated using methods that 
were developed many decades ago, such as the McArthur Forest and Grassland Fire 
Danger Meters (McArthur 1966; 1967) and algorithms since fitted to those meters 
(Noble et al. 1980) to routinely calculate Forest and Grassland FDIs (FFDI and GFDI, 
respectively). The issues with the McArthur approach have been well-documented over 
the years and are manifold. Most limiting, perhaps, is that much-improved data are now 
available on weather and fuel variables that affect fire danger, such as the moisture 
content of the soil, litter and live fuel. However, there is no straightforward way to 
retrofit the McArthur framework to these new observations (Holgate et al. 2017). 
Further issues are that the FFDI and GFDI were developed from a small database of fires 
in a narrow range of vegetation types, and are not representative for the full range of 
weather types and fuel types and condition encountered across Australia. 
Unfortunately, beyond the personal experience of users who have applied the indices 
more broadly, there is no generic and formal possibility to consider such variations and 
adapt to them.  

This research was motivated by the desire to develop a more objective approach to fire 
danger assessment, considering spatial data on the occurrence of fires as well as on fire 
danger factors – weather and fuel factors that influence fire occurrence and behaviour - 
that are now routinely produced every day. We do not propose that the methodology 
developed here can meet all requirements of the new Australian Fire Danger Rating 
System that is currently in development. However, the approach developed here may 
contribute to those developments by demonstrating how multiple data sources can be 
combined in a statistical prediction framework. Our general approach is predicated on 
the use of satellite-based fire detections as an observational data set of fire occurrence. 
We considered a set of eight predictor variables relating to fire
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weather and fuel condition that are derived daily from satellite 
remote sensing, station data interpolation or modelling. For 
each Australian Fire Weather Area, for each of three broad 
land cover types (‘forest’,’grass’ and ‘shrub’), and for each 
predictor variable, we calculated the conditional probability of 
fire occurrence at different predictor values. We fit a statistical 
distribution function to these probabilities and combine the 
eight factor-probability predictions into a single combined Fire 
Danger Index. 

Data

Fire occurrence data are available for 2003 onwards from the 
Geoscience Australia Sentinel Hotspots fire detection system 
(Geoscience Australia 2014). The fire detections are based on 
detecting anomalously high surface temperatures in thermal 
imagery obtained by multiple satellite instruments, dominated 
by the two MODIS instruments in the first part of the record.  

Several caveats apply to the observations: the MODIS thermal 
sensor footprint and accuracy is ca. 2.5 km, which means that 
small and low-intensity fires may not be detected and that the 
exact location may not always be known. The two MODIS 
instruments cover the surface approximately four times each 
day, and therefore, there is a possibility that fires are not 
detected. Conversely, detected fires do not only include 
unplanned bushfires but also planned burns (e.g., savanna, 
crop residue and fuel control burning and gas flares). 

A list of detected fires and their inferred temperature is 
downloaded annually and resampled to daily grids at 0.025° 
(~2.5 km) resolution as part of ANU’s Australia’s Environment 
report. The data are made available for visualization or 
download through Australia’s Environment Explorer 
(www.ausenv.online). Here, the maximum daily fire intensity 
for each pixel was transformed to binary data on fire 
occurrence by assuming any fire with a temperature of >80 °C 
could be considered a fire event. 

GIS data on the location of 134 Fire Weather Areas (FWAs) 
across Australia was combined with data on fuel type from the 
Australian Flammability Monitoring System (AFMS, 
www.anuwald.science/afms), where three broad fuel types 
are distinguished: ‘grass’, ‘shrub’, and ‘forest’. This 
classification was developed by Yebra et al. (2018) in deriving 
satellite-based Live Fuel Moisture Content (LFMC) estimates 
available in the AFMS, based on an amalgamation of classes in 
NASA’s MODIS land cover product (Friedl et al., 2010). The 
stratification by FWA and fuel type was done to account for 
regional differences in fire regime, fuel type and other fire 
factors. Any alternative definition of regions would be 
possible, however (e.g., fire climate classification). 

The eight predictor variables include the LFMC data, as well as 
indicators of soil moisture availability that correlate with live 
fuel and dead litter fuel, and fire weather variables 
(temperature, wind speed and humidity). The LFMC (in % 
water mass / dry leaf mass) from the AFMS is derived from 
MODIS satellite instrument observations and updated every 
four days at 500-m resolution (Yebra et al. 2018).  As indicators 

of soil moisture, we used the daily updated 0.05° (~5-km) 
resolution outputs from the Bureau of Meteorology’s 
Australian Landscape Water Balance website 
(www.bom.gov.au/water/landscape). The Australian Water 
Resources Assessment model (Frost et al. 2016; Van Dijk 2010) 
that underpins this data service produces estimates of the 
relative moisture availability (0–1, scaled to a fraction of plant 
available water) in the topsoil (w0, 0–10 cm), shallow soil (ws, 
0.1–1m) and deep soil (wd, 1–6m). While these are simulated 
separately for shallow- and deep-rooted vegetation, we used 
the publicly available grid-cell average values here. The fire 
weather variables were also derived from gridded data 
provided by the Bureau of Meteorology, including 0.05° (~5-
km) daily climate grids of maximum daily temperature (Tmax, 
°C) and 3pm vapour pressure (VP15, hPa) and mean daily wind 
speed (Uavg, m/s) that are based on interpolation of station 
data (Jones et al., 2007). The VP15 values were not used 
directly but combined with Tmax and an assumed standard 
surface pressure to calculate relative humidity (RH, %) and 
vapour pressure deficit (VPD, Pa) using standard methods. All 
eight predictors (LFMC, w0, ws, wd, Tmax, Uavg, RH, and VPD) 
were resampled from their original resolution to the 0.025° 
and daily resolution of the fire observations. The analysis 
period was 2003-2017, where the start year is limited by the 
fire observations, and the end year by the readily available 
wind speed data. However, all data are updated daily, and 
therefore, a repeat of the methodology in future can rely on 
an extended dataset. 

Methods

The steps to predict the composite Fire Danger Index from the 
eight predictor variables are detailed below. 

1) Extraction x-y data pairs: First, all occurrences of a predictor
variable x (e.g., LFMC) over time for each grid cell
corresponding to an FWA region and a fuel type of interest
were recorded. In addition, it was also recorded whether a fire
event occurred on that grid cell and day. Only 0.025° grid cells
dominated by one fuel type (>80% cover fraction) were
considered. For cases where the total number of fire events
was <30, the sample was considered too small, and no further
processing was undertaken.

2) Calculate conditional probabilities P(Y|X>xi): The calculation
is explained here for the case where fire danger is expected
negatively related to x (where it expected positively related,
the same logic was applied). For each value xi in a series with
small intervals, the total number of records (N) and the
number of fire events (Ne) corresponding to x>xi was
calculated. From these, the conditional probability of fire was
calculated as P(Y|X>xi)=Ne/N. The resulting values were
rescaled by dividing by the marginal (or ‘unconditional’) fire
probability P(Y). An example is shown in Figure 1. Note that
while not a desirable feature, rescaled probabilities for
intermediate x values can exceed unity, if the frequency of
fires in the sample exceeds the frequency for the entire
population.
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Figure 1. Example of empirical and fitted cumulative probability, rescaled to between zero and unity, for the eight fire risk predictors 

(see text for explanation of symbols).  

3) Fit cumulative distribution function. A simple Gaussian
Cumulative Distribution Function (CDF) was fitted to the
resulting probability function (Fig. 1). The distribution requires
estimation of a mean (μ) and standard deviation (σ). The mean
can be interpreted as a fire danger threshold, in that fire
probability increases most rapidly at this value of x, whereas σ
defines the sharpness of the transition between low and high
fire occurrence probabilities. For a Gaussian distribution, μ is
equal to the x for which rescaled probability P exceeds 0.5
x(P=0.5), whereas σ can be calculated from the inter-quartile
range IQR=|x(P=0.75) – x(P=0.25)| as σ=IQR/1.349.

4) Calculate the Fire Danger Index. For each of the eight
predictors, the respective fitted CDF function (for the
respective FWA and land cover type) was applied to the
predictor time series. The result might be termed the The
resulting FDI can be calculated for each 500-m grid cell and
each day.

However, by visually comparing the predicted fire danger time 
series with actual fire frequency across the region and fuel 
type for each day, the specificity of the estimates can be 
interpreted, that is, the ability of the method to accurately 
distinguish high and low fire danger conditions Factor 
Component FDI (FCF) and represents the fire danger expected 
when only considering one factor. An overall composite FDI 
was calculated by multiplying each of the eight FCFs and 
raising the result to the power 1/8. 

5) Evaluation. The entire time series of fire observations were
used to calculate probabilities to maximize sample size. This
precludes an independent verification.

Results 

For all FWA and vegetation type combinations for which a 
sufficiently large number of detected fires (N>30), the 
parameters μ and σ of the Gaussian CDF were fitted. 
Generally, this produced parameter values that were near-
uniform across the continent or showed a gradual transition, 
but local anomalies did occur (Fig. 2). Preliminary investigation 
of these anomalies suggests that they were often associated 
with a relatively small sample size (see inset in Fig. 2), 
suggesting that the chosen sample threshold may have been 
too small. Inspection of the calculated FCF and overall FDI time 
series indicated that the key variables that appear to control 
fire occurrence varied between fuel type and FWA 
(representing different fire regimes). For example, the 
predictive value of LFMC was quite strong for grasses and 
shrublands, as well as for open forests in (seasonally) drier 
FWAs, but less so for forests in humid regions (Fig. 3). All 
variables except deep soil moisture (wd) appeared to provide 
information on fire danger, but the inclusion of such non-
informative variables does not deteriorate the overall FDI 
predictions, as their FCF is always (near-) unity. A visual 
comparison between FDI and actual fire frequency generally 
shows good correspondence. Fires do not always occur during 
high FDI conditions, as may be expected, given ignition is 
required. Formal verification statistics have not yet been 
calculated, but visually, the results show a low ‘false negative’ 
rate for most FWAs. 

11



Australian Institute for Disaster Resilience 

Figure 2: Regional differences in (top) threshold (μ) and (bottom) sharpness (σ) of the fitted CDF function between rescaled fire 

frequency and one of the eight variables (LFMC).  The inset shows an example of an anomalous CDF (note the small sample size and 

high FMC values). 

Conclusions 

From these preliminary research results, we conclude that it is 
possible to at least partially replace the traditional McArthur 
FDI with an FDI that has a stronger basis in observations. We 
used readily available, daily updated spatial data on fire 
danger predictors (fuel condition and weather) to develop an 
FDI that translates these predictors into a combined FDI based 
on a database of fires detected by the satellite-based Sentinel 
Hotspots system. A preliminary assessment suggested a very 
good potential of the methodology to formally and objectively 
incorporate any new fire danger predictors. It is noted that the 
MacArthur method is used to assess the risk of fire occurrence 
but also fire behaviour and suppression difficulty. Further 
research or trials would be required to determine whether the 
FDI developed here has merit for that application. 

are well-constrained by fire observations and the temporal 
variability in component factor FDIs is a strong indication of 
their predictive value. Further research would also be 
beneficial to test the merit of alternative statistical approaches 
(e.g., more flexible CDFs and formal joint-probability 
approaches) or, possibly, machine-learning approaches. 

We did not attempt verification against independent 
observations or the McArthur FDIs, and also did not undertake 
formal verification analysis yet; this will be the subject of 
further research. Nonetheless, the predictions  

FDI forecasts would be of greater value than the retrospective 
analyses provided here, and can be produced by replacing the 

daily climate analysis grids with forecasts of temperature, 
humidity and wind speed and soil moisture from numerical 
weather predictions (e.g., the Bureau of Meteorology’s ACCESS 
system and the AWRA forecasting system currently in the 
testing phase). Any systematic biases between the two data 
sources would need to be accounted for in this process. The 
resulting composite FDI could be produced daily as forecast at 
a resolution of 500m nationally and disseminated as an 
experimental service as part of the AFMS. In time, this could 
make a useful contribution to a new Australian Fire Danger 
Rating System. 
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Figure 3: Example time series of (top panels) Factor Component and overall FDI for three FWAs with contrasting fire climate and fuel 

types, and (bottom panels) comparison of overall FDI and observed fire frequency. Time series are all calculated as averages across 

the vegetation type and FWA. 
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