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Abstract

The propagation of bushfire across the landscape is dependent on a variety of envi-

ronmental factors, but the wind, in particular, has a major effect on both the speed

and direction of fire propagation. As such, bushfire spread models, which underpin

successful bushfire management, require accurate knowledge of the pattern of winds

across the landscape. This can be problematic over complex terrain where winds

exhibit considerable spatial variability due to wind-terrain interactions, and where

detailed measurements of wind characteristics are comparatively rare.

This thesis contributes two new wind datasets to address the previous lack of data

available to develop and validate wind models over complex terrain. It also de-

tails analyses that focus on the statistical characterisation of wind as joint wind

direction distributions, which represent the directional wind response to changing

topography and surface roughness. A novel method for toroidal surface fitting is

introduced and implemented to estimate the true continuous response from discrete

observed data. This new method, which relies on a conceptually simple adaptation

of planar techniques, is compared to the limited range of available toroidal surface

estimation techniques and is shown to perform as well as, if not better than, these

more sophisticated methods.

Monte Carlo simulations are employed to highlight the sensitivity of statistical

comparison tests to alternative distribution structures, and to validate bivariate

and circular extensions of the Kolmogorov-Smirnov test. These tests are applied to

directional wind response pairs, showing that vegetation regrowth has a significant

but varying impact across complex terrain.

v



Finally, this thesis demonstrates how statistical approaches can be used to comple-

ment current physics-based wind modelling methods. The resulting probabilistic

representations provide more accurate predictions of wind direction variability, and

are better suited to emerging ensemble-based bushfire prediction frameworks. As

such, they provide a superior characterisation of uncertainty across the fire mod-

elling process; ultimately enabling fire managers to make more informed decisions.
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be dad), you are my rock. You have done the heavy lifting; you have listened; you

have laughed; you have consoled; and you have celebrated. I could not have done

this without you. Thank you.

The first of many weather station set ups.
UNSW Canberra Field Site, February 2014.

viii



Published Work

Much of the work completed as part of this PhD thesis has been prepared and sub-

mitted for peer-review through journal publications , as well as being communicated

to the research and professional communities through conference presentations, aca-

demic posters and non-academic written work.

The following publications and conference proceedings correspond to research pre-

sented in this thesis.

Quill, R., Sharples, J.J., Sidhu, L.A. and Towers, I. (In Prep) Understanding uncertainty

in bushfire modelling and characterising uncertain wind inputs.

Quill, R., Sharples, J.J. and Sidhu, L.A. (Under Review) Non-parametric comparison of

wind direction to assess the impacts of surface roughness. Statistical Modelling, submitted

March 2017.

Quill, R., Sharples, J.J. and Sidhu, L.A. (In Prep) Sensitivity analysis of Kolmogorov-

Smirnov style statistics for univariate and bivariate data.

Quill, R., Sharples, J.J. and Sidhu, L.A. (In Prep) Estimation of directional wind re-

sponse using noisy bivariate circular data: a comparison of approaches.

Quill, R., Sharples, J.J., Sidhu, L.A., Wagenbrenner, N. and Forthofer, J. (In Prep) A

wind direction evaluation of a diagnostic wind model over complex terrain in the context

of ensemble-based fire spread modelling.

Quill, R., Moon, K., Sharples, J.J., Sidhu, L.A., Duff, T. and Tolhurst, K. (2016) Wind

speed reduction induced by post-fire vegetation regrowth. Proceedings from the Bushfire

and Natural Hazards CRC & AFAC conference, Brisbane, 30 Aug-1 Sep 2016.

ix



Quill, R., Sharples, J.J. and Sidhu, L.A. (2015) Effects of post-fire vegetation regrowth

on wind fields over complex terrain. In Weber, T., McPhee, M.J. and Anderssen, R.S.

(eds) MODSIM2015, 21st International Congress on Modelling and Simulation. Modelling

and Simulation Society of Australia and New Zealand, Dec 2015, pp. 490496. ISBN: 978-

0-9872143-5-5. http://www.mssanz.org.au/modsim2015/A4/quill.pdf.

The following conference presentations also relate to work conducted for this thesis.

Quill, R., Sharples, J.J. and Sidhu, L.A. (2017) A Monte Carlo evaluation of the sen-

sitivity of bivariate Kolmogorov-Smirnov style tests. ANZIAM 2017, Hahndorf, 5-9 Feb

2017.

Quill, R., Sharples, J.J. and Sidhu, L.A. (2016) The sensitivity of Kolmogorov-Smirnov

style tests: a simulation study. The Australian Statistical Conference 2016, Canberra,

5-9 Dec 2016.

Quill, R., Moon, K., Sharples, J.J., Sidhu, L.A, Duff, T., Tolhurst, K. (2016) Impacts

of topography and post-fire regrowth on wind speed reduction. Bushfire and Natural

Hazards CRC & AFAC 2016, Brisbane, 30 Aug-1 Sep2016.

Quill, R., Sharples, J.J., Sidhu, L.A. and Piantadosi, J. (2016) Statistical comparison

of bivariate circular distributions in the characterisation of wind direction response over

complex terrain. The 26th Conference of The International Environmetrics Society, Ed-

inburgh, 18-22 Jul 2016.

Quill, R., Sharples, J.J., Sidhu, L.A. and Piantadosi, J. (2016) An evaluation of Kolmogorov-

Smirnov style statistics for bivariate circular data. The 3rd International Society for

Nonparametric Statistics Conference, Avignon, 11-16 Jun 2016.

Quill, R., Sharples, J.J., Sidhu, L.A., N.S. Wagenbrenner, J.M. Forthofer (2016) Evalu-

ation of operational wind field models over complex terrain. The 5th Fire Behaviour and

Fuels Conference, Melbourne, 11-15 Apr 2016.

Quill, R., Sharples, J.J. and Sidhu, L.A. (2016) Analysing the impacts of vegetation

and topography on wind fields over complex terrain. The 5th Fire Behaviour and Fuels

Conference, Melbourne, 11-15 Apr 2016.

x



Quill, R., Sharples, J.J., Sidhu, L.A. and Piantadosi, J. (2016) Sensitivity analysis of

Kolmogorov-Smirnov style statistics for univariate and bivariate data. ANZIAM 2016,

Canberra, 7-11 Feb 2016.

Quill, R., Sharples, J.J. and Sidhu, L.A. (2015) Effects of post-fire vegetation regrowth

on wind fields over complex terrain. MODSIM 2015, Gold Coast, 31 Nov-4 Dec 2015.

Quill, R. (2015) Developing a statistical characterisation of wind fields over complex

terrain. Annual NSW/ACT ANZIAM Joint Meeting, Sydney, 25-26 Nov 2015.

Quill, R. (2015) Non-parametric comparison of regression surfaces to assess the impacts

of vegetation regrowth on wind fields. ANZIAM 2015, Gold Coast, 2-5 Feb 2015.

The following academic posters showcased research from this thesis.

Quill, R. (2016) Statistical characterisation of wind fields over complex terrain for bush-

fire modelling applications. AFAC, Brisbane 30 Aug-1 Sep 2016.

Quill, R., Sharples, J.J., Sidhu, L.A. and Thorpe, G. (2015) Evaluation of operational

models for wind variability over complex terrain. AFAC, Adelaide 1-3 Sep 2015.

Quill, R., Sharples, J.J., Sidhu, L.A. and Thorpe, G. (2015) Impacts of vegetation re-

growth on wind direction over complex terrain. AFAC, Adelaide 1-3 Sep 2015.

Finally, this piece of non-academic written work communicated some of the research

highlights from this thesis to a fire industry audience.

Fire Modelling in an Uncertain World, by Rachael Quill. Wildfire Magazine, Vol-

ume 25.2, March/April 2016. http://wildfiremagazine.org/article/fire-modeling-in-an-

uncertain-world/

Reproduced in Fire Australia, Winter 2016. http://www.bnhcrc.com.au/news/2016/fire-

modelling-uncertain-world-0

xi





Contents

Originality Statement i

Copyright Statement ii

Authenticity Statement iii

Abstract v

Acknowledgements vii

Published Work ix

Chapter 1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Chapter 2 Literature Review 7

2.1 Fire Modelling in an Uncertain World . . . . . . . . . . . . . . . . . 7

2.1.1 Forward Rate of Spread . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Fire Spread Prediction . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Uncertainty in Bushfire Prediction . . . . . . . . . . . . . . 16

xiii



2.1.4 Modelling Uncertainty . . . . . . . . . . . . . . . . . . . . . 18

2.2 Wind Modelling in the Context of Bushfire . . . . . . . . . . . . . . 23

2.2.1 Operational Wind Field Models . . . . . . . . . . . . . . . . 27

2.2.2 Vertical Wind Profiles . . . . . . . . . . . . . . . . . . . . . 29

2.3 Probabilistic Approaches in Wind Modelling . . . . . . . . . . . . . 30

2.3.1 Joint Wind Direction Distributions . . . . . . . . . . . . . . 33

2.3.2 Parametric Estimation . . . . . . . . . . . . . . . . . . . . . 35

2.3.3 Non-parametric Estimation . . . . . . . . . . . . . . . . . . 36

2.4 “The Literature Gap” . . . . . . . . . . . . . . . . . . . . . . . . . 38

Chapter 3 Data Collection 41

3.1 Equipment and Software . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1 Data Collection Equipment . . . . . . . . . . . . . . . . . . 42

3.1.2 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Case Study I: Flea Creek Valley, NSW . . . . . . . . . . . . . . . . 46

3.2.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.2 Data Summary, 2007 . . . . . . . . . . . . . . . . . . . . . . 50

3.2.3 Data Summary, 2014 . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Case Study II: National Arboretum Canberra, ACT . . . . . . . . . 57

3.3.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.2 Data Summary, 2015 . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Chapter 4 Probabilistic Representation of Wind Direction 67

4.1 Estimation of Toroidal Surfaces . . . . . . . . . . . . . . . . . . . . 69

xiv



4.1.1 Estimation Techniques . . . . . . . . . . . . . . . . . . . . . 69

4.1.2 Simulation Study Data and Methods . . . . . . . . . . . . . 73

4.1.3 Simulation Study Results . . . . . . . . . . . . . . . . . . . 75

4.1.4 Analysis of the TPS Spline with Algorithm 1 . . . . . . . . . 80

4.1.5 Simulation Study Discussion . . . . . . . . . . . . . . . . . . 88

4.2 Estimated Directional Wind Response . . . . . . . . . . . . . . . . 91

4.2.1 Optimising Algorithm 1 . . . . . . . . . . . . . . . . . . . . 91

4.2.2 Prevailing Wind Direction Analysis . . . . . . . . . . . . . . 93

4.2.3 Flea Creek Valley, 2007 . . . . . . . . . . . . . . . . . . . . . 95

4.2.4 Flea Creek Valley, 2014 . . . . . . . . . . . . . . . . . . . . . 96

4.2.5 National Arboretum Canberra, 2015 . . . . . . . . . . . . . 97

4.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Chapter 5 Assessment of the Impacts of Vegetation on Wind Fields over Com-

plex Terrain 101

5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.1.1 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.1.2 Wind Data Comparisons . . . . . . . . . . . . . . . . . . . . 106

5.2 Univariate Wind Direction . . . . . . . . . . . . . . . . . . . . . . . 113

5.2.1 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . 113

5.2.2 Conditional Wind Direction Distributions . . . . . . . . . . 130

5.3 Bivariate Wind Direction . . . . . . . . . . . . . . . . . . . . . . . . 134

5.3.1 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . 134

5.3.2 Joint Directional Wind Response Distributions . . . . . . . . 145

5.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 151

xv



Chapter 6 Evaluation of Wind Field Modelling over Complex Terrain 155

6.1 Predicted Wind Direction using a Diagnostic Wind Model . . . . . 157

6.1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

6.1.2 Wind Direction Data and Modelling . . . . . . . . . . . . . 160

6.1.3 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . 166

6.1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

6.2 Wind Speed Reduction Beneath the Canopy . . . . . . . . . . . . . 173

6.2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

6.2.2 Empirical Wind Speed Reduction Profiles . . . . . . . . . . 175

6.2.3 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . 176

6.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

6.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Chapter 7 Discussions and Conclusion 185

7.1 Wind Direction: A New Perspective . . . . . . . . . . . . . . . . . . 185

7.1.1 New Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.1.2 Directional Wind Response Distributions . . . . . . . . . . . 187

7.2 Statistical Techniques for Analysing Wind Direction . . . . . . . . . 188

7.2.1 Comparison Tests . . . . . . . . . . . . . . . . . . . . . . . . 188

7.2.2 Application of Statistical Techniques . . . . . . . . . . . . . 190

7.3 Statistical Characterisation of Wind in the Context of Bushfire . . . 191

7.3.1 New Knowledge in the Existing Framework . . . . . . . . . . 191

7.3.2 New Modelling Approaches . . . . . . . . . . . . . . . . . . 192

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7.5 Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

xvi



Appendix A Wind Data Summaries 195

A.1 Calibration Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 195

A.2 Flea Creek Valley 2007 . . . . . . . . . . . . . . . . . . . . . . . . . 197

A.3 Flea Creek Valley 2014 . . . . . . . . . . . . . . . . . . . . . . . . . 200

A.4 National Arboretum Canberra 2015 . . . . . . . . . . . . . . . . . . 203

Appendix B Directional Wind Response 207

B.1 Flea Creek Valley, 2007 . . . . . . . . . . . . . . . . . . . . . . . . . 207

B.2 Flea Creek Valley, 2014 . . . . . . . . . . . . . . . . . . . . . . . . . 207

B.3 National Arboretum Canberra, 2015 . . . . . . . . . . . . . . . . . 207

Appendix C Matlab Code for Toroidal Estimation 213

Appendix D Matlab Code for Surface Comparison Tests 215

D.1 Simulation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 215

D.2 Univariate KS Style Tests . . . . . . . . . . . . . . . . . . . . . . . 216

D.3 Bivariate KS Style Tests . . . . . . . . . . . . . . . . . . . . . . . . 217

D.4 Mean Squared Difference Tests . . . . . . . . . . . . . . . . . . . . 219

References 221

xvii





List of Tables

3.1 Descriptions of the FCV sites (A1 to A5) in 2007. Adapted from

Sharples et al. [2010, Table 1]. . . . . . . . . . . . . . . . . . . . . . 48

3.2 Descriptions of the FCV sites (B1 to B11) in 2014. . . . . . . . . . 49

3.3 Summary of wind data collected across FCV between April and June

2007. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Summary of observed wind speeds (ms−1) across FCV between April

and June 2007. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Summary wind data collected across FCV between April and Decem-

ber 2014. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6 Summary of observed wind speeds (ms−1) across FCV between April

and December 2014. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.7 Descriptions of the NAC sites (C1 to C11) in 2015. . . . . . . . . . 60

3.8 Summary of wind data collected across the NAC between April and

December 2015. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.9 Summary of observed wind speeds (ms−1) across the NAC between

April and December 2015. . . . . . . . . . . . . . . . . . . . . . . . 61

5.1 Sample sizes for FCV pairs. . . . . . . . . . . . . . . . . . . . . . . 110

5.2 Location descriptions for comparison pairs at the NAC in 2015. . . 111

5.3 Sample sizes for NAC pairs. . . . . . . . . . . . . . . . . . . . . . . 113

xix



5.4 KS test results for univariate conditional wind direction distribution

pairs from FCV and the NAC. . . . . . . . . . . . . . . . . . . . . . 131

5.5 Kuiper’s test results for univariate conditional wind direction distri-

butions pairs from FCV and the NAC. . . . . . . . . . . . . . . . . 132

5.6 Bivariate KS test results for directional wind response distribution

pairs from FCV and the NAC. . . . . . . . . . . . . . . . . . . . . . 145

5.7 Bivariate Kuiper’s test results for directional wind response distribu-

tion pairs from FCV and the NAC. . . . . . . . . . . . . . . . . . . 146

5.8 Bivariate squared difference test results (p-values) for directional

wind response distributions pairs from FCV and the NAC. . . . . . 148

6.1 WindNinja with native solver and WindNinja with momentum solver

wind direction (WD, ◦) and wind speed (WSp, ms−1) predictions for

each site across FCV. . . . . . . . . . . . . . . . . . . . . . . . . . . 165

6.2 Proportion of agreement between predicted wind direction (as com-

pass point) and observed wind direction distribution at each site

across FCV, conditional on observing a wind direction of WNW,

and a minimum wind speed of T at B1. . . . . . . . . . . . . . . . . 166

6.3 Proportion of overlap between predictions and observations at 1-

minute time steps. ‘Overlap’ is taken to be a prediction of wind

direction in the same compass sector, within one sector (or ±22.5◦)

or within two sectors (or ±45◦). . . . . . . . . . . . . . . . . . . . . 171

6.4 Average wind speeds for each site across FCV, at minimum wind

speed thresholds, T , observed at A1 in 2007 and B1 in 2014. . . . . 176

6.5 Average wind speeds across the NAC, at minimum wind speed thresh-

olds, T , observed at C1. . . . . . . . . . . . . . . . . . . . . . . . . 179

A.1 Proportion of winds originating from each compass direction across

FCV between April and June 2007. . . . . . . . . . . . . . . . . . . 198

xx



A.2 Proportion of winds originating from each compass direction across

FCV between April and December 2014. . . . . . . . . . . . . . . . 203

A.3 Proportion of winds originating from each compass direction across

the NAC between April and December 2015. . . . . . . . . . . . . . 204

xxi





List of Figures

2.1 Observed joint directional wind response distribution represented (a)

in planar view and (b) on the torus. Data collected by author. . . . 34

3.1 Davis Vantage Pro 2 Portable Automatic Weather Stations during

the calibration phase; (a) set up at the UNSW Canberra Field Site,

and (b) sensor array and console box. Photographs taken by author. 43

3.2 Data download using (a) Weatherlink R© , and (b) the Raspberry Pi R©

system. Photographs taken by author. . . . . . . . . . . . . . . . . 44

3.3 Photographs of data collection at FCV in (a) 2007 and (b) 2014.

Photographs taken by (a) J.J. Sharples and (b) author. . . . . . . . 44

3.4 Maps of (a) south-eastern Australia, (b) the Brindabella region and

(c) the FCV transect (with 50m contours). Station locations in 2007

(red; A1 to A5) and 2014 (blue; B1 to B11) are indicated. . . . . . 47

3.5 Observed wind direction roses across FCV at (a-e) A1 to A5 between

April and June 2007. . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Observed wind direction roses across FCV at (a-k) B1 to B11 between

April and December 2014. . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 (Cont’d) Observed wind direction roses across FCV at (a-k) B1 to

B11 between April and December 2014. . . . . . . . . . . . . . . . . 56

3.7 Map of (a) south-eastern Australia, (b) the Canberra region, and (c)

the NAC. Station locations in 2015 (C1 to C11) are indicated. . . . 58

xxiii



3.8 Photograph of data collection at the NAC in 2015. Photograph taken

by author from Dairy Farmer’s Hill. . . . . . . . . . . . . . . . . . . 59

3.9 Observed wind direction roses across the NAC at (a-k) C1 to C11

between April and December 2015. . . . . . . . . . . . . . . . . . . 63

3.9 (Cont’d) Observed wind direction roses across the NAC at (a-k) C1

to C11 between April and December 2015. . . . . . . . . . . . . . . 64

4.1 Conceptual diagram of data collection across FCV in 2014, and the

observed directional wind response on the (a) east-facing slope at B4,

(b) valley floor at B6 and (c) west-facing slope at B10. . . . . . . . 68

4.2 Schematic diagram of Algorithm 1 with one iteration (r = 1) applied

to a 2×2 data grid (n = 2). . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Continuous surface fA, with µA = τA = 90◦. . . . . . . . . . . . . . 74

4.4 Average time (seconds) taken for individual approximations for each

estimation method applied to YA. Diamonds represent (orange) Cyclic

Cubic and (blue) KDE von Mises. Lines represent (orange) Cubic,

(green) TPS and (blue) KDE Normal, in conjunction with Algorithm

1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Average (solid) Mean Squared Error, and 95% CI (dotted), for each

estimation method applied to YA, over 250 MC simulations. Dia-

monds represent (orange) Cyclic Cubic and (blue) KDE von Mises.

Lines represent (orange) Cubic, (green) TPS and (blue) KDE Nor-

mal, in conjunction with Algorithm 1. . . . . . . . . . . . . . . . . . 78

4.6 Average (solid) and 95% CI (dotted) for the (left) mean difference in

edge values and (right) mean difference in edge derivatives, over 250

MC simulations, for (a,b) Cubic, (c,d) KDE Normal and (e,f) TPS,

applied to YA. Metrics calculated row-wise (red) and column-wise

(blue). Note that the figures contain different scales when compared

by column. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

xxiv



4.7 Continuous surfaces (a) fB (µB = τB = 45◦), and (b) fC (µC = τC =

180◦). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.8 Average (solid) and 95% CI (dotted) for the (a) mean difference

in edges values, (b) mean difference in edge derivatives and (c) MSE

values, over 250 MC simulations, for the application of the TPS spline

to YB, with µB = τB = 45◦. Metrics calculated row-wise (red) and

column-wise (blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.9 Average (solid) and 95% CI (dotted) for the (a) mean difference

in edge values, (b) mean difference in edge derivatives, and (c) MSE

values, over 250 MC simulations, for the application of the TPS spline

to YC . Metrics calculated row-wise (red) and column-wise (blue). . 83

4.10 Average (solid) and 95% CI (dotted) for the (a) mean difference in

edge values, (b) mean difference in edge derivatives and (c) MSE val-

ues, over 250 MC simulations, for the application of the TPS spline,

with p = 0.001, to YA. Metrics calculated row-wise (red) and column-

wise (blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.11 Average (solid) and 95% CI (dotted) for the (a) mean difference in

edge values, (b) mean difference in edge derivatives and (c) MSE val-

ues, over 250 MC simulations, for the application of the TPS spline,

with p = 0.1, to YA. Metrics calculated row-wise (red) and column-

wise (blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.12 Average (solid) and 95% CI (dotted) for the (a) mean difference in

edge values, (b) mean difference in edge derivatives and (c) MSE val-

ues, over 250 Monte Carlo simulations, for the application of the TPS

spline to YA, with 10×10 discrete grid and 360×360 quasi-continuous

grid. Metrics calculated row-wise (red) and column-wise (blue). Note

the change of scale in (c). . . . . . . . . . . . . . . . . . . . . . . . 86

xxv



4.13 (a) Mean difference in edge values, (b) mean difference in edge deriva-

tives, and (c) MSE values, for a single simulation, for the application

of the TPS spline to YA, with 36×36 discrete grid and 360×360 quasi-

continuous grid. Metrics calculated row-wise (red) and column-wise

(blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.14 (a) Mean difference in edge values, (b) mean difference in edge deriva-

tives, and (c) MSE values, for a single simulation, for the application

of the TPS spline to YA, with 16×16 discrete grid and 720×720 quasi-

continuous grid. Metrics calculated row-wise (red) and column-wise

(blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.15 Mean difference in (top) edge values and (bottom) edge derivatives

of the estimated directional wind response distributions across FCV

in 2014, using the TPS spline, on the (a,b) east-facing slope at B4,

(c,d) valley floor at B6 and (e,f) west-facing slope at B10. Note that

the figures contain different scales when compared by column. . . . 92

4.16 Comparison between wind direction observed at Mount Ginini and

FCV at (a) A1 in 2007, (b) B2 in 2014 and (c) B1 in 2014, as well

as between Canberra Airport and NAC at (d) C1 in 2015. Red lines

indicate isolines on the estimated surfaces. . . . . . . . . . . . . . . 94

4.17 Estimated directional wind response distributions from FCV in 2007,

at (a) A2, (b) A3, (c) A4 and (d) A5. Red lines indicate isolines on

the estimated surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.18 Estimated directional wind response distributions from FCV in 2014,

at (a) B4, (b) B6, (c) B8 and (d) B10. Red lines indicate isolines on

the estimated surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.19 Estimated directional wind response distributions from the NAC in

2015, at (a) C2, (b) C5, (c) C7 and (d) C9. Red lines indicate isolines

on the estimated surfaces. . . . . . . . . . . . . . . . . . . . . . . . 97

5.1 Map of coincidental station locations across FCV between 2007 (red;

A1 to A5) and 2014 (blue; B1, B4, B6, B8 and B10). . . . . . . . . 107

xxvi



5.2 Observed conditional wind direction distributions from 2007 at (a)

FCV1 on the leeward slope (A2), (b) FCV2 on the valley floor (A3),

(c) FCV3 on the lower windward slope (A4), and (d) FCV4 on the

upper windward slope (A5), assuming a WNW observed at A1. . . 108

5.3 Observed conditional wind direction distributions from 2014 at (a)

FCV1 on the leeward slope, (B4) (b) FCV2 on the valley floor (B6),

(c) FCV3 on the lower windward slope (B8), and (d) FCV4 on the

upper windward slope (B10), assuming a WNW observed at B1. . . 109

5.4 Map of the NAC with station locations from 2015 (yellow; C1, C2,

C5, C7 and C9). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.5 Observed conditional wind direction distributions from the NAC at

(a) C2 on the clear leeward slope, (b) C5 on the pine leeward slope,

(c) C7 on the pine 45◦ leeward slope and (d) C9 on the pine cross

slope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.6 Power of the univariate KS test to (a) percentage change in mean and

(b) relative change in standard deviation for the Normal distribution,

at a 1% level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.7 Power of the univariate Kuiper’s test to (a) percentage change in

mean and (b) relative change in standard deviation for the Normal

distribution, at a 1% level. . . . . . . . . . . . . . . . . . . . . . . . 124

5.8 Approximations for the asymptotic p-values for the univariate (a) KS

test (Equation 5.4) and (b) Kuiper’s test (Equation 5.8). . . . . . . 125

5.9 Power of the univariate Kuiper’s test to (a) percentage change in

mean and (b) relative change in concentration for the von Mises

distribution with centre mode, at a 1% level. . . . . . . . . . . . . . 127

5.10 Power of the univariate Kuiper’s test to (a) percentage change in

mean and (b) relative change in concentration for the von Mises

distribution with edge mode, at a 1% level. . . . . . . . . . . . . . . 128

xxvii



5.11 Power of the bivariate KS test to (a) percentage change in mean and

(b) relative change in standard deviation for the bivariate Normal

distribution, at a 1% level. Lines represent mean changes in the y

direction. Triangles represent mean changes in the x direction. . . . 139

5.12 Power of the bivariate Kuiper’s test to (a) percentage changes in

mean and (b) relative changes in standard deviation for the bivariate

Normal distribution, at a 1% level. Lines represent mean changes in

the y direction. Triangles represent mean changes in the x direction. 142

5.13 Power of the bivariate Kuiper’s test to (a) percentage changes in

mean and (b) relative changes in concentration for the bivariate von

Mises distribution, at a 1% level. Lines represent mean changes in

the y direction. Triangles represent mean changes in the x direction. 143

6.1 Observed average hourly wind directions at each site across FCV, at

(a) 0300h, (b) 0900h, (c) 1500h and (d) 2100h. . . . . . . . . . . . . 161

6.2 WindNinja with native solver prediction over FCV, using domain

averaged wind speeds of 1ms−1. . . . . . . . . . . . . . . . . . . . . 164

6.3 WindNinja with momentum solver prediction over FCV, using do-

main averaged wind speeds of 1ms−1. . . . . . . . . . . . . . . . . . 164

6.4 Observed conditional wind direction distributions at (a) B4 on the

east-facing slope, (b) B7 on the valley floor, (c) B8 on the lower west-

facing slope and (d) B11 on the upper west-facing slope, assuming a

WNW observed at B1. Predictions shown for the native solver (red)

and the momentum solver (green). . . . . . . . . . . . . . . . . . . 167

6.5 Observed (blue) and predicted (red) unconditional wind direction

distributions at (a) B1 on the western ridge top, (b) B4 on the east-

facing slope, (c) B7 on the valley floor, (d) B8 on the lower west-facing

slope and (e) B11 on the upper west-facing slope. . . . . . . . . . . 170

xxviii



6.6 Relative wind speed observed between 2007 and 2014 at (a) FCV0

on the ridge top, (b) FCV1 on the east-facing slope, (c) FCV2 on the

valley floor, (d) FCV3 on the lower west-facing slope and (e) FCV4

on the upper west-facing slope. Findings of Moon et al. [2013, In

Press] are indicated with red lines; RWS = 1.00 (solid), and RWS =

0.82 (dotted). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.7 Relative wind speed observed between cleared east-facing slope and

the parallel Radiata pine stand at the National Arboretum Canberra

for (a) N0 on the ridge top, (b) N1 on the mid-slope and (c) N2 on

the lower slope. Findings of Moon et al. [2013, In Press] are indicated

with red lines; RWS = 0.40 (solid), RWS = 0.20 (dashed), and RWS

= 0.08 (dotted). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

A.1 Absolute percentage difference between PAWS and SA5m wind speed

observations between 19th and 23rd February 2014. Red line shows

SA5m ± 1ms−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

A.2 Wind direction time series for PAWS (blue dots) and SA5m (red line)

between 19th and 23rd February 2014. . . . . . . . . . . . . . . . . 197

A.3 Data records across FCV between April and December 2007. . . . . 197

A.4 Time series of observed wind speeds (ms−1) across FCV at (a-e) A1

to A5 between April and June 2007. . . . . . . . . . . . . . . . . . . 199

A.5 Data records across FCV between April and December 2014. . . . . 200

A.6 Time series of observed wind speed (ms−1) across FCV at (a-k) B1

to B11 between April and December 2014. . . . . . . . . . . . . . . 201

A.6 (Cont’d) Time series of observed wind speed (ms−1) across FCV at

(a-k) B1 to B11 between April and December 2014. . . . . . . . . . 202

A.7 Data records at the NAC between April and December 2015. . . . . 203

A.8 Time series of observed wind speeds (ms−1) across the NAC at (a-k)

C1 to C11 between April and December 2015. . . . . . . . . . . . . 205

xxix



A.8 (Cont’d) Time series of observed wind speeds (ms−1) across the NAC

at (a-k) C1 to C11 between April and December 2015. . . . . . . . 206

B.1 Observed discrete directional wind response distributions across FCV

at (a-l) A2 to A5, with minimum wind speed thresholds of T =

0ms−1, T = 2ms−1 and T = 4ms−1 at A1, between April and June

2007. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

B.2 Observed discrete directional wind response distributions across FCV

at (a-o) B2 to B6, with minimum wind speed thresholds of T =

0ms−1, T = 2ms−1 and T = 4ms−1 at B1, between April and Decem-

ber 2014. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

B.3 Observed discrete directional wind response distributions across FCV

at (a-o) B7 to B11, with minimum wind speed thresholds of T =

0ms−1, T = 2ms−1 and T = 4ms−1 at B1, between April and Decem-

ber 2014. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

B.4 Observed discrete directional wind response distributions across the

NAC at (a-o) C2 to C6, with minimum wind speed thresholds of

T = 0ms−1, T = 2ms−1 and T = 4ms−1 at C1, between April and

December 2015. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

B.5 Observed discrete directional wind response distributions across the

NAC at (a-o) C7 to C11, with minimum wind speed thresholds of

T = 0ms−1, T = 2ms−1 and T = 4ms−1 at C1, between April and

December 2015. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

xxx



Chapter 1

Introduction

To improve bushfire management and mitigation, and to provide more accurate,

timely and comprehensive warnings to the community, a sound basis for modelling

the propagation of bushfires is essential. The spread of bushfires is highly sensitive

to wind speed and direction; in particular, sudden changes in wind characteristics

across the landscape can result in drastic changes in the rate and direction of fire

spread. Accurate estimation of wind fields across the landscape and over time is

thus a crucial component of bushfire spread modelling. However, estimation of wind

fields across rugged terrain is far from trivial. The complex interactions between

prevailing winds and varying landscape features are often over-simplified within

operational bushfire models due to computational constraints.

The research presented in this thesis aims to improve the understanding of wind

flow over complex terrain through developing a statistical characterisation. This

improved understanding will complement current approaches to provide a more

informed wind modelling framework, including considerations of variability and

uncertainty, for bushfire prediction.

1.1 Background

In 2003, the western region of the Australian Capital Territory, and adjoining areas

of New South Wales, experienced devastating bushfires. The fires reached into the

suburbs of Canberra, destroying 500 homes and claiming 4 lives, and significant

areas of vegetation were destroyed across mountain ranges west of the city. In

the years since, the Canberra 2003 bushfires have become arguably some of the
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most scientifically significant bushfires ever experienced in Australia. Great strides

forward have been made in the understanding of extreme and volatile bushfire

behaviour. For instance, it was noted that on a number of occasions the fire would

spread in a direction perpendicular to the prevailing wind, a phenomenon now

known as vorticity-driven lateral spread [Sharples et al., 2010, Simpson et al., 2013].

To better understand some of the fire behaviour phenomena that occurred in 2003,

wind characteristics were measured in a number of case studies in the region in

2007. One such case study, Flea Creek Valley, sits within the Brindabella National

Park in New South Wales, and is very close to where some of the 2003 fires ignited

and began rapidly propagating towards Canberra [Sharples et al., 2010]. After over

a decade of vegetation regrowth across the region (with no major fires occurring

since 2003), in 2014 wind characteristics were again measured across Flea Creek

Valley in order to develop an understanding of how changing vegetation impacts

wind flow over complex landscapes.

To develop a statistical characterisation of wind fields across the landscape, wind

direction was recast in terms of probability distributions that represent what is

referred to as ‘directional wind response’. Directional wind response distributions

were constructed as the joint distributions of concurrent prevailing wind directions

and those observed at the surface within the valley. These distributions statistically

describe the response of the prevailing wind direction to changes in the surface

landscape.

1.2 Research Contributions

As described previously, the overarching aim of this thesis is to better understand

wind flow over complex terrain from a statistical perspective, in the context of

bushfire prediction. This thesis develops four key contributions to research across

the fields of statistics, applied mathematics and bushfire modelling.

1. Provide new wind field datasets from regions of undulating and complex ter-

rain at resolutions relevant to surface fire spread and behaviour.
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2. Develop a statistical representation of directional wind response in the land-

scape through understanding approximation of toroidal surfaces using an al-

gorithmic adaptation of planar techniques.

3. Understand the impacts of topography and vegetation on directional wind

response through the employment of statistical comparison techniques.

4. Utilise a statistical representation and understanding of wind response across

complex terrain to evaluate wind field models used in current operational fire

prediction.

This thesis will complement the range of available wind field models by providing

datasets for input and validation, as well as comparative methods for improving ac-

curacy, reducing computational requirements and understanding uncertainty. The

proposed statistical approaches permit better accommodation of the uncertainties

inherent in the structure of near-surface wind fields over complex terrain.

In addition, the probabilistic characterisation of wind fields is more naturally suited

to the emerging state-of-the-art fire propagation prediction systems which incorpo-

rate ensemble and stochastic approaches by evaluating numerous spread scenarios

under a range of different conditions. These forecasting methods allow fire man-

agers to gain an understanding of the scope of possible spread scenarios, and by

directly considering the associated uncertainties, managers can have confidence in

the use of ‘best guess’ predictions. Moreover, these uncertainties can be used to

understand the consequences and impacts of outliers in the scenario set, such as

‘worst case’ scenarios, particularly when these outliers may result in significantly

different impacts compared to the single ‘most likely’ prediction.

1.3 Thesis Overview

In addressing the aim of the research, this thesis is structured in accordance with

the key scientific contributions detailed in the previous section.

Chapter 2 firstly reviews the current literature relevant to this thesis. This chapter

provides a detailed background of the development of bushfire modelling in Aus-

tralia and across the world. The current suite of wind modelling approaches used in
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bushfire prediction are reviewed, before probabilistic approaches to wind modelling

available from other fields of research are also considered.

Chapter 3 describes the data collected for analysis throughout this thesis, achiev-

ing the first key contribution. Two regions are studied; as previously detailed,

Flea Creek Valley is the motivating case study for this research. Data analysed

by Sharples et al. [2010] are considered in conjunction with newly collected data

from across the valley. The second case study is based at the National Arboretum

Canberra, which provides a topographical and vegetative landscape that allows for

more controlled statistical analyses of wind fields over varying surface conditions.

Chapter 4 begins to recast wind direction data in probabilistic terms; developing

the second key contribution. Directional wind response is defined, and the chap-

ter addresses the question of how to estimate true directional wind response given

noisy observed data. The toroidal nature of joint wind direction distributions pro-

vides more complex conditions for estimation. The efficacy of a simple algorithmic

adaptation to traditional planar techniques in estimating toroidal surfaces is inves-

tigated in this chapter. A simulation study is presented to compare this approach

to existing toroidal estimation methods.

In developing the third key contribution of this research, Chapter 5 presents a

study of statistical techniques that are available for the comparison of directional

wind response distributions. A simulation study is used to better understand the

power of these techniques against known alternative distribution structures. The

results of the simulation study allow for better interpretation of statistical compar-

isons between observed datasets. Application to the case studies across Flea Creek

Valley and the National Arboretum Canberra investigate the impacts of changing

vegetation or differing topography on directional wind response over the landscape.

Chapter 6 develops the fourth contribution of this research through an evaluation of

current wind modelling techniques that are used within fire prediction frameworks

in Australia. This chapter deals with two elements of wind flow across complex

terrain that are directly input into bushfire models: wind direction and vegetation-

induced wind speed reduction. Firstly, the probabilistic representations of wind

direction considered throughout this thesis are used to evaluate the deterministic
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wind model currently used in operational fire modelling. The evaluation shows

the potential for probabilistic application of such physics-based models to better

capture variation and uncertainty in wind direction. Secondly, wind speed reduction

profiles developed over flat terrain are tested against data collected for this study

over complex and undulating terrain. This evaluation aims to better understand the

applicability of such empirical profiles across the broader landscape and highlight

areas that require further research.

Finally, Chapter 7 draws together the core findings of this thesis. The discussion is

framed in terms of bushfire modelling and prediction, as well as within the broader

context of applied statistics and mathematics. Conclusions are drawn in relation

to the overarching aim of this thesis and some examples are given of research areas

which could be further explored.
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Chapter 2

Literature Review

To understand the need to better characterise wind fields over complex terrain, it is

important to contextualise the issue within the history of bushfire modelling in Aus-

tralia and across the globe. The models used operationally today have developed

throughout the 20th century and into the 21st. Although modelling frameworks

have in many ways taken advantage of the technological advancements made in

computing during that time, the fundamental scientific underpinning of fire dy-

namics and how it spreads across the landscape has remained relatively unchanged.

The first section of this chapter outlines these developments and clearly highlights

the role that wind modelling has in accurately predicting fire spread and behaviour.

Current wind models used in fire research and operational prediction are then dis-

cussed in Section 2.2.

In emerging literature, the need to deal with uncertainty in fire prediction has be-

come evident, and through statistical and probabilistic approaches, fire modelling

frameworks are now beginning to deal with the issue. Rigorous scientific under-

standing of this uncertainty in relation to fire model outputs, as well as modelling

inputs is still, however, in its infancy. Section 2.3 therefore provides some discussion

on how probabilistic approaches to wind modelling can help to better characterise

uncertainty in fire prediction.

2.1 Fire Modelling in an Uncertain World

Bushfire modelling has been developing across the world since the turn of the 20th

century. In the early 1900s, fire services in the USA began to develop systematic
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forms of fire management and control, from regulating burning of slashings and

penalising camp-fires to providing sufficient fire patrols throughout forest areas

[Beals, 1914]. Concurrently, weather researchers began to investigate the idea of

predicting forest fire spread. Beals [1914] appears to have been one of the earliest

authors to consider the use of wind forecasts in understanding the potential for

large fire spread, with examples across the USA used to conceptually verify his

ideas. Given the prevalence of bushfires (or wildfires), the most prominent research

in the field has originated from Australia and Northern America [Pastor et al., 2003].

Fire affected European countries such as Russia and Portugal have also contributed

significantly to the field.

Mathematical fire models began to develop from the mid-20th century; Pastor et al.

[2003] gives a comprehensive review of such models developed between 1946 and

2003. The fundamental models for calculating forward rate of spread developed

in the USA and Australia were constructed using both physical and empirical ap-

proaches [McArthur, 1966, 1967, Rothermel, 1972]. With these as a basis, fire mod-

els have developed by incorporating more detailed physical and numerical modelling

frameworks. State-of-the-art fire models now sit within complex decision support

tools capable of predicting not only forward rate of spread but numerous other

variables such as fire perimeter, spotting distances and risk of damage to property

[Tolhurst et al., 2008]. Applications of probabilistic fire modelling approaches, such

as those outlined by Cruz [2010], have made significant progress in recent years,

but discussions of model validation and uncertainty are still in their infancy within

both the research and operational bushfire communities.

2.1.1 Forward Rate of Spread

Two core models make up much of the fundamental bases for fire modelling across

the globe. The empirical models developed by McArthur [1967] were based on

the analysis of small experimental fires conducted in native Australian eucalypt

forests, as well as a limited collection of wildfires. Whereas, the semi-physical

model developed by Rothermel [1972] was based on the physical principles of fire

ignition and propagation, and empirically parameterised using experimental and

laboratory fires.
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Taken to be the foundation of bushfire modelling in Australia, McArthur [1967]

empirically developed the Forest Fire Danger Meter (FFDM; the Mark 5 meter is

now in operational use) using data from over 800 small experimental fires burnt

for between 15 and 60 minutes through a variety of natural eucalypt forests. A

number of wildfires were also analysed, including the 1939 fires which formed the

benchmark for the most extreme prediction outcomes. The meter (a circular slide-

rule) facilitates the calculation of a Forest Fire Danger Index (FFDI) ranging from

0 to 100, which is translated into nominal categories for communication of potential

fire risk to the public. The meter allows for the calculation of the forward rate of

spread of a fire as well as fire behaviour characteristics such as flame height and

average spotting distance. Additionally, the meter reflects information on likelihood

of ignition, difficulty of suppression and potential damage caused by the fire.

A decade later, Noble et al. [1980] empirically fitted equations to the FFDM outputs,

enabling its use within automated fire modelling systems. For the Mark 5 FFDM,

the FFDI is given by

FFDI = 2D0.987 exp (−0.45 + 0.0338T − 0.0345H + 0.0234V ) , (2.1)

where V is the wind speed (kmh−1) measured at 10 metres (≈ 33 feet) above clear

ground, T is temperature (◦C), H is relative humidity (%) and D is the Drought

Factor. The forward rate of spread of a fire (R, kmh−1) was empirically formulated

by Noble et al. [1980] using the FFDI and the fuel weight (W , t ha−1),

R = 0.0012 FFDI ·W. (2.2)

The approximations suggest that the core factors in fire danger and spread are wind

speed and the characteristics of the fuel. However, the meter and equations only

convey empirical correlations between environmental variables and rate of spread;

they do not provide any insight into the physical processes driving fire propagation.

The exact relationship between fire behaviour and wind velocity is complex. It

was shown by McArthur [1967] that rate of spread would increase in proportion

to the square of wind velocity, but Noble et al. [1980] incorporated it into the
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exponential for FFDI. For meteorological standards, wind speeds were recorded

at 10m (≈ 33ft) above the ground in the open and included as such in Equation

2.1. However, McArthur [1967] recognised that for fire behaviour research it was

standard to measure wind speeds at around 1.5m (≈ 5ft) above ground; winds at

this height have a direct influence on the flames of a surface fire [Rothermel, 1972].

McArthur [1967] therefore presented vertical profiles of wind speeds to translate

10m winds to 1.5m winds in three different forest types.

In Equation 2.1, the Drought Factor (D) represents a measure of fuel availability,

dependent upon the Keetch-Byram Drought Index [Keetch, 1966], days since last

rain and the current rainfall. Temperature and relative humidity are used as proxy

for fuel moisture content which represents the proportion of the available fuel that

will burn. From the meter, fuel type was also expected to impact on rate of spread

such that fires in low quality or open forest areas would be expected to spread

faster than estimated since wind speeds would be less impeded, however spotting

potential would be lower. Finally, McArthur [1967, page 10] also suggested that as

fuel quantity doubled so did rate of spread, recognising that this was perhaps the

“only factor over which man can exercise some control”.

For the adjustment of rate of spread under different slope conditions, McArthur

[1967] suggested that the rate of spread would increase by a factor of two for every

10◦ incline in slope (up to 20◦). Noble et al. [1980] incorporated such an adjustment

through an exponential in terms of the slope in degrees (θ, ◦),

Rθ = R exp(0.069 θ). (2.3)

It is assumed by Noble et al. [1980] that the same function would also apply down-

slope, i.e. for negative θ, but Sullivan et al. [2014] highlighted that this should not

in fact be the case. Sullivan et al. [2014] outlined a correction factor for down-slope

rates of spread based on the assumption that the rate of spread of a large fire across

undulating terrain could be well approximated by the rate of spread across flat

terrain. This correction factor could then be calculated for a number of different

rate of spread models.

10
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In 2001, the Australian Commonwealth Scientific and Industrial Research Organisa-

tion (CSIRO) began Project Vesta [Gould, 2008], which empirically developed look-

up tables and equations for fire characteristics as a replacement for the McArthur

FFDM as well as developing a more detailed understanding of the relationships

between fire behaviour and environmental conditions. These relationships were de-

veloped through experimental burns, followed by regression analysis between fire

behaviour characteristics and fuel and weather variables. Results showed a signifi-

cant, and approximately linear, relationship between rate of spread and wind speed

[Gould, 2008], rather than the exponential relationship given by Noble et al. [1980].

McArthur [1966] also outlined a Grassland Fire Danger Meter (GFDM), again struc-

tured as a circular slide-rule. The GFDM facilitated the calculation of a Grassland

Fire Danger Index (GFDI) and the related rate of spread, as well as provided infor-

mation on the difficulty of suppression, area burnt and flame height for a grassland

fire. The GFDM incorporated slightly different input variables to those of the

FFDM to capture the different processes governing fire spread through grassland

landscapes.

Since grasslands are fully open to the force of the wind, wind velocity was considered

the most significant variable in determining the shape of the fire. However, the fuel

moisture content of the grass was considered one of the most important factors in

determining fire danger, thus rate of spread and likelihood of ignition [McArthur,

1966]. As in the FFDI, fuel moisture was represented using temperature and relative

humidity, but fuel availability was considered in the GFDI by incorporating the

grass curing process rather than the Drought Index. The assumption made for the

Mark 4 GFDM (still in operation) is that fuel weight is approximately 3-4t ha−1

for grassland regions, and so the variable is not explicitly incorporated into the

equations derived for the meter [Cruz et al., 2015]. The rate of spread is then

represented as a simple linear function of GFDI [Noble et al., 1980],

R = 0.13 GFDI. (2.4)

As for the FFDI, Equation 2.1, the impact of wind on rate of spread of a grassland

fire was incorporated through an exponential term. There were no explicit adjust-
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ment equations given by Noble et al. [1980] for rate of spread of grassland fire up

a slope, but the GFDM again suggests that the rate of spread would increase by a

factor of two for each 10◦ increase in slope, up to 20◦ [McArthur, 1966].

In the 1990s, Cheney et al. [1993] re-expressed the average rate of spread (ms−1) of

a propagating grass fire directly in terms of wind speed and fuel moisture content;

R = aU b
2 exp(cMfp) (2.5)

where U2 is the wind speed measured at 2 metres above open ground (ms−1) and

Mfp is the predicted fuel moisture content (%). Furthermore, Cheney et al. [1998]

suggested that the behaviour of fire spread would change when wind speed passed a

critical threshold of 5kmh−1 (measured at 10m above the ground in the open; U10).

The type of grassland was also classified and taken into account through multiple

parameterisations of the renewed grassland fire model.

Across Australia, a number of other fuel types exist, including heathland, mallee

forest and pine. Cruz et al. [2015] provides a comprehensive review of rate of

spread models developed across these various vegetation types. Consistently, it is

shown that fuel characteristics and weather variables are strongly related to the

spread of fires through the landscape in Australia. In particular, the relationship

to wind speed is commonly defined in terms of a power law or exponential. For

example, a number of models for Australian shrublands, including heath, mallee

and buttongrass show rate of spread to be proportional to Ua where a ∈ [1.0, 1.4],

with wind speed (U) measured at either 2m or 10m [e.g. Marsden-Smedley and

Catchpole, 1995, Catchpole et al., 1998a, McCaw, 1997].

The fire danger rating system in Australia is continuing to develop as new under-

standing emerges and as fire behaviours continue to adapt to changing environmen-

tal conditions, e.g. climate change and an increased peri-urban population. In 2009,

after the Black Saturday fires in Victoria, the extreme environmental conditions ex-

perienced over that period forced an extension of the FFDI categorisation system

to include a ‘Catastrophic’ category representing danger indices greater than 100.
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In Australia, the small experimental fires conducted by McArthur, and analysis

of a few wildfires, have remained the basis of bushfire modelling for almost half a

century. In fact, although explicitly designed for eucalypt forest and south-eastern

Australian grasslands, the McArthur meters have been applied in many regions

[Noble et al., 1980]. These models have been shown to consistently under-predict

forward rate of spread by a factor of two or more, particularly for large fires or

under severe conditions [Burrows, 1994]. While for grassland fires, models have

been updated to utilise the CSIRO grassland equations [Cheney et al., 1993, 1998],

and despite new insights from Project Vesta, the McArthur meters and equations

for forest fires are still widely operational today.

In contrast to the empirical approaches taken in Australia, a semi-physical model

developed by Rothermel [1972] has been considered the basis for modelling forward

rate of spread in the USA for the past half-century. Rothermel’s model built on

the work completed by Fons [1946] and the equations set out by Frandsen [1971],

assuming that a fire propagated as a series of ignitions and defining the rate of

fire spread as proportional to the heat provided to a patch of fuel divided by the

amount of heat required to ignite that area.

While the effect of wind and slope on rate of spread remains qualitatively similar

across the set of fire rate of spread models, the relationships are incorporated using

different functional forms. For the McArthur meters and equations, wind speed

forms a multiplicative factor in the calculation of FFDI and GFDI, and slope is

accounted for through a multiplicative adjustment [Noble et al., 1980]. Rothermel

[1972] accounted for wind and slope using additive adjustment factors, φW and φS

respectively. Essentially, the adjusted rate of spread is equal to the no-wind and

flat-ground rate of spread multiplied by (1 + φW + φS).

With the assumption of no-wind and flat-ground (i.e. φW = φS = 0), the pa-

rameterisation of the physical model was based on empirical data from laboratory

experiments [Rothermel, 1972]. The wind coefficient and slope factor were param-

eterised using wind tunnel experiments and the empirical results from McArthur’s

investigations in Australia [McArthur, 1967, 1969]. Rothermel [1972] suggested that

both wind and slope increase the rate of spread through exposing the potential fuel
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ahead of the fire to more radiative and convective heat. The wind coefficient was

defined by a power law in terms of wind velocity at ‘mid-flame’ height (rather than

at 10m, used by McArthur [1967]), while the slope factor was naturally a function

of the slope angle. Both factors were also related to fuel parameters, including fuel

particle surface-area-to-volume ratio and the packing ratio of the fuel bed.

Rothermel [1972] applied the model using a number of fuel models representing

a range of North American fuel types, from grasslands through to timber forests.

The idealised input parameters showed a range of potential spread scenarios and

highlighted that the model would be useful within fuel management decision-making

processes.

2.1.2 Fire Spread Prediction

The models of both McArthur [1966, 1967] and Rothermel [1972] predict forward

rate of spread assuming that the fire will propagate predominantly in a direction

defined by a combination of the directional effects of wind and slope [Sharples, 2008].

In addition, both models facilitate the derivation of a number of fire behaviour

characteristics, including rate of increase for the fire perimeter. McArthur [1966,

1967] suggested that the perimeter of forest fires would increase at three to four

times the forward rate of spread, while the perimeter of a grass fire would increase

at a rate two and a half times that of the forward rate of spread. Even prior to the

fire danger meters, Mitchell [1937] suggested that as a rule of thumb, the rate of

increase of a fire perimeter would be three times the forward rate of spread.

These rules of thumb are still utilised alongside substantial field experience by

fire fighters and fire behaviour analysts to manually predict fire spread across the

landscape. However, since the turn of the century, and with advancements in com-

putational capacity, forward rate of spread models have been integrated into two-

dimensional fire prediction systems which predict the spatial spread of fires and

their developing behaviour. These systems are now capable of incorporating com-

plex environmental conditions.

In Australia, the most commonly used state-of-the-art fire prediction tool for re-

search and operations is known as Phoenix Rapidfire [Tolhurst et al., 2008]. The
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framework contains a number of fire spread and behaviour models to account for

numerous fuel types, including the empirically developed McArthur Mark 5 Me-

ter [McArthur, 1967], the equations developed by Project Vesta [Gould, 2008] and

the formulae given by Beck [1995] for forest fuels in Western Australia. Phoenix

Rapidfire also incorporates CSIRO grassland fire spread models, including those

given by Cheney et al. [1998], as well as fire spread models for heathland vegetation

[Catchpole et al., 1998a], buttongrass [Marsden-Smedley, 1993, Marsden-Smedley

and Catchpole, 1995], pine [Cruz and Fernandes, 2008, Cruz et al., 2008] and mallee

[McCaw, 1997, 1998]. The fire behaviour for Phoenix Rapidfire is therefore tuned

to experimental fires or relatively small wildfires using 10m open wind speeds as

input, which is modelled using a number of downscaling wind models discussed in

Section 2.2.

Within the framework, one-dimensional forward rate of spread is spatialised using

Huygens’ principle [Richards, 1993], based on a geometric template dependent on

wind and slope. Phoenix Rapidfire therefore allows for operational prediction of fire

spread over spatial grid sizes between 100m and 200m in resolution, at time intervals

of between 1 and 15 minutes [Tolhurst et al., 2008]. Similar frameworks used across

the world also incorporate Huygens’ principle to spatialise one-dimensional forward

rate of spread, and therefore show similar dependence and sensitivities to wind

inputs. For example, in the Canadian fire growth simulation system, known as

Prometheus [Tymstra et al., 2010], the spatial spread of fire is determined through

principles of elliptical fire growth defined by environmental parameters.

In the USA, FARSITE is the key framework used for fire spread modelling both op-

erationally and within research [Finney, 2004]. It is based on the fundamentals from

Rothermel [1972] and again uses Huygens’ principle to spatialise one-dimensional

fire spread models. The Wildland Fire Dynamics Simulator (WFDS) [US Forest

Service, 2013, Mell et al., 2009] is also used to model detailed fire dynamics for fire

behaviour research. The model was initially developed for building fires and incor-

porates detailed computational fluid dynamics and combustion models to predict

fire behaviour, but it is therefore too computationally intensive for operational use.

Within fire behaviour research, WFDS has been utilised to better understand the
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interactions between bushfires and the urban environment at what is termed the

Wildland-Urban Interface (WUI) [Rehm and Mell, 2009].

2.1.3 Uncertainty in Bushfire Prediction

In an investigation into the uncertainty of fire rate of spread prediction models,

Cruz and Alexander [2013] defined an exact prediction as one within a ±5% error

band around an observed value. With this definition, it was found that only 3%

of rate of fire spread predictions (35 out of 1278) could be considered exact, with

most models under-estimating rate of spread. In fact, Cruz and Alexander [2013,

page 20] suggested that “one could argue that perhaps the only certainty about

wildland fire behaviour prediction is that it is extremely unlikely that a prediction

will match the observed fire behaviour characteristics”.

In practice, while McArthur [1977] “felt” that the grassland fire danger meter could

predict rate of spread within ±20%, Cruz and Alexander [2013] suggested a bound

of ±35% as an acceptable benchmark for model performance, after finding that

most empirical fire rate of spread models had shown mean absolute percentage

errors between 20 and 40%. Albini [1976] indicated, and Alexander and Cruz [2013]

reiterated, that the main sources of error in rate of spread predictions were lack of

model applicability, internal model inaccuracy and input data errors. Uncertainties

were also expected to be higher under operational settings due to logistical and

time constraints.

What might be termed the ‘butterfly effect’ describes the potential for error accu-

mulation through modelling processes. Such error propagation is clearly an issue

in fire modelling since rate of spread (with an accuracy of, say, ±35%) is used to

calculate a variety of other fire characteristics, in particular fire perimeter and be-

haviours such as flame height or spotting potential. One way to deal with such

accumulation, suggested by Cruz and Alexander [2013], is to use simpler models.

However, with increasing understanding of fire dynamics and increased computa-

tional ability, as well as increasing demands by the public and fire management to

predict greater detail, it appears increasingly likely that models will become more

complex.
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As noted by Tolhurst et al. [2008], fire modelling frameworks have become in-

creasingly reliant on quality input data. However, the paradox of fire modelling

uncertainty is that modelling over longer temporal or spatial scales is actually more

accurate than over finer scales due to small variations in wind, fuel and dynam-

ics that will unlikely ever be fully captured in models [Cruz and Alexander, 2013].

Catchpole et al. [1993, 1998b] suggested that this inherent fine-scale variability in

laboratory fires accounted for as much as ±20% of the unexplained variability in

observed rates of spread.

In bushfire prediction, uncertainty is currently considered in relation to the final

outcome from fire spread and behaviour models. In both operations and research,

state-of-the-art prediction methods have been primarily used in a deterministic

manner; producing a single prediction of fire rate of spread or final perimeter for

a discrete set of input values. Model outcomes are evaluated and interpreted in

relation to measured metrics as a fire develops or against final fire perimeters, but

these metrics are difficult to observe in the field.

During a fire event, operational focus is naturally on the management and sup-

pression of the fire rather than on data collection. Validation of models using

wildfires has therefore relied on limited remote sensing platforms, such as line-scans

or aerial imagery collected during the event and post-event data such as final burnt

area. While Duff et al. [2012, 2013] and Cui and Perera [2010] considered how

fire perimeter prediction can be assessed against final burnt area, evaluations are

complicated by factors such as suppression efforts as well as the ability to accu-

rately observe predicted fire behaviour variables while a fire is actively spreading

and being fought. There are limited studies or datasets that report multiple rates of

spread for a given fire over a period or area, and so it is hard to analyse the uncer-

tainty of fire rate of spread against observations (particularly for wildfires) [Cruz,

2010]. Many researchers have therefore conducted more detailed validation of their

models using data from experimental or prescribed fires where conditions can be sig-

nificantly calmer than those experienced in large wildfire scenarios [Alexander and

Cruz, 2013]. Of the few studies that report multiple rates of spread for experimental

fires, uncertainties around 30% to 40% were observed [Cruz, 2010].
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These issues in model evaluation lead to questions of how to effectively capture

uncertainty in the fire prediction process. Understanding model uncertainty in

terms of model inputs, model parameters and model structure [Guillaume et al.,

2016] is therefore particularly useful. However, there has been limited literature

focussed on understanding where in the fire modelling process uncertainty might

develop or how such uncertainty might be characterised, or even reduced. Penman

et al. [2013] conducted a sensitivity analysis of Phoenix Rapidfire using a simulation

study and found that fire behaviour was most strongly influenced by fire weather,

rather than suppression and fuel treatments. Cruz [2010] also highlighted the gaps in

dealing with uncertainty in the current literature and operations. For instance, the

non-existence of confidence intervals in deterministic approaches to quantify error

in prediction leaves the estimation of output uncertainty the sole responsibility of

the end users.

2.1.4 Modelling Uncertainty

Through consideration of probabilistic approaches, operational bushfire prediction

frameworks are beginning to capture and understand uncertainty [e.g. Twomey

and Sturgess, 2016, Andrews et al., 2007]. Cruz [2010] considered that ensemble

modelling would allow identification of prediction limits defining the uncertainty

associated with a prediction, provide an ability to make probabilistic predictions,

and allow investigation of unlikely events or surprises in the system. J. D. Kepert

(pers. comm., 30 Aug. 2016) also suggested that probabilistic prediction would

allow for better understanding of likelihood or risk in management, as well as pro-

viding seamless and consistent predictions that avoid inconsistent forecasts which

in turn improve user confidence. It was noted by Cruz [2010] that ensembles could

also be used to extend the interpretation of predicted outcomes, but issues may arise

in the interpretation of probabilistic results. Nominal categories of probabilities in

terms of low to high risk could be used to better communicate pure probabilities,

but this does not entirely alleviate the issues of interpretation.

Bates and Granger [1969] have been credited with pioneering the idea of combin-

ing forecasts to reduce the mean error of an individual prediction in ensemble-style

modelling. The ideas behind ensemble modelling with Monte Carlo sampling are
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based on the Law of Large Numbers in probability theory which states that, with

increasingly large sampling sizes, the distribution of predictions asymptotically ap-

proaches the true process [e.g. Metropolis and Ulam, 1949, Feller, 1971, Lindgren,

1976]. In application, this results in running a model, or multiple models, a number

of times to perturb its inputs, parameters or structure, and produce a distribution

of predictions that represents the true range of possible outcomes. The wide rang-

ing applications of ensemble modelling include economics [e.g. Garratt et al., 2011],

ecology [e.g. Grenouillet et al., 2011], meteorology [e.g. Gneiting and Raftery, 2005]

and climate [e.g. Molteni et al., 1996], as well as fire modelling [e.g. Cruz, 2010].

Kourtz [1972] indicated the potential improvement in reliability by producing prob-

ability distributions of fire danger indices rather than single outputs. In the days

prior to the use of large computational systems, it was suggested that each weather

variable be assigned a distribution by the forecaster rather than a single estimate.

The probabilities could be sampled using a Monte Carlo sampling technique to pro-

duce a distribution of the predicted Fire Danger Index. In principle, almost half a

century ago, Kourtz [1972] was suggesting the use of the type of ensemble modelling

that is only recently being developed for operational fire prediction.

A number of authors have studied the ideas of ensemble modelling in application

to fire prediction. Salazar and Bradshaw [1986] suggested prediction of distribu-

tions might be preferable to deterministic approaches for fire modelling, while Beer

[1991] outlined a comparison of deterministic and statistical approaches to bushfire

modelling. Anderson et al. [2007] also considered the results of fire modelling under

systematic perturbations of climatic input variables, finding that the inclusion of

perturbed weather data allowed better prediction of the variation in fire spread,

particularly on the flanks and at the back of the fire.

The ensemble method used by Cruz [2010] was set up such that the prediction was

given by inputs obeying x = x̄+x′, where x′ ∼ N(0, σ2). Monte Carlo selection was

used to sample 1000 ensemble members drawn from the Gaussian probability distri-

bution functions of x, to produce a distribution of fire rate of spread predictions. A

key question in this set up is how to generate a valid and realistic ensemble, i.e. how

to estimate the spread of the variables, σ2. The variables considered by Cruz [2010]
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were wind speed, air temperature and relative humidity. The spread of each vari-

able was estimated arbitrarily for this study so as to illustrate the ensemble method.

However, it is noted that these will be state and spatially dependent, and will vary

with environmental factors such as atmospheric conditions. Wind direction was not

accounted for by Cruz [2010], but there was noted to be a lack of influence of wind

direction variability for fast-moving grass fires under high wind speed conditions.

This has been shown to be very different for forest fires and Moore et al. [1988]

noted the greater variance of wind in complex terrain in comparison to flat terrain.

Finney et al. [2011] considered one of the most technically thorough ensemble wild-

land fire simulation methods within the fire literature. Hundreds, if not thousands,

of ensemble members were used to produce simulations of fire spread and behaviour

over 7-day periods for 91 fires. Results of the simulations were provided in terms of

probability contours as well as final fire size, and were analysed in terms of variation

between ensemble members as well as in comparison with observed fires. Through

time series analysis of historical data, weather sequences were generated to mimic

the range of realistic weather conditions for a given case study over the burning

period. The simulation was also conducted using both two-dimensional and one-

dimensional fire simulators to allow a comparison of the modelling approaches. It

was noted by Finney et al. [2011] that added uncertainty in the modelling also

originated from the fire analyst utilising the model and the operational choices that

were made, for instance the selection of weather stations for input data or editing

of fuel data from local experts or crews on the ground.

In addition, Finney et al. [2011] highlighted the sensitivity of the ensemble results

to the number of ensemble members used in the prediction. From the generation

of weather time series over a period of 7 days, a total of 2477 different simulated

weather conditions were possible, so a large number of ensemble members were

required to produce reliable and repeatable results. Increasing the member numbers

from 256 to 4,096 saw a marked increase in the variation between simulations, i.e.

fire predictions. However, many other ensemble approaches taken for fire modelling

(particularly in the operational setting) have analysed significantly fewer ensemble

members, for example in the order of 25-30 [Twomey and Sturgess, 2016, French

et al., 2014d]. The larger the sample size, or number of simulated fire predictions,

20



CHAPTER 2. LITERATURE REVIEW

the more extreme events are captured within the ensemble. In some cases, this may

not be operationally necessary and so lower numbers of members would be sufficient.

However, when considering ‘worst case’ scenarios or trying to understand rare events

with major consequences, larger samples sizes are required to capture the extremes.

Unfortunately, it is computationally expensive, and thus time-consuming, to achieve

the number of ensemble members studied by Cruz [2010] and Finney et al. [2011].

There are in fact very few operational fire prediction systems that account for un-

certainty in fire modelling inputs. The Fire Impact and Risk Evaluation Decision

Support Tool (FireDST) developed by a collaborative research group in Australia

used multiple deterministic fire spread predictions from Phoenix Rapidfire and com-

bined them to calculate the likelihood of impact [French et al., 2013, 2014d]. Within

this calculation, input parameters were sampled from uniform or equally weighted

point distributions, rather than the Gaussian distributions used by Finney et al.

[2011], and each fire spread scenario was therefore treated as equally likely.

Using an Area Difference Index as measure of performance, French et al. [2014d]

compared the application of FireDST using Phoenix Rapidfire to a two-dimensional

spatialisation of the CSIRO Grassland Fire and Forest Fire models using Huygens’

principle. The project also considered three case studies to evaluate the applica-

tion of FireDST and understand the variability in simulating real bushfires [French

et al., 2014a,b,c]. Although this analysis considered a thorough range of important

fire spread drivers, the results considered only visual comparisons of the predicted

fire perimeter to that observed. The model outputs were clearly highly sensitive

to changes in wind conditions, including bias correction measures made to mod-

elled wind conditions in the post-event analysis, and simulation studies highlighted

the models’ additional sensitivity to slope. Unfortunately, however, the FireDST

modelling framework has yet to progress past the proof-of-concept stage.

The only operational ensemble-based fire prediction framework currently used in

Australia is SABRE (Simulation Analysis-based Risk Evaluation) developed by the

Queensland Fire and Emergency Services [Twomey and Sturgess, 2016]. The frame-

work uses a 25-member ensemble of Phoenix Rapidfire runs with input data selected
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from standard distributions fitted around mean values [Queensland Fire and Emer-

gency Services, 2015, Twomey and Sturgess, 2016]. Phoenix Rapidfire currently

incorporates some estimates of fire fighting activities, but accurately incorporating

their effect on fire perimeters into the model is complex. Verification of outputs

from frameworks such as SABRE is therefore difficult where model outputs are

almost always expected to be ‘incorrect’.

Other probabilistic approaches to fire modelling include a number of studies which

focus on assessing risk of fire spread or fire behaviours [e.g. Penman et al., 2013,

Preisler et al., 2004]. McRae and Sharples [2011] outlined a conceptual framework

for assessing risk of extreme bushfires where a probabilistic approach was considered

to define transitions between stages of fire growth and to calculate the likelihood

of fire decay, persistence or escalation. In addition, Mandel et al. [2009] considered

a number of statistical techniques for data assimilation in fire modelling. These

approaches aim to update fire model parameters as the fire propagates, using new

information gained from incoming data streams.

The prediction of uncertainty in bushfire spread and behaviour can also be handled

through stochastic modelling techniques. Early in the literature, Dayananda [1977]

outlined a simple stochastic model for the occurrence of human-caused forest fires in

a particular region, using only the number of visitors to the region and simple envi-

ronmental indices. Han and Braun [2014, page 434] later suggested that a “realistic

fire growth simulator, based on rate of spread, should have a stochastic compo-

nent”. Stochastic approaches to fire spread prediction have not only been shown to

capture wider variation in fire spread than ensemble methods (J. J. Sharples, pers.

comm., 2016), but are also less computationally demanding [Han and Braun, 2014].

Moreover, Boychuk et al. [2007, 2009] detailed a forest fire growth model using

stochastic techniques where fire growth was represented as a random phenomenon

modelled over a Markov chain lattice. These methods allow for the variation of

environmental inputs as the fire propagates through time and space. Similar to

those obtained through ensemble methods, stochastic models are able to produce

probabilistic outputs such as probability contours for fire risk and distributions of

area burnt.
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Aside from input error, Cruz [2010] highlights the errors in prediction arising from

model structure and parameters, i.e. systemic model errors, such as fire observation

errors or weather interactions that are not captured within current models. It is

suggested that an ensemble of models and parameterisations would shed light on the

uncertainty of understanding around the relationships used to develop the different

conceptualisations of fire spread [Cruz, 2010, Cruz and Fernandes, 2008].

However, it still remains that ensemble or stochastic approaches, and probabilistic

outputs, are relatively new to the industry, particularly the end users of these fire

models. It has been suggested that further education and continued research into

these approaches are required to improve understanding of their advantages and

promote better acceptance of the models [French et al., 2013].

2.2 Wind Modelling in the Context of Bushfire

For effective modelling of bushfire spread across complex landscapes, input variables

need to be modelled at all scales relevant to bushfire behaviour; in particular, it

was found that wind accounted for much of the variability in fire spread [Alexander

and Cruz, 2006]. Finney et al. [2011] also showed that within ensemble fire simula-

tions, wind direction was a key variable in accounting for uncertainty in predictions.

Variation in wind direction had a significant impact on the difference between out-

puts produced by a one-dimensional fire model as compared to a two-dimensional

simulator. This highlights the interaction between uncertainties of input variables

and the uncertainties in the model structures themselves. These are aspects of fire

modelling that still need to be better understood and addressed in research, yet so

far in the literature, limited formal sensitivity analyses have been conducted on fire

models [e.g. Penman et al., 2013].

While broad-scale weather interactions undoubtedly impact the spread of large

bushfires through mechanisms such as synoptic wind changes or the formation of

thunderstorms, most fire models use input winds at standardised heights of ei-

ther 10m or 20ft to capture the near-surface wind dynamics that drive surface fire

behaviour. For instance, McArthur [1967] used winds at 10m (≈ 33ft) but also

showed profiles from 1.5m (≈ 5ft), and while Cheney et al. [1993] used 2m winds,
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Cheney et al. [1998] returned to using 10m winds. Within Phoenix Rapidfire, stan-

dardised 10m open winds are therefore used as the input across the fire spread

models. Rather than defining a specific height for wind inputs, Rothermel [1983]

describes ‘mid-flame’ height of winds as related to the height of the fuel-bed, which

therefore requires no prior knowledge of the burning process. To account for the

height discrepancy between standardised wind observations at 20ft and the required

estimates of ‘mid-flame’ wind speeds for Rothermel’s model, Andrews [2012] inves-

tigated modelling the wind speed adjustment factor (WAF).

Interactions between wind and terrain add further complexities to the relationship

between wind and fire. Whiteman [2000] and Banta et al. [1990] identified a number

of the mechanisms produced by the interaction of wind flow and rugged terrain, such

as thermal-driven flows or dynamic channelling. Interactions between the fire itself

and winds also form an evolving feedback loop which is extremely difficult to capture

within fire modelling systems [e.g. Mandel et al., 2011, Peace et al., 2015]. Motivated

by events during the 2003 Canberra bushfires, atypical (unexpected and potentially

dangerous) fire spread over complex terrain was investigated by Sharples et al.

[2012] and Simpson et al. [2013]. It was shown that atypical lateral spread could

only be explained by wind-terrain-fire interactions. In particular, it became clear

that flow separation was a necessary condition for the occurrence of such spread.

Simpson et al. [2013] suggested that high wind speeds increased the likelihood of the

behaviour occurring, with further work identifying relevant wind speed and terrain

thresholds its occurrence [Simpson et al., 2016].

The dependence of fire spread on wind characteristics and the complexities of their

interactions with the terrain, highlight the need for accurate and timely wind field

predictions as input into fire modelling systems used for both ahead-of-time analysis

and real-time operations. Crosby and Chandler [1966] highlighted the importance

of accurate wind observations in fire modelling as well as management operations,

while Noble et al. [1980] recognised the sensitivity of fire to wind, and the require-

ment of accurate data for model inputs.

For many studies of bushfire rate of spread, the inputs of wind speed and direc-

tion have been taken as uniform across either time or space, and sometimes both.
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Sullivan and Knight [2001] investigated the variation of wind speeds surrounding

a small experimental fire. The study (part of CSIRO’s Project Vesta) highlighted

not only the variability in wind speed across the area but also the difficulties in

measuring (and thus predicting) winds at ‘mid-flame’ height, which directly drive

the direction and speed of the fire front. This fundamental problem has persisted

for around 80 years [Mitchell, 1937], despite the improvements in technology and

understanding.

Mesoscale Numerical Weather Prediction (NWP) systems are able to provide ac-

curate real-time weather predictions over a range of appropriate spatio-temporal

scales. In Australia, the Bureau of Meteorology has developed the Australian Com-

munity Climate and Earth-System Simulator (ACCESS) model, which runs oper-

ationally at scales between 4km and 25km for local, regional and global weather

predictions [Bureau of Meteorology, 2017], but can be used for small-scale high-

resolution modelling down to approximately 400m [Wells et al., 2014]. However,

in the operational context, these models do not resolve winds at sufficient spatial

and temporal scales to capture the detailed topographic effects that influence sur-

face fire behaviour. Wagenbrenner et al. [2016] also highlight the limited ability of

traditional broad-scale weather prediction to capture the variability of wind fields

across complex terrain, indicating the need for downscaling models to better predict

meteorological variables at the finer resolutions relevant to fire spread modelling.

A number of different techniques for modelling two-dimensional wind fields across

the landscape have been developed over the past half-century. These techniques

have aimed to capture the dynamic variability caused by the interactions between

the landscape and air flow above it; in rugged terrain these interactions are com-

plex and sometimes confounding. The modelling techniques range from detailed

numerical computations through to empirical adjustment factors.

Computational Fluid Dynamics (CFD) models involve computing numerical solu-

tions to the full array of fluid equations conserving mass, energy and momentum

in flow across the landscape. These models include resolution of the Navier-Stokes

equations in numerous forms, inclusion of different turbulence schemes and estima-

tion of atmospheric conditions [e.g. Vosper et al., 2002, Burton et al., 2006]. The
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physics governing flow through the boundary layer (close to the surface), including

interactions with vegetation canopies, are detailed by Ross and Vosper [2005], Finni-

gan [2000], Belcher et al. [2012], Mathew [2010] and Potter et al. [2002], amongst

others. Operationally, the wind modelling software WindWizard, developed in the

USA by Butler et al. [2006], uses CFD methods. The UK Meteorological Office

has also used similar methodologies within the BLASIUS (Boundary Layer Above

Stationary Inhomogeneous Uneven Surfaces) model to investigate flow over hills

for applications such as pollution dispersion and wind energy [Allen, 2006, Vosper

et al., 2013].

Full CFD models require considerable computational resources in order to solve

the equations described above, and so are not necessarily appropriate for opera-

tional use in prediction of fire spread and behaviour in real, or faster-than-real,

time. Simplifications of these methods are therefore commonly used within oper-

ational modelling. Mass-consistent models allow for the resolution of a subset of

the equations dealt with in the previous paragraph, namely conserving mass across

the landscape without resolving conservation of momentum [e.g. Forthofer et al.,

2014b]. These models therefore capture the dominant characteristics of wind flow

across the terrain without such significant computational demand.

In addition, look-up tables are often used in operations to give adjustment factors

for fire rate of spread given the terrain features, particularly slope and aspect (R.

H. D. McRae, pers. comm., 2014). These tables typically suggest an increase in

rate of spread up hill and a decrease in speed down hill. The tables have been

empirically developed and so inherently capture features such as wind reversals

caused by large-scale turbulence over complex terrain. Similarly, wind multipliers

also provide adjustment factors for wind speeds across hill slopes, showing a peak

of wind speed at the ridge top [e.g. Paterson and Holmes, 1993, Holmes et al., 1997,

Glanville and Kwok, 1997]. The method for computation of such wind multipliers

across varying terrain was developed for application across Australia, primarily

for the assessment of wind hazard or risk to activities including construction and

agriculture [Yang et al., 2014]. While such detailed computation of wind multipliers

has been used in the mitigation of risk from natural disasters such as tropical

cyclones, they have yet to be applied within the bushfire context.
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Both the full CFD technique and look-up tables are capable of incorporating finer-

scale aspects of turbulence in wind flow across complex terrain, and therefore the

components of the flow important for developing fine-scale, potentially atypical,

fire behaviour. However, CFD methods are highly computationally demanding,

reducing their ability to predict fire spread in real, or even near-real, time, and look-

up tables lack the sophistication or computational ability to predict wind behaviours

across wide regions.

2.2.1 Operational Wind Field Models

Mass-consistent diagnostic models are generally preferred for operations due to

the computational constraints on producing useful, fine-scale wind model outputs

in real, or near-real, time. A number of downscaling models are available in the

literature including WindStation [Lopes, 2003] which incorporates a number of sub-

models and solvers. However, WindNinja [Forthofer et al., 2014b] is currently the

most widely used model across the USA in operational fire management, and is also

incorporated within Phoenix Rapidfire in Australia (Tolhurst et al., 2008).

Despite its prolific use within operational fire spread models, it is noted throughout

the literature [e.g. Butler et al., 2015] that there is a lack of wind data observed

across complex terrain for effective evaluation of such wind modelling approaches.

Commonly used datasets, such as Askervein Hill [Taylor and Teunissen, 1987],

Tighvein Hill [e.g. Vosper et al., 2002, Burton et al., 2006] or Bolund Hill [Berg

et al., 2011], represent landscapes that, although real, are selected due to their sim-

plistic topographic or vegetation features, e.g. flat plains surrounding a single hill

with limited vegetation. Wind data collected from more complex terrain, i.e. within

mountain ranges, have been used to identify landscape-scale patterns or bound-

ary layer dynamics such as thermal flows or dynamic channelling through valleys

(Whiteman and Doran, 1993, Gross and Wipperman, 1987, Weber and Kaufmann,

1998). Surface wind data collected at finer scales, relevant to fire behaviour and

spread across mountainous landscapes, such as those collected by Sharples et al.

[2010], are rare.

In the evaluation of the development of WindNinja, Forthofer et al. [2014b] con-

ducted a comparison of mass and mass-and-momentum conserving wind field models
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with observed wind data from Askervein Hill and Waterworks Hill. Although Wa-

terworks Hill exemplified slightly more complex topography, both regions exhibited

limited vegetation cover. Both the mass and mass-and-momentum conserving wind

models accurately predicted wind speeds on windward slopes. However, both mod-

els showed the greatest limitations in modelling wind speed and direction on leeward

slopes. A comparison of fire spread simulations driven with a full CFD wind model

versus a mass-consistent wind model also showed stark differences on the leeward

side of Askervein Hill [Forthofer et al., 2014a]. By accounting for conservation of

momentum in the CFD model, the fire spread was predicted to significantly reduce

in speed on the leeward slope due to lee-side recirculation, while the mass-consistent

model showed little reduction in rate of spread as the fire propagated over the hill.

Butler et al. [2015] introduced a high-resolution dataset collected over yet more

complex terrain, with data collected over a tall, isolated mountain sitting on a

plain at the foot of a mountain-valley range. The mountain, which rose 800m

above the valley floor and had a horizontal scale of 4km, was considerably larger

than Askervein Hill and provided more complex features for analysis of wind flow.

A secondary canyon site was also investigated, but again the vegetation across both

study sites was limited to grasses and low-level brush.

Wagenbrenner et al. [2016] compared the application of a previous version of Wind-

Ninja (version 2.5.2), a mass conserving model, against the observations made by

Butler et al. [2015]. The study highlighted the improvements that downscaling mod-

els make on broad-scale NWP outputs, particularly in relation to the variability of

wind speeds experienced across complex terrain. As in previous studies, the biggest

improvements shown by the mass-consistent solver in WindNinja were found on

windward slopes and ridge tops under high-wind conditions. However, the study

reiterated the limitations of the mass-consistent solver in predicting wind speed and

direction on leeward slopes.

Forthofer et al. [2014b] warned that users should be aware of model limitations and

interpret results cautiously where appropriate. It was also noted by Wagenbrenner

et al. [2016] that the limitations on leeward slopes were to be expected from Wind-

Ninja 2.5.2. The scheme was designed to account for only mass conservation across
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the landscape and did not take into consideration momentum conservation, which

would cause features such as recirculation on leeward slopes. The consequences of

not capturing such wind features are significant in the fire modelling context with

considerable impacts on fire propagation across the landscape, and characteristics

such as flow separation and recirculation on leeward slopes being linked to extreme

fire behaviours [Simpson et al., 2016]. Recent development of WindNinja has incor-

porated a momentum solver which allows the model to capture more complex flow

patterns across the landscape while maintaining operational computation times (N.

S. Wagenbrenner, pers. comm., 2015).

2.2.2 Vertical Wind Profiles

Vertical wind profiles within the boundary layer, but above the canopy, are often

assumed to follow a logarithmic profile [Touma, 1977]. This profile becomes dis-

turbed near the surface due to roughness of varying lengths, from topographical

scales down to the scale of the vegetation. There is a significant body of work on

wind behaviour over topographical features such as hills, escarpments and wind

breaks [e.g. Holmes et al., 1997, Glanville and Kwok, 1997, Cleugh, 2002, Mobbs

et al., 2005]. Equally, there is a wealth of literature regarding the physics of wind

disturbances within the canopy [e.g. Finnigan, 2000, Belcher et al., 2012, Ross,

2008, Byronscott, 1990, Wood, 2000]. However, few authors have considered the

combined effects of topography and vegetation on vertical wind profiles [e.g. Allen,

2006].

Particularly in the context of bushfire, the landscape is very rarely smooth or homo-

geneous, and in relation to surface fires, it is the wind within the canopy that is of

most interest. Cruz and Alexander [2013] noted that aside from topographical fea-

tures, the principal drivers behind the behaviour of spreading fires are fuel moisture

and wind speed. Van Wagner [1989] recognised that the prediction of surface fires

may be more difficult than that of crown fires due to the complexity of understorey

fuels. Alongside this recognition, it can also be asserted that the variation of wind

fields within the vegetation layer adds further complications to the modelling of

surface fires spreading beneath the canopy.
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As with the wind modelling techniques described in the previous section, full CFD

methods to resolve the physical equations describing vertical wind profiles through

vegetation and over complex terrain are computationally expensive, so simplifica-

tions are required for operational prediction time frames. In the current suite of

fire spread prediction models, wind speeds measured in the open environment (with

no vegetation or above the vegetation layer) are translated to predict wind speeds

within forests or vegetation at ‘mid-flame’ height using adjustment factors. The

‘wind reduction factor’ (WRF) [Cionco, 1972, Rothermel, 1972] and ‘wind adjust-

ment factor’ (WAF) [Andrews, 2012] are defined empirically for a number of struc-

tural vegetation features including crown ratios and vegetation age. However, both

the WRF and WAF assume the wind reduction profile to be constant throughout

the vegetation layer despite the physics-based literature suggesting otherwise [e.g.

Finnigan, 2000, Belcher et al., 2012]. Moon et al. [2013] presented empirical wind

speed profiles for different forest types, showing that wind speed profiles within the

canopy were in fact non-constant.

It is in the interest of the fire research industry to better understand, and subse-

quently model, the variability of wind fields within vegetation layers. Recent work

[Moon et al., In Press] has shown that wind reduction profiles within the canopy

depend on open wind speeds and height within the layer. An empirical Generalised

Additive Modelling System (GAMS) is under development to model wind reduction

profiles under various conditions (K. Moon, pers. comm., 2015). However, this new

model has been developed using data collected in flat terrain areas, where the im-

pacts of topography were intentionally minimised, so does not represent wind speed

reduction beneath the canopy in areas of complex or mountainous terrain.

2.3 Probabilistic Approaches in Wind Modelling

As outlined in Section 2.1.3, probabilistic approaches have only recently been ap-

plied to operational bushfire modelling despite their advantages being highlighted a

number of times over the past 50 years. Although more recent ensemble approaches

produce probabilistic fire spread outputs, they still rely heavily on deterministic

variable inputs. Twomey and Sturgess [2016] use standard probability distribution

functions, such as the Normal or Uniform, around average input values given by
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deterministic models, such as WindNinja. Wind direction, wind speed and wind

speed reduction factor are all sampled using a Normal distribution centred around

the predicted mean value, with advice from meteorologists determining relation-

ships and distribution parameters (B. Twomey, pers. comm., 1 Sept 2016). One

benefit of such statistical approaches to fire modelling inputs is the reduced com-

putational demand in characterising dynamic wind behaviours that are physically

complex, thus allowing for uncertainty characterisation without validation through

full CFD models.

In the context of fire spread prediction, wind fields have been considered in proba-

bilistic terms in only a limited number of studies [e.g. Sharples et al., 2010]. Work in

the wind energy sector has contributed analyses of a number of individual sites and

the fitting of probability distributions to wind speed and wind direction datasets

[e.g. Erdem and Shi, 2011, Carta et al., 2008]. These studies consistently show

that the variability of wind direction at a given point is not well represented by a

Uniform or Normal distribution.

The most well-known univariate and unimodal distribution used to estimate wind

speed is the Weibull distribution [e.g. Lackner and Elkinton, 2007]. However, mod-

elling wind direction distributions is more complex due to the circular nature of the

variable φ ∈ [0, 2π), which is defined such that

φ = φ+ 2cπ, c ∈ Z. (2.6)

There are numerous other natural circumstances where circular data arise [Mar-

dia and Jupp, 2000]. For example, Goodyear [1970] considered the orientation of

fish species in relation to sun exposure, while Fisher and Powell [1989] investi-

gated the flow direction of an ancient river by considering the orientation of fossils.

Fisher [1993] outlined some of the theory behind circular statistics and, in particu-

lar, highlighted the use of wrapped or circular distributions such as the von Mises

distribution.

Within the wind energy literature there have been numerous investigations into

joint wind speed and wind direction distributions since the 1970s [e.g. Smith, 1971,

McWilliams et al., 1979, McWilliams and Sprevak, 1980, Garcia-Rojo, 2004]. Many
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of these studies have been aimed at optimising wind farm layouts for the most ef-

ficient production of energy, and therefore have taken the next step to characterise

the joint distribution for modelling purposes. The literature has progressed through

considering the univariate distributions of wind speed and wind direction individ-

ually, through to developing estimations of multivariate, cylindrical distributions.

A number of different models have been used to estimate cylindrical distributions

by combining linear and circular marginal distributions. For instance, Carta et al.

[2008] used a truncated Normal-Weibull distribution to represent the marginal dis-

tribution of wind speed, while applying a von Mises distribution for the marginal

distribution of wind direction. Similarly, Erdem and Shi [2011] considered the

Angular-Linear approach introduced by Johnson and Wehrly [1978] to model the

joint probability distribution of wind speed and direction.

Zhang et al. [2011, 2013] outlined a multivariate multimodal wind distribution

(MMWD) model for cylindrical wind speed-wind direction data, which used non-

parametric kernel density estimation (or the Parzen-Rosenblatt Window method).

The model was shown to be effective across univariate (wind speed), bivariate (wind

speed and direction) and multivariate (wind speed, wind direction and air den-

sity) distributions, using both visual and quantitative assessments of performance.

Through a comparison with other bivariate unimodal models, the study highlighted

the need for a model capable of capturing the multimodal nature of the joint distri-

butions. Such multimodal distributions were estimated by Garćıa-Portugués et al.

[2013a,b] using circular-linear kernel density estimation in application to wind di-

rection and air pollution data. Additionally, the authors note that application of

the introduced algorithm could easily be extended to circular-circular densities.

Both temporal and spatial uncertainty across the fire prediction process must be

considered. Although a number of recent studies consider statistical approaches

to spatial modelling of circular data with application to wave directions on the

Adriatic coast of Italy [Alégria et al., 2016, Lagona and Picone, 2016], there are

limited studies dealing with similar spatial statistical modelling of wind direction

over complex terrain.
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2.3.1 Joint Wind Direction Distributions

Over the last two decades of the 20th century, a collection of authors [Gross and

Wippermann, 1987, Whiteman and Doran, 1993, Weber and Kaufmann, 1998] be-

gan to investigate the relationship between synoptic winds and winds experienced

across complex terrain, particularly within valley structures. The investigations

saw the development of joint wind direction distributions showing the relationship

between wind direction at a location on a ridge top or recorded at the synoptic

level, and wind direction observed at a point within a valley. These bivariate dis-

tributions were analysed to diagnose the presence of wind flow mechanisms such

as forced channelling, pressure-driven channelling, thermal driving and downward

momentum transport [Whiteman and Doran, 1993]. The studies focussed on these

idealised mechanisms using empirical distributions, but the investigations were lim-

ited to physical interpretation with no efforts made to characterise the distributions

or incorporate them into modelling approaches.

Sharples et al. [2010] used similar joint wind direction distributions to identify

the surface wind behaviours across complex terrain in south-eastern Australia. The

effect of wind speed was investigated by comparing changes in distribution structure

as minimum wind speed thresholds (measured at the local ridge top) increased. The

multimodal distributions indicated that wind reversals were prevalent on leeward

slopes, and became more so with higher wind speeds. As discussed previously, these

reversals were shown to provide some of the conditions necessary for atypical fire

spread [Simpson et al., 2013, 2016].

In considering the bivariate joint distribution of wind direction, the two circular

variables φ, ψ ∈ [0, 2π), i.e. the prevailing wind direction observed above a valley

or on the ridge top (φ), and the concurrent wind direction observed at the surface

within the valley (ψ), are defined according to Equation 2.6. The bivariate circular

frequency distribution, f , of two such variables is then defined over the torus,

(φ, ψ) ∈ S1 × S1 = T2, such that

f : T2 → R,
∫
T2

f dφ dψ = 1. (2.7)
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Sharples et al. [2010] collected wind direction data in 22.5◦ bins relating to the 16

points of the compass, i.e. N, NNE, NE, and so on. Such observed discrete data,

in n bins, are recorded at the direction pairs Xij = {(φi, ψj) : i, j = 1, ..., n}. The

observed bivariate discrete dataset, Y (Xij), is considered to be a noisy realisation

of the underlying true continuous process [Sharples et al., 2010], and the following

model is proposed;

Y (Xij) = f(Xij) + ε(Xij), (2.8)

where ε ∼ N(0, σ2) is a random noise component. The observed discrete data,

Y (Xij), are represented either on the plane or over the torus as shown in Figure

2.1, while f(Xij) is the underlying continuous distribution function to be estimated.

(a) (b)

Figure 2.1: Observed joint directional wind response distribution represented (a) in planar
view and (b) on the torus. Data collected by author.

Parametric estimation is commonly used for modelling data with known probabil-

ity distributions, but there are complexities in modelling multimodal, multivariate

toroidal distributions, and particularly in estimating and interpreting the parameter

space [e.g. Coles, 1998, Kent et al., 2008]. Non-parametric estimation can there-

fore be used for exploratory analysis and inference regarding surface shapes and

structures where known distributions are less suitable.

When considering a multimodal multivariate wind distribution model, Zhang et al.

[2011, 2013] suggested that quantitatively characterising uncertainty should be a

future area of research. It should be noted here that any smooth estimator of a

surface is inherently biased due to the trade-off made between bias and variance.

This problem prevents such estimators being used to construct confidence intervals
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for the consideration of uncertainty. Alternative tools such as the SiZer (Significant

Zero crossing of the derivatives) map have been developed for curves by Chaudhuri

and Marron [1999] and adapted for circles by Oliveira et al. [2014b]. A spherical

adaptation is currently under development [Vuollo and Holmström, 2017] and a

toroidal version would be possible, however such techniques rely on simple visual

interpretation which can be complicated to present in higher dimensions.

2.3.2 Parametric Estimation

Univariate wind direction distributions can be estimated and analysed using circular

distributions such as the von Mises or wrapped Normal distributions [Fisher, 1993].

In bioinformatics, bivariate circular data arise in the identification of proteins, since

pairs of angles between amino acids along the backbone of different proteins form

unique bivariate relationships [e.g. Singh et al., 2002, Mardia, 2013]. The bivariate

von Mises distribution has been used to estimate the joint distribution of angles

between two amino acids along the backbone of known proteins. The distribution

structures, i.e. modal locations and shapes, of an unknown protein are then com-

pared to known protein characteristics in order to identify it [e.g. Mardia et al.,

2007, Taylor et al., 2012].

The full bivariate von Mises distribution has eight parameters, interpretation of

which becomes complex [Kent et al., 2008]. Therefore, a number of models have

been proposed as simplifications of the bivariate von Mises distribution: the Cosine

model and the Sine model [Singh et al., 2002, Kent et al., 2008]. The Sine model,

for instance, can be given by

f(φ, ψ) ∝ exp {κ1 cos(φ− µ1) + κ2 cos(φ− µ2) + δ sin(φ− µ1) sin(ψ − µ2)} , (2.9)

where µ1 and µ2 are the mean values of φ and ψ, and κ1 and κ2 are the respective

concentration values. The fifth parameter, δ, describes the covariance between the

two variables. In the literature, a number of formal parameterisation techniques

exist and have been utilised to fit such a distribution to data, including maximum

likelihood estimation, method of moments and the least squares method [e.g. Kent

and Tyler, 1988, Mardia et al., 2007, 2009]. In the context of bushfire modelling,

35



Statistical Characterisation of Wind Fields over Complex Terrain

physical interpretation of these parameters is plausible in terms of wind direction

measurements that might be observable in the field.

However, these models are still under development within an active area of re-

search, and when considering their application to joint wind direction distributions

over complex terrain, it is important to understand their key assumptions. One of

the most important assumptions made amongst the wind energy literature is that

wind speed and wind direction are independent variables [Zhang et al., 2011, 2013].

This makes it possible to construct joint distributions using products of univariate

distributions. With an aim to model joint wind directions using the bivariate von

Mises distribution, the µ and κ parameters of the Sine Model, Equation 2.9, can

be simply interpreted as the mean and variance of the prevailing and surface wind

directions. The dependence between the observations at the two points is dealt with

in the covariance term, δ [Kent et al., 2008]. However, further work is necessary

to understand both spatial and temporal correlations in wind direction across the

landscape.

2.3.3 Non-parametric Estimation

Non-parametric estimation is very useful for accurate approximation and under-

standing of density shapes, which can then be applied in exploratory analysis and

inference. It is possible to quantify modal structures and probabilities without the

restrictions of known distribution forms. The estimation of bivariate circular, or

toroidal, surfaces is also an active area of research [e.g. Panzera and Taylor, 2012,

Di Marzio et al., 2013], but it is again plausible that it is an area of research that

can be exploited for probabilistic wind and fire modelling.

Non-parametric estimation techniques can essentially be thought of as belonging

to two classes: interpolation and smoothing. Interpolation techniques, such as the

cubic spline, are efficient and straightforward to run by fitting the estimated surface

to the set (or a subset) of the exact data points. Bivariate surface approximations

are often dealt with using tensor products of two univariate splines with the appro-

priate boundary conditions, such as periodicity to handle data circularity [R Core

Team, 2016, MATLAB R©, 2016]. However, exact interpolation between data points

leaves these methods susceptible to exaggeration of noise in the observed dataset.
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Under the assumption that wind data are affected by noise [Sharples et al., 2010],

exact interpolation is therefore unlikely to represent the underlying bivariate wind

direction distributions.

In contrast, smoothing techniques are designed to account for inherent noise by

optimising the trade-off between bias and variance. For instance, the thin plate

smoothing spline is defined to allow a trade-off between the fidelity of the spline to

the observed data points and the smoothness of the resulting surface [Wahba, 1990].

Many smoothing spline techniques have been applied to univariate and bivariate

linear data, with much literature researching their properties and applications [e.g.

Meinguet, 1979, Hutchinson and Gessler, 1994, Hutchinson, 1995, Hancock and

Hutchinson, 2006].

For bivariate data, smoothing splines have also been used to estimate curves over

cylindrical and spherical spaces [e.g. Fan and Martin, 2013, Egerstedt and Martin,

2010]. For surface estimation, Wahba and Wendelberger [1980] and Wahba [1981]

defined a spherical roughness penalty to construct a thin sphere smoothing spline.

Although a number of authors have considered the construction of splines to esti-

mate curves over the torus [Egebrand et al., 2010, Goodman et al., 1989, Lee and

Tang, 1989], there is limited literature on the application or construction of splines

to estimate a surface defined over the torus.

Kernel density estimation is also commonly used to estimate curves and surfaces

for exploratory analysis and statistical inference. With the definition of a toroidal

kernel, Di Marzio et al. [2011] constructed a kernel density estimator over the d-

dimensional torus. Taylor et al. [2012] used toroidal kernel density estimates (based

on products of the von Mises distribution) to validate a number of protein structures

using bivariate circular data, but it was noted that the results of the study relied

heavily on the selection of the bandwidth which controlled the smoothness of the

estimated surface.

An alternative simple strategy used in a number of practical applications for han-

dling circular (particularly univariate) data is to wrap, or repeat, the dataset and

conduct the estimation on the expanded set, which explicitly exhibits its circular
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nature [Silverman, 1986]. Despite the potential for this method to increase compu-

tational demand for the estimation process, it is readily available (and interpretable)

to practitioners from a wide range of fields. In order to estimate the underlying

continuous structure of joint wind direction distributions, Sharples et al. [2010] used

this process to adapt thin plate smoothing spline methods and identify opposing

edges of the planar joint wind direction distributions. By identifying these oppos-

ing edges, Sharples et al. [2010] were able to capture some of the toroidal nature

of the bivariate wind direction distributions and provide realistic estimates of the

underlying continuous process.

2.4 “The Literature Gap”

Bushfire modelling techniques used across the world have been empirically devel-

oped for over half a century, predominantly on the basis of small-scale experimental

fires. Although state-of-the-art prediction systems are today capable of modelling

more complex dynamics of fire behaviour, there are still significant flaws in the mod-

elling process. The reliance on deterministic modelling has long been challenged by

the suggestion of probabilistic approaches, which may not categorically improve on

model outputs but will provide the user with complementary information to facili-

tate more informed discussions of accuracy and uncertainty [Cruz, 2010]. In recent

research, these ideas have developed significantly, but there is still much work to

be done to incorporate probabilistic input variables and fully quantify uncertainty

throughout the fire modelling process.

Accurate prediction of wind field characteristics is key to the validity of fire pre-

dictions, but lack of data for development and evaluation remains a limitation of

wind models currently used within operational bushfire modelling. As outlined in

Chapter 1, the first aim of this research is to collect wind data at scales relevant to

surface fire behaviour. These data are presented in Chapter 3, and discussed in a

probabilistic context throughout this thesis.

Incorporating probabilistic approaches to wind modelling allows for a computation-

ally efficient way to bridge the gap between currently operational diagnostic models

and the full set of dynamics acting on wind fields in the environment. Probabilistic
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approaches also allow for quantification of uncertainty around the inputs of bushfire

models, and production of input distributions that are well suited to emerging fire

modelling frameworks. However, techniques currently used within ensemble-based

fire modelling frameworks do not well represent the true variability of wind speed

and direction across complex terrain. This research will utilise the newly collected

data to evaluate current wind modelling techniques with an aim to better represent

this variability in wind characteristics.

Joint wind direction distributions were empirically developed in the late 20th cen-

tury for physical interpretation of broad-scale wind flow over complex terrain.

Sharples et al. [2010] used similar joint distributions to analyse surface wind flow in

order to understand the processes behind atypical fire spread. Within this research,

these distributions are further analysed to provide a platform for better character-

isation and modelling of uncertainty in wind direction across the landscape.

Parametric approximation of joint wind direction distributions would ideally provide

wind direction models parameterised with physical features that could be observed

in the field. However, the development of parametric bivariate circular distribu-

tions is still an active area of research, with parameter interpretation a core issue.

Non-parametric estimation and comparison of joint wind direction distributions al-

ternatively allows for quantification of distribution features without the restraints

of known distribution functions. Such analysis will provide probabilistic informa-

tion that can complement current physics-based wind modelling techniques that

are used operationally. However, toroidal non-parametric techniques are not read-

ily available to practitioners, and this research also aims to understand how best to

handle bivariate circularity in datasets.
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Chapter 3

Data Collection

As discussed in the previous chapter, there is a lack of wind datasets available for

evaluation of wind models, such as those employed in bushfire modelling, particu-

larly at fine resolutions. In numerous contributions to fire behaviour research, it has

been highlighted that surface wind behaviours have considerable impacts on surface

fire spread [e.g. Rothermel, 1972, Andrews, 2012]. Variations in surface wind flow

can create conditions for the development of extreme fire behaviour that lead to

significant changes in the spread of a bushfire across the landscape [e.g. Sharples

et al., 2012, Cheney et al., 2001, Wildland Fire Associates, 2013].

The first aim of this research is to contribute a new wind dataset at the spatial

and temporal resolutions relevant to surface bushfire behaviour. Wind data were

collected at such scales across a number of case studies around the Australian

Capital Territory (ACT) and New South Wales (NSW) in 2007. Analysis of these

data were presented by Sharples et al. [2010], where certain aspects of mountain

meteorology were linked to extreme fire behaviours. This research is utilised as the

motivating example for the studies detailed throughout this thesis.

This chapter provides a comprehensive account of the data collection process that

formed the basis for much of the analysis presented in this thesis. Firstly, Sec-

tion 3.1 details the equipment and software used to collect and process the data,

before Sections 3.2 and 3.3 describe the study areas and summarise the observed

wind characteristics. This research firstly reanalyses the data collected in 2007 and

analysed by Sharples et al. [2010] from Flea Creek Valley (FCV) in the Brindabella

41



Statistical Characterisation of Wind Fields over Complex Terrain

National Park, NSW. As an extension of this research, wind data were again col-

lected across the same transect of FCV in 2014. In 2015, a second case study region

was identified at the National Arboretum Canberra (NAC) in the ACT, where data

were collected across two contrasting stands of vegetation. Section 3.4 closes this

chapter with some concluding remarks.

3.1 Equipment and Software

3.1.1 Data Collection Equipment

Eleven Davis1 Vantage Pro 2TM Portable Automatic Weather Stations (PAWS)

were used to collect meteorological data for this research (Figure 3.1). The stations

collected data on numerous meteorological variables including wind speed, wind

direction, temperature, relative humidity, rainfall and solar radiation. This research

focusses on the analysis of observed wind characteristics. Wind speed was observed

using cup anemometers mounted at 5 metres above ground level (Figure 3.1(a)),

with a resolution of 0.4ms−1 and accuracy of ±1ms−1 (within a range of 0.5ms−1

and 89ms−1). Wind direction was observed using a wind vane, also mounted at

5 metres above ground level, and was recorded in 22.5◦ bins according to the 16

points of the compass.

The stations were capable of measuring data at 1-minute, 5-minute, 10-minute,

30-minute and 1-hour intervals. Within these intervals, instantaneous observations

were taken every 3 seconds. For wind speed, the recorded value for a specific interval

was calculated as the average of the instantaneous observations, while recorded wind

directions were calculated as the most dominant wind direction observed over the

time interval. All other meteorological variables were observed using a sensor array

at approximately 2 metres above ground level, and data were recorded via the

console and data logger held within a weatherproof box at approximately 1 metre

above ground (Figure 3.1(b)).

To calibrate the eleven weather stations prior to deployment, comparisons were

made with wind observations recorded by a permanent automatic weather station at

the UNSW Canberra Field Site (Figure 3.1 (a)). Comparisons were also conducted

1www.davisnet.com
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(a) (b)

Figure 3.1: Davis Vantage Pro 2 Portable Automatic Weather Stations during the cal-
ibration phase; (a) set up at the UNSW Canberra Field Site, and (b) sensor array and
console box. Photographs taken by author.

between a reference PAWS and a weather station at the Woodlawn Bioreactor in

New South Wales. Analysis of these comparisons showed that the PAWS were

accurate and consistent in the measurement of both wind speed and wind direction

(Appendix A).

Initially, 30-minute data observation intervals were used due to the minimal data

storage available in the in-built Davis data loggers (128kB). If left uncollected, the

loggers would simply overwrite themselves so, in the field, data were collected every

4-6 weeks by downloading the files to a laptop, using the Weatherlink R© software

provided with the stations (Figure 3.2(a)). Batteries were set up to recharge using a

solar panel fixed to the console boxes, but some difficulties were encountered in the

winter months due to low solar exposure, particularly at sites with heavy vegetation

or south facing aspects (Figure 3.3(b)). Sharples et al. [2010] experienced similar

issues in the winter months of 2007 due to a lack of sunlight, but vegetation cover

was much less of a problem since it consisted of only young regrowth across Flea

Creek Valley after the 2003 Canberra bushfires (Figure 3.3(a)).
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(a) (b)

Figure 3.2: Data download using (a) Weatherlink R© , and (b) the Raspberry Pi R© system.
Photographs taken by author.

(a) (b)

Figure 3.3: Photographs of data collection at FCV in (a) 2007 and (b) 2014. Photographs
taken by (a) J.J. Sharples and (b) author.
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In the winter of 2014, the stations were modified by the author to improve data

storage capacity. This involved installation of Raspberry Pi R© (RPi) systems (Fig-

ure 3.2(b)), which also allowed for more frequent observations, that is, down to

1-minute intervals. Data files were automatically downloaded from the PAWS data

logger to an external SD card every 24 hours, with downloads taking approximately

4-5 minutes during which time new observations could not be recorded. Due to the

extra power usage of the RPi systems (even when running for only a few minutes a

day), battery issues continued with a number of stations, again particularly those

with limited solar exposure. In these areas, extra batteries were added to stations

and data collection, with maintenance checks, continued to be conducted every 4-6

weeks. Figures A.3, A.5 and A.7 in Appendix A show the data records for each

dataset considered within this research. The gaps in the records indicate times of

no data collection which were predominantly due to insufficient battery power.

3.1.2 Data Processing

The software packages used for data collection, processing and analysis included

Weatherlink R© , MATLAB R© [2012, 2016] and R [R Core Team, 2016]. Data pre-

sented by Sharples et al. [2010] were analysed using code converted from Fortran R©

to MATLAB R© [2012]. In 2014, prior to the installation of the RPi system, data

were downloaded from the PAWS using the Weatherlink R© software provided with

the stations. This software produced Comma-Separated-Value (CSV) files that

were consequently analysed in MATLAB R© [2012]. With the installation of the RPi

system, raw data were collected directly from the stations in CSV format via the

external SD card. The data in these files were coded according to the Davis docu-

mentation [Davis Instruments Corp., 2009] in the hexadecimal system. These raw

data were converted to the decimal system and the standard units for each variable

in MATLAB R© [2012] prior to analysis.

Within MATLAB R© [2012], data were cleaned to account for the battery outages

discussed in the previous subsection as well as data anomalies. Aside from battery

and data storage challenges, a number of other data collection issues were experi-

enced in the field due to interference from wildlife. These interferences took many

forms and included cables chewed by small mammals, ant infestations, guy ropes
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pulled out by larger animals (most likely kangaroos), rain buckets filling with forest

debris (including bird faeces) and the potential for bird interferences with wind

vanes.

Due to excessive rain bucket debris across both case studies, rain data were dis-

carded from all datasets. With maintenance checks conducted every 4-6 weeks,

major interferences such as chewed cables or pulled out guy ropes could be identi-

fied so that the appropriate data were also discarded. Other minor, or short-term,

interferences such as birds or debris hitting the weather vane were more difficult to

identify. The analysis presented in this thesis focusses on understanding the dis-

tributions of wind data across long time periods, and the uncertainty surrounding

individual data points is intrinsically handled by the statistical approaches em-

ployed. However, data anomalies caused by the above mentioned interferences may

be an important consideration in future analysis using these datasets, particularly

for finer scale applications such as the analysis of forest micro-meteorology.

Information from all the observed meteorological variables was used to diagnose the

above anomalies and gaps. For instance, assessment of the observed solar radiation

at each station provided a proxy for diagnosis of battery recharge issues. Once clean,

daily data files were concatenated to produce a complete record for each station.

Data could then be manipulated to compile information for each variable across all

sites. Individual variables were then summarised using summary statistics, time

series plots and histograms such as those shown in the following sections and in

Appendix A. Appendix A also details the storage and access of the data used for

analysis throughout this thesis.

3.2 Case Study I: Flea Creek Valley, NSW

3.2.1 Description

Flea Creek Valley (FCV) lies within the Brindabella National Park, 70km west of

Canberra (Figure 3.4(a)). With elevations ranging from approximately 500m up

to 1420m at Mount Coree (Figure 3.4(b)), the area is considered rugged terrain

according to the surface roughness classifications defined by Weber et al. [2008]

46



CHAPTER 3. DATA COLLECTION

and McRae and Sharples [2013]2. The temperate high-country climate leads to

warm summers and cool winters (with snow fall recorded most years). The vegeta-

tion across the region is broadly native eucalypt forest, with some patches of pine

plantation.
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Figure 3.4: Maps of (a) south-eastern Australia, (b) the Brindabella region and (c) the
FCV transect (with 50m contours). Station locations in 2007 (red; A1 to A5) and 2014
(blue; B1 to B11) are indicated.

2www.highfirerisk.com.au/maps
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As noted by Sharples et al. [2010], the synoptic patterns across the region are domi-

nated by high-pressure weather systems which produce west-northwesterly (WNW)

winds during the summer, and westerly winds throughout the winter. Flea Creek

Valley is aligned along an approximate north-south axis, thus approximately per-

pendicular to the prevailing winds experienced across the region. Significant topo-

graphical features surrounding the valley include Mount Coree approximately 3km

to the east of the valley floor, and Webbs Ridge to the west, on which stations A1,

B1 and B2 were located. Flea Creek joins the Goodradigbee River around 6km

downstream of the study site.

Wind data were collected across a 3-4km transect of the valley between January and

October 2007, using five PAWS [Sharples et al., 2010]. Between April and December

2014, wind data were collected across the same transect of the valley, using eleven

PAWS3. Figure 3.4(c) indicates the locations the PAWS in both years, and the

details of each station site are given in Tables 3.1 and 3.2. Details of the 2007 sites

are adapted from Sharples et al. [2010, Table 1], and topography details for the

2014 sites were obtained through ArcGIS [ESRI, 2011] analysis of the SRTM4 90m

Digital Elevation Map (DEM).

Table 3.1: Descriptions of the FCV sites (A1 to A5) in 2007. Adapted from Sharples

et al. [2010, Table 1].

Lat. Long. Elev. Slope Asp. Description

A1 148.76619 -35.30373 1026m 0◦ NA Ridge-top site. Relatively dense acacia seedling

and other regrowth outside 3m. Larger eucalypts

with cambial growth approx. 4-5m away. Very

little canopy immediately overhead but relatively

dense canopy over station surrounds.

A2 148.77113 -35.29196 955m 20-25◦ 105◦ E-facing slope on western side of FCV. Sparse eu-

calypt regrowth approx. 3-4m from station. Some

taller trees, some with cambial growth, approx. 4-

5m from station. Partially intact canopy overhead.

A3 148.78222 -35.29232 787m 5-10◦ 150◦ Near bottom of FCV on small knoll. Some burnt

trees approx. 3-4m away. Scattered canopy over-

head.

A4 148.78878 -35.28964 850m 10-15◦ 300◦ W-facing slope near bottom of eastern sidewall of

FCV. Very dense (dead) bracken up to 1m high.

Some larger trees, some with cambial regrowth ap-

prox. 5-6m away. Sparse canopy overhead.

A5 148.79787 -35.28990 1000m 20-25◦ 315◦ NW-facing slope on eastern sidewall of FCV. Very

sparse acacia regrowth and bracken within a radius

of 5-6m. Some larger eucalypts 7-8m from station.

Relatively sparse canopy overhead.

3Scientific Research Licence #SL101338, NSW National Parks and Wildlife Service.
4http://www.chiar-csi.org.au/data/srtm-90m-digital-elevation-database-v4-1
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The Flea Creek area was heavily impacted by the 2003 Canberra bushfires, in par-

ticular the McIntyres Hut fire which ignited a few kilometres north-west of the

study area and burnt through the region and into the ACT. These fires claimed 4

lives, and destroyed over 500 homes. The vegetation across FCV and the surround-

ing regions was also devastated. Table 3.1 describes the station sites across FCV

from the 2007 data collection, only 4 years after the fires [Sharples et al., 2010].

Table 3.2 then describes the sites across the valley in 2014 (eleven years since the

fires). There are clear differences in language; where Sharples et al. [2010] describes

“burnt trees” and “sparse canopy”, the current vegetation is described as “medium

density” with “large eucalypts” surrounding the stations. Figure 3.3 exemplifies

these differences in vegetation between the two years.

3.2.2 Data Summary, 2007

Throughout the analysis presented in this thesis, surface winds are considered in

relation to the prevailing wind conditions to represent the response of wind flow

to changing surface conditions. For each case study, and over each time period,

the prevailing wind conditions are indicated by data collected at the local ridge

top. Although these sites cannot be assumed to accurately represent the prevailing

wind conditions, analyses later in Chapter 4 (Section 4.2.2) show that the wind

directions observed at these sites are at least indicative of the prevailing winds. In

2007 at FCV, the ridge top station was located at A1 (Figure 3.4(c)). However, in

2014, winds observed at this site (B2) were no longer indicative of the prevailing

conditions (likely due to the change in vegetation structure), and the station at B1

was used as the ridge top station.

From January to July 2007, data were collected at 30-minute intervals, from July

onwards data were collected at 1-hour intervals due to battery issues experienced

throughout the winter resulting from a lack of solar recharge [Sharples et al., 2010].

In 2014, 30-minute data were also collected from April through to July. In July

2014, the RPi system was installed and 1-minute data were collected through to

December. Sharples et al. [2010] detailed the data collected and the initial analysis

of wind direction response over Flea Creek Valley in 2007. The 30-minute data
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CHAPTER 3. DATA COLLECTION

collected by Sharples et al. [2010] were analysed in this thesis for comparison with

the 30-minute data collected in 2014.

Table 3.3 summarises the data collected between 15th April and 21st June 2007.

Over 3,000 observations were taken at each site across the valley, with very few

invalid data points (NaN ). This research focusses on wind direction observations,

particularly in relation to three prevailing wind speed thresholds; 0ms−1, 2ms−1

and 4ms−1, observed at the ridge top stations. The second half of Table 3.3 shows

the number of wind direction observations recorded when the wind speeds observed

at the ridge top station A1 were above these three thresholds. The values clearly

indicate that wind speed conditions were relatively slow since less than 1% of the

wind direction data were observed at ridge top wind speeds greater than 4ms−1.

Table 3.3: Summary of wind data collected across FCV between April and June 2007.

A1 A2 A3 A4 A5

Total Observations 3,210
NaN 2 0 2 3 4
Effective Observations 3,208 3,210 3,208 3,207 3,206

Wind Direction Observations
A1 ≥ 0ms−1 3,191 2,809 2,823 2,964 2,161
A1 ≥ 2ms−1 396 396 396 396 333
A1 ≥ 4ms−1 23 23 23 23 16

Table 3.4 summarises the wind speeds experienced across FCV in 2007, with Figure

A.4 in Appendix A showing the time series of wind speeds recorded across the

collection period. Again, it is clear that this case study deals with a relatively low

wind speed environment. Wind speeds within the valley are particularly low, at

less than 60% of those experienced at the ridge top, with modal values of zero.

Table 3.4: Summary of observed wind speeds (ms−1) across FCV between April and June
2007.

A1 A2 A3 A4 A5

Mean 0.96 0.44 0.48 0.43 0.33
% of A1 — 45 56 45 35

Std 0.87 0.74 0.65 0.56 0.51
Mode 0.4 0 0 0 0

Min 0 0 0 0 0
Median 0.9 0 0.4 0.4 0

75th 1.3 0.4 0.9 0.9 0.4
95th 2.7 2.2 1.8 1.3 1.3
Max 4.9 4.9 4.5 3.6 3.1
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Figure 3.5 shows the wind roses observed across the valley from April to July 2007,

with the percentage values given in Table A.1 in Appendix A. The wind direction

behaviours across FCV in 2007 are discussed in greater detail by Sharples et al.

[2010] as well as later in this thesis. Figure 3.5(a) shows the bimodal structure of

the prevailing wind directions across the region. A strong westerly mode represents

the most dominant prevailing westerlies, while a smaller easterly mode indicates

the presence of easterly prevailing winds, perhaps linked to a supposed ‘sea breeze’

effect documented for the Canberra region [Sharples et al., 2010]. On the east-

facing slope, easterly winds dominate the flow pattern (Figure 3.5(b)), while on the

valley floor, a bimodal north-south flow pattern exists that aligns with the axis of

the valley (Figure 3.5(c)). On the west-facing slope, westerlies aligning with the

dominant prevailing winds are most often experienced (Figures 3.5(d) and (e)).

3.2.3 Data Summary, 2014

Between 14th April and 10th July 2014, 30-minute data were collected across Flea

Creek Valley. The installation of the RPi systems in July allowed for collection

of 1-minute data until 15th December 2014. Table 3.5 outlines the data collected

throughout the entire collection period from April to December 2014. With the

increase in observation frequency, the volumes of data were far greater than collected

in 2007. However, due to the data collection issues discussed previously, the numbers

of invalid data points (NaN ) were also far greater across the entire valley.

The number of observations with increasing ridge top wind speeds observed at B1

indicate a relatively low wind speed environment, as seen in 2007. Between April

and July, average wind speeds were extremely low; even at the ridge top, average

wind speeds were less than 1ms−1, with a maximum wind speed of only 6.70ms−1

(see also Figure A.6 in Appendix A). Between July and December, the wind speeds

remained low, despite stronger winds typically experienced in Spring and Summer;

the average wind speed at B1 remained below 1ms−1, with a maximum of only

5.81ms−1. The reduction of wind speeds from the ridge top to the valley stations

was enhanced in 2014 from 2007, with wind speeds across the valley only reaching

a maximum of around 40% of those experienced at B1, except for high on the

west-facing slope at B11 near the eastern ridge top (Table 3.6).

52



CHAPTER 3. DATA COLLECTION

5%

10%

15%

W E

S

N

0 - 1
1 - 2
2 - 3
>=3

(a) A1

5%

10%

15%

20%

W E

S

N

0 - 1
1 - 2
2 - 3
>=3

(b) A2

5%

10%

15%

W E

S

N

0 - 1
1 - 2
2 - 3
>=3

(c) A3

5%

10%

15%

20%

W E

S

N

0 - 1
1 - 2
2 - 3
3 - 4

(d) A4

5%

10%

15%

W E

S

N

0 - 1
1 - 2
2 - 3
3 - 4

(e) A5

0 - 1

1 - 2

2 - 3

6 3

Wind Speed (ms−1)

Figure 3.5: Observed wind direction roses across FCV at (a-e) A1 to A5 between April
and June 2007.
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Table 3.5: Summary wind data collected across FCV between April and December 2014.

B1 B2 B3 B4 B5 B6

Total Observations 237,577
NaN 65,896 156,077 153,980 36,800 44,160 24,428
Effective Observations 171,681 81,500 83,597 200,777 193,417 213,149

Wind Direction Observations
B1 ≥ 0ms−1 141,844 47,554 39,890 100,267 55,562 88,705
B1 ≥ 2ms−1 13,784 7,465 6,239 10,384 6,426 12,338
B1 ≥ 4ms−1 605 438 405 378 129 588

B7 B8 B9 B10 B11

Total Observations
NaN 47,812 127,861 166,313 63,453 38,308
Effective Observations 189,765 109,716 71,264 174,124 199,269

Wind Direction Observations
B1 ≥ 0ms−1 44,326 42,863 26,527 65,152 96,419
B1 ≥ 2ms−1 7,522 6,002 3,945 10,992 11,543
B1 ≥ 4ms−1 283 166 105 537 567

Table 3.6: Summary of observed wind speeds (ms−1) across FCV between April and
December 2014.

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Mean 0.92 0.39 0.18 0.22 0.16 0.4 0.13 0.15 0.36 0.24 0.62
% of B1 — 42 20 24 17 43 14 16 39 26 67

Std 0.77 0.47 0.38 0.38 0.37 0.62 0.35 0.33 0.58 0.44 0.76
Mode 0.89 0 0 0 0 0 0 0 0 0 0

Min 0 0 0 0 0 0 0 0 0 0 0
Median 0.89 0.45 0 0 0 0 0 0 0 0 0.45

75th 1.34 0.89 0.45 0.45 0 0.89 0 0 0.45 0.45 0.89
95th 2.24 1.34 0.89 0.89 0.89 1.79 0.89 0.89 1.79 1.34 2.24
Max 6.70 4.02 4.02 4.47 5.36 6.71 5.81 3.58 4.47 4.47 6.71

The wind roses shown in Figure 3.6 (and percentages given in Table A.2 in Appendix

A) show patterns of wind flow consistent with those observed in 2007. At the ridge

top stations, both B1 and B2, the dominant wind direction was again westerly to

north-westerly (Figures 3.6(a) and (b)). On the east-facing slopes at B3 and B4,

dominant easterly modes were again observed (Figures 3.6(c) and (d)), and on the

valley floor at B7 a bimodal north-south wind behaviour was again evident (Figure

3.6(g)). On the west-facing slope at B9 and B11, strong westerly winds were again

observed, in line with the dominant westerly prevailing wind direction (Figures

3.6(i) and (j)).

At the remaining sites across the valley, B5, B6, B8 and B10, greater variation in

wind direction is observed, and patterns are less consistent with those experienced
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Figure 3.6: Observed wind direction roses across FCV at (a-k) B1 to B11 between April
and December 2014.

55



Statistical Characterisation of Wind Fields over Complex Terrain

1%

2%

3%

W E

S

N

(g) B7

1%

2%

3%

W E

S

N

(h) B8

1%

2%

3%

W E

S

N

(i) B9

5%

10%

15%

W E

S

N

(j) B10

2%

4%

6%

8%

W E

S

N

(k) B11

0 - 1

1 - 2

2 - 3

6 3

Wind Speed (ms−1)

Figure 3.6: (Cont’d) Observed wind direction roses across FCV at (a-k) B1 to B11 between
April and December 2014.
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in 2007 (Figures 3.6(e), (f), (h) and (k), respectively). At each of these sites, it

is likely that effects from local topography have had a significant impact on the

wind direction behaviours. For instance, B6 is situated on the top of a knoll at the

bottom of the valley which may result in increased variation in the observed wind

direction. On the eastern slope of the valley, B5 in fact sits on a steep localised

south-facing slope which would have significant impacts on local flows. Similarly,

B8 is located close to a small gully on the valley wall which may again impact local

wind flow. In addition, the increased vegetation resulting from the uninterrupted

regrowth since 2007 may have impacted on the variation of wind directions observed

at each site across Flea Creek Valley.

3.3 Case Study II: National Arboretum Canberra, ACT

3.3.1 Description

The National Arboretum Canberra (NAC) is located on the western shore of Lake

Burley Griffin above Scrivener Dam in the ACT, overlooking Canberra from the

west. To the west of the NAC, there are views out across the Murrumbidgee River

to Uriarra State Forest and the eastern foothills of the Brindabella Ranges. Figures

3.7(a) and (b) show a regional maps indicating the location of the study area, and

Figure 3.8(a) shows a photograph of the study region and its surroundings.

The region can be classified as undulating terrain [Weber et al., 2008, McRae and

Sharples, 2013]5, with elevations ranging between 500m and 700m. The highest

points in the local area are Black Mountain and Mount Ainslie, both reaching

approximately 780m (Figure 3.7(b)). Although at a lower altitude, the temperate

climate across the Canberra region is broadly similar to that of the Brindabella

region with warm dry summers and cool winters, though snowfall is more rare. The

synoptic wind patterns are again dominated by high-pressure systems producing

WNW prevailing winds in the summer, and westerly winds in the winter.

The National Arboretum Canberra was developed after the Canberra 2001 and

2003 fires, and is made up of nearly 100 different forest stands of rare, endangered

and symbolic trees. Theses stands are now at various levels of growth, with many

5www.highfirerisk.com.au./maps
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Figure 3.7: Map of (a) south-eastern Australia, (b) the Canberra region, and (c) the
NAC. Station locations in 2015 (C1 to C11) are indicated.
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Figure 3.8: Photograph of data collection at the NAC in 2015. Photograph taken by
author from Dairy Farmer’s Hill.

still very young, but two forest stands are nearly 100 years old6. The NAC was

selected as the second study area for this project since it would be possible to take

advantage of these uniform vegetation stands for analysis of the wind fields across

the area. Permission was granted by the NAC board to analyse the impacts of

either contrasting vegetation cover or topography on wind fields, while controlling

the other variable as much as possible.

Data were collected using the eleven PAWS between April and December 2015,

across the Radiata pine stand (Pinus radiata; planted in 2004) and the clear stand

adjacent to it (yet to be planted), near Dairy Farmers Hill (Figures 3.7(c) and 3.8).

These stands lie along the highest ridges on the NAC site which is approximately

perpendicular to the dominant WNW prevailing winds. The Radiata pine stand

covers the spur at the southern end of the ridge. Figure 3.7(c) shows the locations

of the stations throughout the Radiata pine and adjacent stands, and highlights

the experimental design used to analyse wind fields under contrasting vegetation

but similar topography, or uniform vegetation but varying topography. Table 3.7

provides the details of each of the sites used for data collection across the NAC.

Elevations were estimated using Google Earth7, since analysis within ArcGIS, using

a 90m DEM, led to a number of stations lying within the same pixels.

6www.nationalarboretum.act.gov.au
7Google Earth version 7.1.8.3036
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Table 3.7: Descriptions of the NAC sites (C1 to C11) in 2015.

Vegetation Location Lat. Long. Elev. Slope

C1 Clear Ridge Top 149.06275 -35.29381 658m Flat

C2 Clear SE-facing slope 149.06350 -35.29422 648m Medium

C3 Clear SE-facing slope 149.06440 -35.29447 637m Medium

C4 Radiata pine Ridge Top 149.06186 -35.29439 650m Flat

C5 Radiata pine SE-facing slope 149.06250 -35.29483 647m Medium

C6 Radiata pine SE-facing slope 149.06303 -35.29506 637m Medium

C7 Radiata pine S-facing slope 149.06228 -35.29492 645m Medium

C8 Radiata pine S-facing slope 149.06239 -35.29519 637m Medium

C9 Radiata pine SW-facing slope 149.06178 -35.29492 643m Medium

C10 Radiata pine SW-facing slope 149.06181 -35.29508 639m Medium

C11 Radiata pine NW-facing slope 149.06133 -35.29425 644m Medium

Throughout the study period, data were collected at 1-minute intervals across the

NAC. As at FCV, there were some difficulties due to the power usage of the RPi

systems and the lack of solar recharge, particularly through the winter months and

in areas of south-facing slopes. Figure A.7 in Appendix A shows the data record

from the NAC through 2015; gaps are due to battery outages as well as difficulties

in stabilising the stations in the soft soils present at the NAC; some stations fell

over or were knocked down by wildlife (e.g. kangaroos).

3.3.2 Data Summary, 2015

At the NAC, the ridge top station was taken at C1 in the clear stand (Figure

3.7(c)). Analysis against observations taken by the Australian Bureau of Mete-

orology at Canberra Airport (presented later in Chapter 4, Section 4.2.2), show

that observations from this station were indicative of the prevailing wind direction

conditions throughout the study period.

Table 3.8 outlines the data collected at the NAC between 28th April and 31st

December 2015. As in the second half of 2014 at FCV, the 1-minute observation

frequency resulted in large volumes of data collected across the NAC. However, due

to the previously discussed data collection issues, there were also a large quantity

of invalid data points (NaN ) across the entire study period (data record gaps are

highlighted in Figure A.7 in Appendix A). Despite this, the volume of data collected

at the NAC in 2015 far outweighed that collected at FCV in both 2007 and 2014.
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Table 3.8: Summary of wind data collected across the NAC between April and December
2015.

C1 C2 C3 C4 C5 C6

Total Observations 356,171
NaN 83,658 102,254 3,173 31,659 235,539 114,542
Effective Observations 272,513 253,917 352,998 324,512 120,632 241,629

Wind Direction Observations
C1 ≥ 0ms−1 259,224 176,031 239,766 67,785 32,583 75,247
C1 ≥ 2ms−1 169,797 118,867 165,852 65,350 30,977 64,192
C1 ≥ 4ms−1 110,586 76,613 107,887 57,888 27,732 51,936

C7 C8 C9 C10 C11

Total Observations
NaN 247,419 62,259 117,894 80,831 154,562
Effective Observations 108,752 293,912 238,277 275,340 201,609

Wind Direction Observations
C1 ≥ 0ms−1 28,479 85,858 74,482 31,801 77,883
C1 ≥ 2ms−1 27,750 79,328 68,251 29,018 71,093
C1 ≥ 4ms−1 25,190 66,786 55,848 24,760 59,977

Table 3.9 summarises the wind speed (ms−1) experienced across the NAC in 2015.

On the clear slope, wind speeds were generally higher than those observed at the

ridge top at FCV. With less dense vegetation across the region and less complex

undulating terrain, these higher winds are likely explained by a lack of surface

roughness surrounding the study site. However, considerably stronger winds were

observed on the clear slope (C1, C2 and C3) than at all other stations located

within the pine stand. The reduction in wind speeds caused by the pine plantation

was far greater than that shown across FCV, with wind speeds observed in the pine

stand at less than 10% of those observed on the clear ridge top. The time series

of wind speeds across the entire study period, shown in Figure A.8 (Appendix A),

also highlight this dramatic wind speed reduction.

Table 3.9: Summary of observed wind speeds (ms−1) across the NAC between April and
December 2015.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

Mean 3.64 2.30 1.87 0.04 0.13 0.09 0.06 0.22 0.17 0.06 0.31
% of C1 — 63 51 1 3 3 2 6 5 2 9

Std 2.86 2.06 1.69 0.17 0.34 0.26 0.18 0.45 0.39 0.24 0.58
Mode 1.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Min 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Median 2.68 1.79 1.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

75th 5.36 3.58 2.68 0.00 0.00 0.00 0.00 0.45 0.00 0.00 0.45
95th 8.94 6.26 5.36 0.45 0.89 0.45 0.45 1.34 0.89 0.45 1.34
Max 20.12 16.99 15.20 3.58 3.58 4.02 2.68 4.47 4.47 4.92 5.36
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Figure 3.9 shows the wind roses for each site across the NAC. On the ridge top

at C1 the strong westerly prevailing winds experienced across the ACT region are

again evident, as well as the less dominant easterly prevailing winds (Figure 3.9(a)).

On the clear east-facing slope at C2 and C3, similar bimodal west-east modes are

also observed (Figures 3.9(b) and (c)), suggesting that wind directions experienced

at these locations align with the prevailing winds. Within the pines, the wind

directions observed at C4, highlight the increased variability on the ridge top caused

by the introduction of pine trees (Figure 3.9(d)).

Within the pine stand, the wind direction behaviours on the east-facing slope,

parallel to C2 and C3 are very different. Figures 3.9(e) and (f) show that the

dominant wind directions observed at C5 and C6 are easterlies, almost 180◦ different

to those on the parallel clear slope. These easterly modes are also evident at C7

and C8 on the south-east facing slope (Figures 3.9(g) and (h)). On the south-facing

slope at the end of the spur, on the cross-slope to the dominant westerly winds, C9

and C10 record easterly and southerly winds (Figures 3.9(i) and (j)). Finally, on

the west-facing slope at C11, westerly winds are most commonly observed (Figure

3.9(k)), aligning with the dominant prevailing wind direction and in opposition to

the less dominant easterly prevailing winds.

3.4 Concluding Remarks

As discussed in Chapter 2, there is a lack of wind data available at resolutions

most relevant to modelling surface fire behaviour, in particular datasets collected

over complex terrain are rare. For this reason, a number of gaps exist in the

development and validation of wind models for application to bushfire prediction.

The first contribution of this thesis has been to introduce two new datasets that

fulfil such requirements.

This chapter has outlined two case study regions, and summarised their respective

observed wind datasets. The first case study at Flea Creek Valley, while building

on that presented by Sharples et al. [2010], provides an opportunity to analyse the

impacts of post-fire regrowth on surface winds observed across an area of complex

terrain. The second case study at the National Arboretum Canberra complements
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Figure 3.9: Observed wind direction roses across the NAC at (a-k) C1 to C11 between
April and December 2015.
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Figure 3.9: (Cont’d) Observed wind direction roses across the NAC at (a-k) C1 to C11
between April and December 2015.
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the first by considering a more uniform vegetation environment over which wind

characteristics can be compared and contrasted. The availability of these datasets

is outlined in Appendix A.

Within this thesis, the data presented in this chapter are assumed to the indepen-

dent and identically distributed since more detailed study of spatial and temporal

correlations are beyond the scope of this research. It is expected that these corre-

lations would be resolution dependent. With regards to temporal correlation, it is

reasonable to assume 30-minute data to be uncorrelated and, with wind gusts mea-

sured over 3-second intervals, even 1-minute data may only be weakly correlated.

Spatial correlations would also depend on temporal resolution as well as vegetation

cover. At smaller temporal resolutions, spatial correlation might be time-lagged as

prevailing winds move across the valley. However, with significant vegetation cover,

it is reasonable to assume minimal spatial correlation between sites.

Through subsequent analysis of these datasets, this thesis seeks to fulfil the three

remaining research contributions outlined in Chapter 1, Section 1.2. The data

presented in this chapter, could however be utilised in numerous other ways for

the advancement of bushfire modelling as well as within other research areas. As a

single example, the secondary variables of temperature, relative humidity or solar

radiation could be combined with the wind data to provide further insights into

micro-meteorology within different topographical and vegetation conditions.
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Chapter 4

Probabilistic Representation of Wind Direction

A fundamental aim of this research is to recast wind fields in probabilistic terms. To

do this, the response of prevailing wind fields to changes in the landscape beneath

them are represented as joint distributions of the prevailing wind direction and

the wind direction experienced at the surface, as introduced in Chapter 2 (see

Section 2.3.1). Throughout this thesis, these joint distributions will be referred to

as directional wind response distributions.

Figure 4.1 shows a conceptual diagram of how directional wind response was ob-

served across Flea Creek Valley in 2014 (see Chapter 3, Section 3.2 for more details

on data collection). Figures 4.1 (a-c) show the discrete grids of observed joint wind

direction distributions at sites on the east-facing slope (B4), the valley floor (B6)

and the west-facing slope (B10). The yellow modes of these distributions represent

the most frequently observed wind direction pairs for each site, which can be used

to identify wind behaviours. For instance, in Figure 4.1(a), the off-diagonal mode

evident at B4 indicates the prevalence of wind reversals when the east-facing site

is on the leeward slope to westerly prevailing winds. Figure 4.1(b) shows that two

modes are apparent on the valley floor at B6 under westerly prevailing winds, one

of which crosses the horizontal boundary of the planar data view. This bimodal

structure is indicative of broad-scale channelling of wind flow through the valley.

Finally, Figure 4.1(c) shows the alignment between westerly prevailing winds and

westerly winds experienced on the west-facing slope at B10.

These directional wind response distributions can incorporate the impacts of wind

speed through using a wind speed threshold to constrain the data used to construct
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(a) (b)

(c)

Figure 4.1: Conceptual diagram of data collection across FCV in 2014, and the observed
directional wind response on the (a) east-facing slope at B4, (b) valley floor at B6 and
(c) west-facing slope at B10.
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the distribution. In Appendix B, minimum wind speed thresholds for the prevailing

winds (0ms−1, 2ms−1 and 4ms−1) are used to show how the directional wind response

changes as the prevailing wind speeds increase, similar to those shown by Sharples

et al. [2010].

As discussed in Chapter 2, all real datasets contain an unknown level of envi-

ronmental and instrumentation noise. The example data shown in Figure 4.1 are

therefore taken to be noisy realisations of the true directional wind response at each

point across the valley. In order to better understand wind behaviour across the

landscape, and therefore contribute to a better understanding of fire behaviour in

complex terrain, a number of estimation methods can be applied to observed bivari-

ate wind direction data to estimate the true underlying directional wind response.

Due to the circular nature of wind direction, i.e. an observation of northerly winds

can be represented at 0◦ or 360◦, analyses of bivariate (thus toroidal) wind direction

distributions require specialised statistical techniques. In this chapter, a selection

of estimation methods, introduced in Chapter 2, are presented and compared in

terms of their overall accuracy and their ability to capture the toroidal nature of

the data. The most appropriate estimation technique is then applied to observed

wind direction data to estimate the underlying directional wind response across Flea

Creek Valley in 2007 and 2014, and the National Arboretum Canberra in 2015.

This research has been presented in the following journal article;

Quill, R., Sharples, J.J. and Sidhu, L.A. (In Prep) Estimation of directional wind

response using noisy bivariate circular data: a comparison of approaches.

4.1 Estimation of Toroidal Surfaces

4.1.1 Estimation Techniques

Each of the techniques described in the following subsections were implemented

and analysed within MATLAB R© [2016]. Further details regarding the code used

for this investigation are provided in Appendix C.
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4.1.1.1 Cubic spline with and without periodic boundary conditions

The cubic spline estimates a continuous surface by exactly interpolating between

the set (or a subset) of known data points. Two forms of the cubic spline were

implemented using the csape function in MATLAB R© [2016], which uses a tensor

product of univariate cubic splines to estimate bivariate surfaces. The first form

of the spline (herein referred to as ‘Cubic’) had no specified boundary conditions,

thus not inherently allowing for periodicity of any given dataset. The second form

of the cubic spline (herein referred to as ‘Cyclic Cubic’) was applied using periodic

boundary conditions which ensured that the first and second derivatives of the first

and last data point in each dimension match. This condition is designed to account

for circularity in the dataset.

4.1.1.2 Thin plate smoothing spline

In contrast to exact interpolation, the thin plate smoothing (TPS) spline estimates

the unique smooth function, f , that minimises

p
∑
j

∑
i

|Y (Xij) − f(Xij)|2 + (1 − p)

∫
R2

(
|∂2
φf |2 + 2|∂φ∂ψf |2 + |∂2

ψf |2
)
dφ dψ,

(4.1)

with smoothing parameter p ∈ (0, 1). The smoothing parameter controls the trade-

off between data fidelity (considered in the first term) and the smoothness of the

resulting surface (accounted for by the second term, which represents a roughness

penalty).

Optimal selection of the smoothing parameter ensures that the approximation does

not over-fit noise in the data. There are numerous ways in which the smooth-

ing parameter can be estimated or optimised, including generalised cross-validation

[Hancock and Hutchinson, 2006] or ordinary cross-validation [Wahba, 1990]. The

smoothing parameter can also be fixed [Sharples et al., 2010], and for the sake

of methodological comparison in the first section of this study the smoothing pa-

rameter in the TPS minimisation function (4.1) is set at p = 0.01. This value is

selected through visual comparison of the estimated surfaces with those produced by
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Sharples et al. [2010], as well as consideration of the accuracy of the cup anemome-

ters used to collect the raw data. This smoothing parameter is fixed throughout the

application of Algorithm 1 (introduced in Section 4.1.1.4) to ensure the resulting

estimated surfaces are comparable. In more detailed analysis of the TPS spline in

Section 4.1.4, the smoothing parameter is varied.

The TPS spline was implemented using the tpaps function in MATLAB R© [2016].

This technique does not inherently account for the circularity in toroidal data, but

as discussed in Chapter 2, there is limited literature on the application of toroidal

smoothing splines. As with the non-circular cubic spline and the kernel density

method (outlined below), in this study the planar TPS spline technique is adapted

using Algorithm 1 (defined later in Section 4.1.1.4), to account for circularity.

4.1.1.3 Kernel Density Estimation with Normal and von Mises kernels

The final form of estimation considered is kernel density estimation (KDE). This

method relies on the specification of a kernel distribution to be used as a basis for

the approximation. Firstly, it is common for the Normal distribution to be used

as a kernel (herein referred to as ‘KDE Normal’), but this does not account for

circularity. Therefore, the circular von Mises distribution is also used as a kernel

(herein referred to as ‘KDE von Mises’). As with the cubic splines, a product

kernel is used for both the KDE methods to approximate the bivariate density.

The ksdensity function is used in MATLAB R© [2016] and code for KDE von Mises

was adapted from the NPCirc package developed for R [Oliveira et al., 2014a, R

Core Team, 2016].

Similar to the TPS spline, the trade off between data fidelity (or bias) and smooth-

ness (or variance) is controlled by a parameter, which for KDE methods is referred to

as the bandwidth. This bandwidth can again be selected using numerous methods

including various forms of cross-validation, as well as a number of rules constructed

for standard kernels such as Silverman’s rule of thumb for Normal kernels [Silver-

man, 1986] or the plug-in formula devised for toroidal kernels [Oliveira et al., 2012].

In the ksdensity package, Silverman’s rule of thumb is implemented to select the

optimal bandwidth for the Normal kernel. The optimal bandwidth is first selected
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for approximation without application of Algorithm 1, and then fixed to that band-

width for further iterations. The optimal bandwidth for the von Mises kernel is

approximated using likelihood cross-validation (LCV) in this study, with imple-

mentation conducted via the bt.cv function in R, provided in the NPCirc package

[Oliveira et al., 2013, 2014a]. Within this package a number of selection methods

are available, including the rule of thumb devised by Taylor [2008] (the analogous

selection method for the toroidal kernel to that of Silverman’s rule of thumb for the

Normal kernel), many of which selected the same or similar bandwidth values to

that of the LCV method.

4.1.1.4 Data Wrapping Algorithm

As an extension of the technique discussed by Silverman [1986], to capture circu-

larity in bivariate data, discrete data can be repeated on a row-by-row and column-

by-column basis [e.g. Sharples et al., 2010]. While previous studies have considered

or applied the technique in limited ways, here a more comprehensive appraisal of

data wrapping in the bivariate context is presented.

Algorithm 1 outlines the generalised procedure by which this method can be con-

ducted, and Figure 4.2 gives an example schematic over a single iteration (r = 1)

with n = 2. It is important to note that a single iteration of Algorithm 1 applied

to a discrete n × n data grid, G = [gij]n×n, produces a discrete (n + 2) × (n + 2)

grid, G1 = [gij](n+2)×(n+2).

The repeated grid Gr (after r iterations of Algorithm 1) begins to unveil the peri-

odicity of the data in both dimensions, prior to the application of planar estimation

methods. The resulting smooth surface is estimated across the entire repeated grid,

and then restricted to the extent of G in order to be representative of the torus.
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Algorithm 1 Compute r iterations around n× n data grid G = [gij]n×n

1: procedure Iteration(G,r)

2: G = [gij ]n×n

3: for r iterations around G do

4: Gr[r + 1 : r + n, r + 1 : r + n] = G[1 : n, 1 : n]

5: Gr[n+ r + 1 : n+ r + r, :] = Gr[r + 1 : r + r, :]

6: Gr[:, n+ r + 1 : n+ r + r] = Gr[:, r + 1 : r + r]

7: Gr[1 : r, :] = Gr[n+ 1 : n+ r, :]

8: Gr[:, 1 : r] = Gr[:, n+ 1 : n+ r]

9: end for

10: Return Gr = [gij ](n+2r)×(n+2r)

11: end procedure

Figure 4.2: Schematic diagram of Algorithm 1 with one iteration (r = 1) applied to a
2×2 data grid (n = 2).

4.1.2 Simulation Study Data and Methods

4.1.2.1 Toroidal Data

A synthetic toroidal surface, fk, was simulated such that fk = max(f ∗k , 0) with

k = A,B,C. For instance

f ∗A(φ, ψ) = sin(φ− µA) cos(ψ − τA), (4.2)
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where φ, ψ ∈ [0◦, 360◦), and the parameters µA and τA are the mean values of φ

and ψ respectively. Negative values were truncated to zero to emulate the observed

wind direction surfaces. Figure 4.3 shows the continuous surface of fA with µA =

τA = 90◦. The cases where k = B,C are discussed later in this chapter.

Figure 4.3: Continuous surface fA, with µA = τA = 90◦.

Discrete sample data, YA, were simulated with noise according to Equation 2.8

(Chapter 2, Section 2.3.1), where εA ∼ N(0, σ2
A) are independent and identically

distributed random variables with σA = 0.25.

All estimation methods described in the previous section were then applied to Yk to

estimate the continuous surface, fk, from the discrete sample. The planar estimation

methods, Cubic, TPS and KDE Normal, were applied to Yk in conjunction with

Algorithm 1. The toroidal estimation methods, Cyclic Cubic and KDE von Mises,

were applied to Yk with no repetition of the data to provide benchmark results for

inherently toroidal estimation techniques.

4.1.2.2 Measures of Performance

The estimated smooth surface, f̂k, was realised on a fine 1◦ resolution discrete

grid, Xst = {(φs, ψt) : s, t = 1, ..., 360}. The performance of the surface estimation

methods was assessed using the mean squared error (MSE), as well as two difference

metrics calculated separately along the imposed edges of each dimension, φ and ψ.

To understand the average performance of the estimation techniques, 250 Monte

Carlo simulations were conducted, and the mean and 95% confidence intervals (CI)

of the following performance metrics were plotted against r, the number of iterations

of Algorithm 1.
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Mean squared error (MSE) was defined as

1

3602

360∑
s=1

360∑
t=1

{
f̂k(φs, ψt)− fk(φs, ψt)

}2

, (4.3)

where fk is the true surface. Although this statistic is named the mean squared

difference, it is technically an average since the smoothing methods produce bias

in the surface estimates and so the mean squared error should involve a bias term.

In this study, however, the term ‘mean’ will be used for this statistic in order to

clarify the discussion of its average value across a number of simulations.

The mean difference in edge values, row-wise (along φ, with fixed ψ0 and ψ360), was

defined as
1

360

360∑
s=1

{
f̂k(φs, ψ0)− f̂k(φs, ψ360)

}
, (4.4)

and similarly for column-wise (along ψ, with fixed φ0 and φ360).

Finally, the mean difference in first derivative at the edges, row-wise (along φ, with

fixed ψ0, ψ1, ψ360 and ψ361), was defined as

1

360

360∑
s=1

{
δf̂k,0 − δf̂k,360

}
=

1

360

360∑
s=1

{[
f̂k(φs, ψ1)− f̂k(φs, ψ0)

]
−
[
f̂k(φs, ψ361)− f̂k(φs, ψ360)

]}
, (4.5)

and similarly column-wise (along ψ, with fixed φ0, φ1, φ360 and φ361).

Appendix C provides the MATLAB R© [2016] code used to calculate these measures.

4.1.3 Simulation Study Results

4.1.3.1 Estimation Time

Figure 4.4 shows the average time taken (over 250 Monte Carlo simulations) to

perform an individual surface approximation for each estimation method under

increasing iterations of Algorithm 1.

Under zero iterations, it is clear that, compared to either KDE method, the TPS

spline and both Cubic splines took very little time to conduct each approximation.
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Figure 4.4: Average time (seconds) taken for individual approximations for each estima-
tion method applied to YA. Diamonds represent (orange) Cyclic Cubic and (blue) KDE
von Mises. Lines represent (orange) Cubic, (green) TPS and (blue) KDE Normal, in
conjunction with Algorithm 1.

The KDE von Mises estimation techniques took around 17 seconds to approximate

a single surface, while the KDE Normal method took approximately 11 seconds per

approximation. Comparatively, the TPS spline with zero iterations of Algorithm 1

took on average 0.41 seconds per approximation, and both Cubic splines took less

than 0.002 seconds per approximation.

With increasing iterations of Algorithm 1, the Cubic spline (as an exact interpola-

tion method) took negligible time to conduct the approximations, while the TPS

spline and KDE Normal method increased in computational demand. The TPS

spline showed an exponential increase in time taken, while the KDE Normal method

increased approximately linearly in time taken against number of iterations. The

average time taken to conduct an approximation with complete repetition of the

discrete observed grid, i.e. r = 16, for the TPS spline was approximately 31 seconds,

while the KDE Normal method took almost 74 seconds per surface approximation.
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4.1.3.2 Overall Surface Estimation Accuracy

Figure 4.5 shows the average mean squared error (MSE), and its associated 95%

confidence interval (CI), over 250 Monte Carlo simulations, for each of the planar

estimation methods with increasing iterations of Algorithm 1. The average MSE

resulting from the toroidal estimation methods without the algorithm are also shown

for zero iterations of Algorithm 1 (diamonds).

The Cyclic Cubic method matches the edge derivatives of the surface and is there-

fore equivalent to performing the Cubic under only one iteration of Algorithm 1.

This is evident in Figure 4.5 since the Cubic results converge to a constant MSE,

approximately equal to the Cyclic Cubic estimation MSE, after a single iteration.

Surprisingly, the TPS spline shows the lowest MSE results, even without any iter-

ations of Algorithm 1 when the method does not account for circularity. As the

toroidal nature of the surface is captured with increasing iterations of the algo-

rithm, the MSE for the TPS spline consistently decreases. After approximately 6-8

iterations of Algorithm 1, the MSE levels out to an approximately constant value.

The largest MSE values are given by the KDE approximation techniques, but with

the smallest variation. The KDE von Mises, inherently designed to account for

toroidality in the data, performs least well with a very high MSE value. In contrast,

the KDE Normal approximation gives MSE values only slightly higher than, but

still in the order of, those given by Cubic and TPS methods. As with the Cubic

and TPS methods, the KDE Normal results converge to a relatively constant MSE

value. This occurs after only one iteration of Algorithm 1.

4.1.3.3 Estimation of Toroidal Characteristics

To indicate how well the planar estimation methods capture the toroidal nature of

the datasets, Figure 4.6 shows the average difference in edge values and edge deriva-

tives for the three planar methods under increasing iterations of Algorithm 1. Since

the Cubic spline interpolates the data, it matches the edge values and derivatives

of the surface after only 4 or 5 iterations of Algorithm 1 (Figures 4.6(a) and (b)).

Figures 4.6(c) and (d) also suggest that the KDE Normal approximates the toroidal

nature of the surface very well after only a few iterations of Algorithm 1. For the
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TPS spline, Figure 4.6(f) shows this consistent behaviour with decreasing difference

in derivative values as the iterations of Algorithm 1 are increased, although with

far greater variation than shown for the Cubic or KDE Normal methods.
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Figure 4.6: Average (solid) and 95% CI (dotted) for the (left) mean difference in edge
values and (right) mean difference in edge derivatives, over 250 MC simulations, for (a,b)
Cubic, (c,d) KDE Normal and (e,f) TPS, applied to YA. Metrics calculated row-wise (red)
and column-wise (blue). Note that the figures contain different scales when compared by
column.

The difference in edge values for the TPS spline, shown in Figure 4.6(e), appears

to vary according to surface structure. When considering the discrete surface YA
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row-wise, one of the modes shown in Figure 4.3 sits on the horizontal boundary

of the planar surface, resulting in limited variation in the edge value differences

around zero (shown in red in Figure 4.6(e)). Consider YA column-wise, and the

transitions between both modes shown in Figure 4.3 sit along the vertical surface

edges, resulting in periodic edge value differences (shown in blue in Figure 4.6(e)).

The pattern shows a period of approximately 8, which matches that of the peri-

odicity of the synthetic modes constructed across YA. This suggests that modal

positioning in relation to the planar surface extracted from the torus, i.e. where the

torus is ‘cut’ to be represented over the plane, impacts the toroidal accuracy of the

surface approximation using the TPS spline.

4.1.4 Analysis of the TPS Spline with Algorithm 1

To investigate further the impacts of surface structure and other parameters on

estimation accuracy, additional analyses were conducted applying the TPS spline

in conjunction with Algorithm 1. These analyses were conducted using fA and two

additional synthetic toroidal surfaces defined by fk = max(f ∗k , 0) with k = B,C,

where

f ∗B(φ, ψ) = sin(φ− µB) cos(ψ − τB), (4.6)

with µB = τB = 45◦ (Figure 4.7(a)). The sampled discrete surface YB was simulated

according to Equation 2.8 where εB ∼ N(0, σ2
B) and σB = 0.25.

Secondly, a bivariate von Mises distribution was simulated using the Sine model

[Singh et al., 2002] such that

f ∗C(φ, ψ) = exp {cos(φ− µC) + cos(ψ − τC) + sin(φ− µC) sin(ψ − τC)} , (4.7)

with µC = τC = 180◦ (Figure 4.7(b)), and YC was sampled according to Equation

2.8, where εC ∼ N(0, σ2
C) and σC = 0.5.

Surfaces were sampled over a discrete 16×16 grid (i.e. 22.5◦ bins) and estimated over

a 360×360 grid (i.e. 1◦ resolution). To examine the effects of varying the smoothing

parameter for the TPS spline estimation (p, Equation 4.1), the surface fA was

estimated assuming three separate values; p = 0.001, p = 0.01 and p = 0.1. The
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(a) (b)

Figure 4.7: Continuous surfaces (a) fB (µB = τB = 45◦), and (b) fC (µC = τC = 180◦).

results for p = 0.01 have been discussed in the previous section and are considered

the benchmark for the following analysis.

Finally, the impacts of changing grid sizes on the accuracy of the toroidal estimation

were also considered. A number of n×n discrete grids, YA, with n = 10, 16, 36, (72),

were sampled, before evaluating the estimated smooth surface, fA. Results for

n = 16 are discussed in the previous section and considered the benchmark for

this further analysis. In addition, for a 16×16 discrete grid, the estimated smooth

surface was also evaluated on a 720×720 quasi-continuous grid (i.e. 0.5◦ resolution).

4.1.4.1 Shifted Distribution Modes

Figure 4.8 shows the values of the difference metrics when the TPS spline was

applied, in conjunction with Algorithm 1, to the sample YB. It is clear that the

differences in edge values are impacted by the location of the mode on the surface.

In Figure 4.8(a), both row and column differences show periodicity that matches

that of the modes in Figure 4.7(a). The periodicity is however less pronounced that

than shown in Figure 4.6(e) since the modes cross both the horizontal and vertical

boundaries of the plane.

As shown for YA in Figure 4.6(f), the difference in derivatives (Figure 4.8(b)) reduces

to near zero after around 6 iterations. The decreasing trend of the mean squared

error with increasing iterations of Algorithm 1 is also shown under the shifted

surface structure, YB, as it was for YA in Figure 4.5.
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(c)

Figure 4.8: Average (solid) and 95% CI (dotted) for the (a) mean difference in edges
values, (b) mean difference in edge derivatives and (c) MSE values, over 250 MC sim-
ulations, for the application of the TPS spline to YB, with µB = τB = 45◦. Metrics
calculated row-wise (red) and column-wise (blue).

4.1.4.2 Bivariate von Mises Surface

For the bivariate von Mises surface, YC , the difference metrics along the rows and

columns (Figure 4.9(a) and (b)) show much less structure in their pattern than

those shown previously for YA or YB. Since the elongated asymmetric mode shown

in Figure 4.7(b) sits in the centre of the surface, it has similar effects on both

the row and column difference metrics. The pattern of the differences is however

harder to determine in relation to the modal structure. What is evident is that at

approximately r = 10 the variation in the difference in edge and derivative values

is affected, which may relate to some periodicity of the single mode.

Figure 4.8(c) shows much smaller MSE values that those shown for YA (Figure

4.5) and YB (Figure 4.8(c)). The decreasing trend in MSE remains consistent for

this surface, but the variation in MSE values is also considerably smaller than that

shown for YA and YB. This suggests that the TPS spline produces a far more
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(c)

Figure 4.9: Average (solid) and 95% CI (dotted) for the (a) mean difference in edge values,
(b) mean difference in edge derivatives, and (c) MSE values, over 250 MC simulations, for
the application of the TPS spline to YC . Metrics calculated row-wise (red) and column-
wise (blue).

accurate overall surface estimation, and estimation of the toroidal characteristics,

of the bivariate von Mises surface than it does for the bimodal surface generated

using a Sine and Cosine product.

4.1.4.3 Impacts of the Smoothing Parameter

The TPS spline was applied in conjunction with Algorithm 1 to YA with µA =

τA = 90◦, with the smoothing parameter in the construction of the TPS spline

varied from p = 0.01 to p = 0.001 and p = 0.1. These variations alter how closely

the surface is fitted to the observed data points, and thus suggest that the data

is expected to contain either more or less noise. By decreasing the parameter by

a factor of 10, the estimated surface, f̂A, becomes increasingly smooth, with the

smoothness penalty (second term) in Equation 4.1 given a greater weighting. In

contrast, increasing the value of the parameter produces a less smooth estimated

surface, with fidelity to the data (first term) given a larger weighting according to
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Equation 4.1. Figures 4.10 and 4.11 shows the effects of respectively decreasing and

increasing the smoothing parameter on the estimation performance.
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(c)

Figure 4.10: Average (solid) and 95% CI (dotted) for the (a) mean difference in edge
values, (b) mean difference in edge derivatives and (c) MSE values, over 250 MC simu-
lations, for the application of the TPS spline, with p = 0.001, to YA. Metrics calculated
row-wise (red) and column-wise (blue).

With a decreased smoothing parameter, thus lesser fidelity to the noisy observed

data, the variation in difference values shown in Figure 4.10(a) is considerably

greater than that shown in Figures 4.9(e) and 4.11(a) for smoothing parameters p =

0.01 and p = 0.1, respectively. However, the periodicity of the column differences

(blue lines) remains evident as the smoothing parameter is both decreased and

increased. The difference in row edge values (red lines) also remains relatively

consistent across all three smoothing parameters. Additionally, the difference in

derivatives (Figures 4.10(b) and 4.11(b)) continues to reduce to approximately zero

after 6-8 iterations of Algorithm 1, as seen for the benchmark smoothing parameter,

p = 0.01, in Figure 4.9(f).
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(c)

Figure 4.11: Average (solid) and 95% CI (dotted) for the (a) mean difference in edge val-
ues, (b) mean difference in edge derivatives and (c) MSE values, over 250 MC simulations,
for the application of the TPS spline, with p = 0.1, to YA. Metrics calculated row-wise
(red) and column-wise (blue).

The mean squared errors in estimated surface values (Figures 4.10(c) and 4.11(c))

again show a decreasing trend as the iterations increase, suggesting that revealing

more information regarding the periodicity of the data leads to an overall improve-

ment in surface estimation accuracy. This magnitude of the MSE and the decreas-

ing trend remains consistent as the smoothing parameter used in the TPS spline

is both decreased and increased. This suggests that the smoothing parameter has

little impact on the overall accuracy of the surface estimation, but it can impact

the estimation of toroidal characteristics.

4.1.4.4 Differing Discrete and Continuous Grid Sizes

Figure 4.12 and 4.13 illustrate the performance of Algorithm 1 and the TPS spline

at estimating fA (with µA = τA = 90◦) on a 360×360 quasi-continuous grid from

differing discrete observed grid sizes; n = 10, 36. Given the increases in computa-

tional time with the increases in discrete data up to a 36×36 grid, results from a
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single example simulation are presented. Simulations using a 72×72 discrete grid

are not presented here but show similar results.
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(c)

Figure 4.12: Average (solid) and 95% CI (dotted) for the (a) mean difference in edge
values, (b) mean difference in edge derivatives and (c) MSE values, over 250 Monte Carlo
simulations, for the application of the TPS spline to YA, with 10×10 discrete grid and
360×360 quasi-continuous grid. Metrics calculated row-wise (red) and column-wise (blue).
Note the change of scale in (c).

The difference in row values remain approximately zero for both discrete grid sizes

(red lines in Figures 4.12(a) and 4.13(a)), as shown for the benchmark 16×16 dis-

crete grid in Figure 4.6(e). In contrast, the difference in column edge values (blue

lines) appear to exhibit scaled periodicity with the revelation of repeated modes.

For example, while a trough in column difference occurs at approximately 9 itera-

tions in Figure 4.6(e), a similar trough occurs at 6 iterations for a 10×10 grid, and

20 iterations for a 36×36 grid. These each relate to when between approximately

55% and 60% of the surface has been repeated.

Equally, the differences in edges derivatives show variation up to approximately

r = 4 in Figure 4.12(b) and r = 14 in Figure 4.13(e), then reducing to around zero

with the further iterations. For the benchmark 16×16 discrete grid, this threshold
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(c)

Figure 4.13: (a) Mean difference in edge values, (b) mean difference in edge derivatives,
and (c) MSE values, for a single simulation, for the application of the TPS spline to YA,
with 36×36 discrete grid and 360×360 quasi-continuous grid. Metrics calculated row-wise
(red) and column-wise (blue).

was approximately r = 7. Each of these thresholds relate to when approximately

40% of the surface has been repeated, thus again showing the scaling in toroidal

estimation behaviours for the varying discrete grid sizes.

Figure 4.14 shows the estimation from a 16×16 discrete grid to a 720×720 quasi-

continuous grid. Both differences in edge values and derivatives are considerably

smaller than those shown for the 360×360 quasi-continuous grid for any discrete grid

size. This suggests that with evaluation of the continuous estimated surface over a

finer scale grid, the toroidal characteristics of the surface can be more accurately

captured. However, a trade-off is made with regards to the computational time

taken to evaluate the estimation at this finer resolution.

Figures 4.12(c), 4.13(c) and Figure 4.14(c) show that the mean squared error in

estimated surface values reduces as the iterations increase, across all input and

output grid sizes tested. This increase in accuracy is very similar to that shown for
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Figure 4.14: (a) Mean difference in edge values, (b) mean difference in edge derivatives,
and (c) MSE values, for a single simulation, for the application of the TPS spline to YA,
with 16×16 discrete grid and 720×720 quasi-continuous grid. Metrics calculated row-wise
(red) and column-wise (blue).

the benchmark case in Figure 4.5. The magnitude of the MSE is, however, clearly

decreased with increased discrete and quasi-continuous grid sizes; suggesting that

the more detailed information provided by using finer input and output resolutions

provides better approximations to the underlying surface. However, as suggested

above, there are important trade-offs to consider with relation to the practical

computation time of surfaces at these finer resolutions.

4.1.5 Simulation Study Discussion

In general, the algorithmic adaptation of planar estimation techniques shows as

good, if not better, surface estimation results when compared to the intrinsically

toroidal estimation methods. However, unlike the Cubic spline or KDE Normal

method, the TPS spline varies in its ability to capture the toroidal nature of the

surface at the imposed edges.
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More specifically, the overall accuracy of the planar Cubic spline reduces to that

of the Cyclic Cubic spline after allowing for edge effects, and then remains con-

stant with increasing iterations of Algorithm 1. As expected, the magnitude of

this constant MSE remains within that of the errors constructed over the simulated

surface. The difference in edge values and derivatives shows similar behaviour, re-

ducing to zero after around 4 iterations. The times taken for both Cubic splines to

run are also negligible compared to the remaining methods, altogether suggesting

that this method is most preferable for surface estimation. However, the metrics

presented here assess data fidelity without evaluating surface smoothness. In many

applications, including wind modelling, observed data are noisy and so an exact

interpolation method is far from appropriate in estimating the true underlying pro-

cess; a smoothing method that accounts for noise is likely more appropriate.

The trade-off in smoothness that comes with the use of smoothing splines or kernel

density estimation allows the surface approximation to account for noise in observed

data and avoid over-fitting. However, a trade-off in terms of computation time needs

to be addressed. While all Cubic run times were negligible, if say 6-8 iterations of

Algorithm 1 were applied with the TPS spline to gain an accurate approximation of

the toroidal surface, each estimation would take approximately 4-6 seconds. Even

without application of the algorithm, the KDE Normal estimation took around 11

seconds while the KDE von Mises approximation took around 16 seconds. Although

operational constraints are commonly focussed on computation time and resources,

it is important to consider the benefits of each estimation method in relation to a

particular application.

While the KDE von Mises intrinsically accounts for toroidality of the surface, the

overall estimation accuracy showed the highest MSE value across all methods.

Alongside a very slow computation time, it would appear that this technique is

yet to provide an appropriate estimation method for practice. The KDE Normal

used in conjunction with Algorithm 1 was intended to account for circularity in the

dataset, while producing slightly faster computation times. The overall accuracy of

the KDE Normal in conjunction with Algorithm 1 showed more promising results,

at least within the order of those given by the other methods analysed. The KDE
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Normal with Algorithm 1 was also highly accurate in capturing the toroidal char-

acteristics of the surface after only a few iterations, but with computation times up

to around 30 seconds per approximation in order to achieve this.

The overall surface accuracy of the TPS spline in conjunction with Algorithm 1 also

improved as iterations increased. As with the previous planar estimation techniques,

as the algorithm revealed more data, the TPS spline incorporated more information

about the shape and toroidality of the surface, thus providing an improved fit.

However, the differences in edge values appear to vary in accordance with surface

structure, with rows and columns affected differently depending on the position

and shape of modes across the surface. In application of such a spline, this must be

considered in the pre-processing of toroidal data to form a planar discrete surface.

Understanding the periodicity of the discrete dataset also allows for optimal choice

of the number of iterations of Algorithm 1 required for accurate surface estimation.

Although changing the smoothing parameter did not impact the overall accuracy

of the surface estimation or the general periodicity of the difference metrics, it did

impact the variability of the difference in edge values. In particular, when decreasing

the smoothing parameter, i.e. estimating a smoother surface, the variation around

the difference in edge values increased. In practice, this suggests that the periodicity

in the difference metric is more variable and so harder to rely on for the optimisation

of the number of iterations of Algorithm 1 required for accurate surface estimation.

Across all grid sizes and smoothing parameter values, the pattern of differences in

edge values aligned with the periodicity of the modes in each dimension, suggest-

ing that the unveiling of new modes introduces some instability into the toroidal

approximation. However, the difference in edge derivatives tended to zero after

a scaled number of iterations, equivalent to revealing approximately 40% of the

surface, across all simulations using YA. With finer resolution input and output

grids, overall accuracy of the surface estimation was considerably improved, but

the trade-off in computational demand results in high estimation times which may

be impractical for operational use.

The alignment between the surface structure and the periodicity of the difference

metrics was reaffirmed when the modal positions of the simulated dataset were
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shifted in YB. This modal shift resulted in a relative shift in the periodic pattern

of the differences in edge values. In addition, the change in distribution structure

given by the bivariate von Mises distribution also resulted in a related change in

the pattern of the difference metric. However, with an elongated diagonal mode,

the periodicity of the metric in each dimension became less obvious.

4.2 Estimated Directional Wind Response

Based on the previous discussion, therefore due to its accuracy, relative speed and

simple conceptual underpinning, the thin plate smoothing spline in conjunction with

Algorithm 1 is used to estimate continuous directional wind response. The ability

to identify clear modes and their related periodicity, within the wind direction data

also allows optimisation of the number of iterations of Algorithm 1 that are required

for accurate toroidal surface estimation.

Directional wind response is constructed using observed bivariate wind direction

distributions as described at the beginning of this chapter, and is estimated across

each of the case studies detailed in Chapter 3. The full sets of observed discrete

bivariate distributions for each site across Flea Creek Valley in 2007 and 2014, and

the National Arboretum Canberra in 2015 are given in Appendix B. For a map of

the sites analysed in this section see Figures 3.4 and 3.7 in Chapter 3.

4.2.1 Optimising Algorithm 1

Using the distributions observed across Flea Creek Valley in 2014 shown at the

beginning of this chapter (Figure 4.1), the suitability of the TPS spline estimation

method for application to directional wind response can be assessed. It is also

possible to empirically select the optimal iterations of Algorithm 1 for accurate

toroidal estimation. Figure 4.15 shows the difference in edge values and derivatives

for each site when the TPS spline is applied to these discrete wind direction data.

The differences in first derivatives (Figure 4.15(b,d,f)) reduce to around zero after

6 iterations of the algorithm. In contrast, but as expected from the simulation

study, the differences in edge values (Figure 4.15(a,c,e)) show paths that relate to

the surface structure of the three datasets. In Figure 4.1 it can be seen that, after

91



Statistical Characterisation of Wind Fields over Complex Terrain

0 2 4 6 8 10 12 14 16

Iterations of Algorithm, r

-1

-0.5

0

0.5

1

M
ea

n 
D

iff
er

en
ce

 in
 

E
dg

e 
V

al
ue

s 
   

   
 

#10-3

Rows
Columns

(a)

0 2 4 6 8 10 12 14 16

Iterations of Algorithm, r

-6

-4

-2

0

2

4

6

M
ea

n 
D

iff
er

en
ce

 in
 E

dg
e 

D
er

iv
at

iv
e 

V
al

ue
s 

   
   

#10-5

Rows
Columns

(b)

0 2 4 6 8 10 12 14 16

Iterations of Algorithm, r

-1.5

-1

-0.5

0

0.5

1

1.5

2

M
ea

n 
D

iff
er

en
ce

 in
 

E
dg

e 
V

al
ue

s 
   

   
 

#10-3

Rows
Columns

(c)

0 2 4 6 8 10 12 14 16

Iterations of Algorithm, r

-8

-6

-4

-2

0

2

4

6

8

M
ea

n 
D

iff
er

en
ce

 in
 E

dg
e 

D
er

iv
at

iv
e 

V
al

ue
s 

   
   

#10-5

Rows
Columns

(d)

0 2 4 6 8 10 12 14 16

Iterations of Algorithm, r

-1.5

-1

-0.5

0

0.5

1

1.5

M
ea

n 
D

iff
er

en
ce

 in
 

E
dg

e 
V

al
ue

s 
   

   
 

#10-3

Rows
Columns

(e)

0 2 4 6 8 10 12 14 16

Iterations of Algorithm, r

-8

-6

-4

-2

0

2

4

6

8

M
ea

n 
D

iff
er

en
ce

 in
 E

dg
e 

D
er

iv
at

iv
e 

V
al

ue
s 

   
   

#10-5

Rows
Columns

(f)

Figure 4.15: Mean difference in (top) edge values and (bottom) edge derivatives of the
estimated directional wind response distributions across FCV in 2014, using the TPS
spline, on the (a,b) east-facing slope at B4, (c,d) valley floor at B6 and (e,f) west-facing
slope at B10. Note that the figures contain different scales when compared by column.
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approximately 6 iterations of Algorithm 1 applied to all three surfaces, each of the

modes will have been entirely repeated column-wise. Then after 10 iterations the

modes would begin to appear again. These patterns relate directly to the column-

wise differences in edge values (blue lines) which remain close to zero up to about

4-6 iterations, before indicating some periodicity which peaks around 8 iterations

and troughs towards 16 iterations.

Considering the discrete surfaces row-wise, Figures 4.1(b) and (c) exhibit a domi-

nant elongated mode. These modes have a more constant impact on the approxi-

mation, and result in differences in edge values close to zero (Figures 4.15(b) and

(c), red lines). In contrast, on the east-facing slope at B4 (Figure 4.1(a)) there are

distinct modes in the row-wise direction which would account for the periodicity

shown in the row differences in Figure 4.15(a).

In the following section, the TPS spline in conjunction with 6 iterations of Algo-

rithm 1, was used to estimate the true continuous directional wind response across

both case studies described in Chapter 3. Figures 4.16, 4.17, 4.18 and 4.19 show

that after the application of the TPS spline with 6 iterations of Algorithm 1, the

contours align well across the planar boundaries, suggesting a good match in edge

values. Additionally, the surface estimation shows reasonable smoothness by the

TPS spline for practical interpretation of wind direction behaviour, and the average

computation time to estimate each surface was approximately 3.6 seconds.

4.2.2 Prevailing Wind Direction Analysis

In order to construct directional wind response distributions across both case stud-

ies, concurrent prevailing and surface (or within terrain) wind observations were

required. The observed ridge top wind data described in Chapter 3 cannot be con-

sidered directly equivalent to geostrophic wind flow above the boundary layer across

each region. However, through comparison with data collected at nearby automatic

weather stations by the Australian Bureau of Meteorology (BoM), it was possible

to determine that the sites were indicative of the prevailing winds in the region.

Figure 4.16 shows the joint wind direction distributions between the local BoM data

and ridge top stations at FCV in 2007 and 2014, and at the NAC in 2015. Strong
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modes along the diagonal indicate a strong alignment between wind directions ex-

perienced at the ridge tops and those recorded by BoM.

(a) (b)

(c) (d)

Figure 4.16: Comparison between wind direction observed at Mount Ginini and FCV at
(a) A1 in 2007, (b) B2 in 2014 and (c) B1 in 2014, as well as between Canberra Airport
and NAC at (d) C1 in 2015. Red lines indicate isolines on the estimated surfaces.

Through analysis of the joint distributions between BoM wind direction data ob-

served at Mount Ginini (Figure 3.4(b), Station No. #070349) and data observed at

FCV, Sharples et al. [2010] showed that A1 was indicative of the prevailing winds

in the region in 2007 (Figure 4.16(a)). However, in 2014, analysis of the wind

response at the same site (B2; Figure 4.16(b)) showed that the ridge top wind di-

rections were no longer a good representation of the prevailing wind direction. The

ridge top station in 2014 at FCV was therefore taken to be B1 (Figure 4.16(c)).

BoM wind direction data observed at Canberra Airport (Station No. #070351) were

compared to those observed at the ridge top at the NAC in 2015. Figure 4.16(d)

shows that the wind directions observed at the ridge top over the NAC aligned with
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the wind directions observed at Canberra Airport, so C1 was taken to indicate the

prevailing winds for this case study.

4.2.3 Flea Creek Valley, 2007

Figure 4.17 shows the estimated directional wind response distributions for the four

stations across FCV from west to east (A2 to A5, Figure 3.4). On the western

wall, at A2, the weather station is most often on the leeward slope to prevailing

west-northwesterly winds across the valley, and the off-diagonal mode suggests that

westerly prevailing winds are experienced as easterlies at the site (Figure 4.17(a)).

(a) (b)

(c) (d)

Figure 4.17: Estimated directional wind response distributions from FCV in 2007, at (a)
A2, (b) A3, (c) A4 and (d) A5. Red lines indicate isolines on the estimated surfaces.

In contrast, on the eastern wall at A4 and A5, the dominant modes of the distribu-

tion lie along the diagonal and so wind directions observed at the surface here align

with observed ridge top wind directions (Figures 4.17(c) and (d), respectively). On

the valley floor, at A3, four modes are evident at low wind speeds (Figures 4.17(b)),
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suggesting that winds at the site are either north-easterly or south-westerly, whether

prevailing winds are easterly or northerly. This suggests that channelling through

the valley may be the key driving force of winds experienced at this site. With

increasing wind speeds, all of these modal patterns become more distinct which

suggest mechanical processes rather than thermal forcing.

4.2.4 Flea Creek Valley, 2014

The estimated smooth directional wind response distributions for stations B4, B6,

B8 and B10 are shown in Figure 4.18. These stations form a representation of winds

across the valley transect from east to west.

(a) (b)

(c) (d)

Figure 4.18: Estimated directional wind response distributions from FCV in 2014, at (a)
B4, (b) B6, (c) B8 and (d) B10. Red lines indicate isolines on the estimated surfaces.

As described at the beginning of this chapter, the off-diagonal mode present at

B4 indicates a region of wind reversal when the site is leeward to the prevailing

westerly winds (Figure 4.18(a)). A reflected off-diagonal mode is present at B8
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and B10 (Figures 4.18(c) and (d), respectively), again indicating regions of wind

reversals when these sites are leeward to the easterly prevailing winds. As previously

discussed, the variation shown at B6 and B8 (Figures 4.18(b) and (c), respectively)

is likely to result from local topographical or vegetation features, but there is also

evidence of channelling through the north-south aligned valley at both these sites.

4.2.5 National Arboretum Canberra, 2015

The estimated smooth directional wind response distributions for the stations C2,

C5, C7 and C9 at the NAC are shown in Figure 4.19. These directional wind

response distributions show considerably less variation than those observed at Flea

Creek Valley. This is likely a result of the uniform vegetation type and undulating

topography at the NAC which ensures more consistent wind direction behaviour.

(a) (b)

(c) (d)

Figure 4.19: Estimated directional wind response distributions from the NAC in 2015, at
(a) C2, (b) C5, (c) C7 and (d) C9. Red lines indicate isolines on the estimated surfaces.
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At C2, on the cleared east-facing slope of the study area, there are two clear modes

along the diagonal which indicate alignment of the observed wind directions with

the westerly and easterly prevailing winds (Figure 4.19(a)). Within the pine stand,

the westerly prevailing winds appear to produce a wind reversal on the leeward (C5)

and 45◦ leeward (C7) slope, indicated by the off-diagonal modes in Figures 4.19(b)

and (c). On the cross slope at C9, on the end of the spur within the pine stand, the

mode relating to the westerly prevailing winds moves back to the diagonal (Figure

4.19(d)). This suggests that the wind directions on the cross-slope align with the

prevailing winds.

4.3 Concluding Remarks

This chapter has proposed a probabilistic representation of wind direction in terms

of directional wind response. In using observed discrete joint wind direction dis-

tributions, the true continuous wind response process requires estimation. To this

end, the analysis in this chapter compares a number of toroidal surface estimation

techniques.

Smoothing and kernel density estimation methods were found to be more compu-

tationally expensive than exact interpolation, but the techniques are designed to

avoid over-fitting of noise within an observed dataset; an issue very relevant when

dealing with wind data. A trade-off between resource constraints and required

surface smoothness is therefore unavoidable in the application of such estimation

techniques. Introduced in Section 4.1, Algorithm 1 was not only able to improve

planar interpolation and smoothing techniques for toroidal data, but also provided

better surface estimation results than toroidal kernel density estimation. In practice

therefore, it is reassuring to note that the simple intuitive strategy analysed here

achieves its goals of capturing bivariate circularity. However, the choice of planar

estimation technique, as well as other variables such as grid size and smoothing pa-

rameter, remains an important consideration when conducting surface estimation.

The ability of the thin plate smoothing spline, applied in conjunction with Algo-

rithm 1, to capture the toroidal characteristics of datasets at the identified edges

was dependent on the structure of the surface. The relationship shown between
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toroidal surface estimation accuracy and the surface structure for the TPS spline

could be exploited to select an optimal number of iterations required for accurate

surface estimation. In practice, this link could be utilised to pre-process toroidal

data and ensure modes are positioned appropriately on the planar surface, e.g.

without modes on the edge of the planar data view.

In application to directional wind response, the toroidal nature of the surfaces was

optimally estimated after approximately 6 iterations of Algorithm 1. The examples

showed that the toroidal accuracy of the application of the thin plate smoothing

spline, after a limited number of iterations, has the potential to improve computa-

tion time for subsequent analyses of wind direction distributions. It was then possi-

ble to interpret the resulting accurate and realistic estimates of true wind direction

response across complex terrain in relation to broad-scale mountain meteorology as

well as fine-scale wind behaviours in amongst the landscape.

The following chapter asks the question of whether or not changes in surface char-

acteristics, such as varying topography or vegetation, have a significant impact on

this directional wind response.
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Chapter 5

Assessment of the Impacts of Vegetation on Wind Fields

over Complex Terrain

A quantitative comparison of wind direction distributions under differing physical

and environmental conditions will help develop an understanding of the impacts of

vegetation and topography on wind flow behaviour across complex terrain features.

Such comparison in this chapter aims to identify whether changes in vegetation or

topography significantly alter the relationship between prevailing winds and those

experienced within the landscape. Through subsequent analysis, it may be possible

to quantify these changing relationships by parameterising joint wind response dis-

tribution functions, such as that done within the wind energy industry [e.g. Carta

et al., 2008, Erdem and Shi, 2011, Zhang et al., 2013]. Such statistical modelling of

these distributions using physical parameters such as vegetation cover would feed

into emerging probabilistic approaches to bushfire prediction [Finney et al., 2011,

French et al., 2014d, Twomey and Sturgess, 2016].

Building on the mathematical foundations of the previous chapter, the following

hypotheses are proposed to test for equality between two directional wind response

distributions:

H0 : f1 = f2

HA : f1 6= f2,
(5.1)

where f1 and f2 represent continuous underlying wind response processes which,

when estimated as f̂k(Xst), are realised at 1◦ resolution such that Xst = {(φs, ψt) :
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s, t = 1, ..., 360}. According to Equation 2.8, where Y = f + ε, Y (Xij) represent

discrete wind distributions observed over the wind direction pairs corresponding

to the 16 points of the compass (i.e. N, NNE, NE and so on), such that Xij =

{(φi, ψj) : i, j = 1, ..., 16}.

In order to consider the statistical tests which can be used to understand the impacts

of vegetation and topography on directional wind response, the problem is first

reduced to the unconditional univariate wind distribution case, i.e. Y (Xi). Through

non-parametric combination of univariate tests, the analysis is then extended to

the bivariate case, Y (Xij), to consider the impacts of vegetation and topography

on directional wind response distributions.

This chapter first considers the sensitivity and power of univariate and bivariate

Kolmogorov-Smirnov (KS) style non-parametric statistical tests to changes in dis-

tributional structure. Monte Carlo methods are used to simulate comparisons of

known distributions, and the resulting power curves are analysed to determine

thresholds for significance in terms of distributional changes in modal location or

shape. These findings are then used to better interpret results of the tests when

applied to wind direction distributions.

Section 5.1 first reviews the relevant literature on non-parametric statistical tests,

before reintroducing the appropriate wind direction data analysed in this chapter.

In Section 5.2, the power of the univariate KS and Kuiper’s tests are analysed before

being applied to univariate conditional wind direction distributions. Section 5.3

then considers the case of bivariate data. The sensitivity of an extended KS test to

changes in bivariate distribution structure is first analysed, and evaluated through

a comparison with the power behaviour of the univariate test. An extension of

Kuiper’s test for the comparison of bivariate circular distributions is then proposed.

The power of such an extension is analysed in relation to the univariate Kuiper’s

test and the bivariate KS test to establish whether it is a reasonable proposition. On

application to the bivariate wind direction distributions discussed in the previous

chapter, these sensitivity results and relationships are considered. Finally, mean

squared difference based non-parametric surface comparison tests are applied to

bivariate wind direction distributions. Section 5.4 concludes this chapter.
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The research presented in this chapter has been summarised in two journal articles;

Quill, R., Sharples, J.J. and Sidhu, L.A. (In Prep) Sensitivity analysis of Kolmogorov-

Smirnov style statistics for univariate and bivariate data.

Quill, R., Sharples, J.J. and Sidhu, L.A. (Under Review) Non-parametric com-

parison of wind direction to assess the impacts of surface roughness. Statistical

Modelling, submitted March 2017.

5.1 Background

5.1.1 Literature

Non-parametric statistical tests allow for the comparison of observed datasets with-

out the constraints of parametric estimation, enabling comparison of more complex

multimodal, multivariate distributions. However, interpretation of non-parametric

results in terms of changes in the underlying physical process can be difficult. One

way of developing an interpretation of such results is to analyse the power of the

applied statistical test.

The power of a given statistical test can be defined as its ability to detect that

the null hypothesis of equality is false when comparing two distributions that are

in fact different [Lindgren, 1976]. In the literature, Monte Carlo studies are com-

monly used to evaluate the power of a test against alternative distributions with

known structures [e.g Peacock, 1983]. Goodness-of-fit statistical tests can be used to

compare a data sample with a known distribution, such as testing for uniformity or

normality using the t-test or χ2 test, and the power of such tests is well studied. For

instance, Bergin [1991] compared four tests for uniformity on the circle, and found

that all tests were powerful against a unimodal alternative. However, bimodal or

direction-avoidance alternatives caused problems. Distribution-free statistical com-

parison tests are designed to be powerful against any alternative distribution, and

are often used to compare two data samples of unknown underlying distribution

structure. Such two-sample tests can include omnibus tests, Cramér-von Mises

tests and Kolmogorov-Smirnov (KS) style tests. There are many books that cover
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the details of these tests, and more, for both linear and circular datasets, includ-

ing Conover [1980], Neave and Worthington [1988], Jammalamadaka and SenGupta

[2001] and Mardia and Jupp [2000].

KS style tests are a widely used and well studied form of non-parametric statistical

test. When the parametric forms of the distribution structures of two data samples

are unknown, it is natural to consider a comparison of the two empirical distribution

functions. This is the basis on which two-sample KS style tests were developed by

Kolmogorov [1933] and Smirnov [1939]. The univariate test is not only distribution-

free, but also highly efficient and invariant to the ordering of the data sample

[Peacock, 1983]. Numerous early studies of these tests provided approximations to

the asymptotic behaviour of the statistics as well as tabulated percentage points

and critical regions [e.g. Feller, 1948, Stephens, 1965, Maag and Stephens, 1968,

Stephens, 1969, 1970, Maag and Dicaire, 1971, Maag, 1973, Koziol, 1980]. Early

studies also indicated the power of the KS test against a variety of distributions,

showing the test to be more powerful than alternatives such as the χ2 test [Massey,

1951, Pearson, 1963].

Kuiper [1960] proposed an adaptation of the KS test to provide a distribution-

free comparison test for circular datasets that has since been used in numerous

studies, particularly for small sample sizes [e.g. Upton and Fingleton, 1989, Mardia

and Jupp, 2000]. In particular, Batschelet [1981] highlights its use within biological

studies, and Freedman [1979] and Verdoux et al. [1997] exemplify the use of Kuiper’s

test to understand seasonality within epidemiological research. In comparing the

KS and Kuiper’s tests, Pearson [1963] and Louter and Koerts [1970] independently

found Kuiper’s test to be more powerful. However, Louter and Koerts [1970] also

concluded (Srinivasan [1971] later concurred) that the power of both tests was very

sensitive to the alternative distribution, despite their distribution-free properties.

In many applications, it is necessary to compare bivariate distributions, for instance

in astronomy [Babu and Feigelson, 2005] or textural pattern recognition [Ferryanto,

1995]. Peacock [1983] and Justel et al. [1997] outlined a bivariate extension of the

KS test which utilised an extended definition of the empirical distribution function
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for bivariate data. Conceptually this appears simple, but in practice the exten-

sion of the KS test to the multivariate case is not trivial, with issues including the

increased computational demand involved with the selection of comparison points

[Fasano and Franceschini, 1987]. Peacock [1983, page 621] showed that although

the bivariate KS test could not be considered distribution-free, the test was suffi-

ciently powerful against any “reasonable” distribution structure (i.e. one that was

not strongly correlated), and therefore could be confidently used in practice. Fur-

ther study of the extended KS test has continued within the field of astronomy,

with a generalised multivariate test analysed by Koen and Siluyele [2007]. Through

application of the extended KS test, Koen and Siluyele [2007] found it to be more

powerful than a number of alternative tests, as well as easy and fast to run.

Pewsey and Kato [2016] considered a bootstrap goodness-of-fit testing approach

which provided insight into the power of a number of toroidal uniformity tests ap-

plied to bivariate circular samples [Wellner, 1979, Jupp, 2009]. The test however

depends on a parametric approach, requiring knowledge of the marginal distribu-

tions and binding densities used to construct the bivariate circular distributions.

In this study non-parametric methods are considered, and Pewsey and Kato [2016]

note that further work is currently underway to develop a non-parametric version

of their approach. There are few non-parametric testing procedures available for

toroidal surfaces, and a bivariate extension of the two-sample Kuiper’s test has not

yet been tackled in the literature.

Throughout the literature there are a number of other methods presented to test the

equality of multivariate distributions, in particular Chiu and Liu [2009] defined an

extension of the popular Cramér-von Mises goodness-of-fit test. Dhar et al. [2014]

also proposed a bivariate extension of the Q-Q plot and associated statistical tests

which were found to be more powerful than the bivariate KS and Cramér-von Mises

tests under specified alternative conditions.

In comparing estimated continuous directional wind response distributions, non-

parametric surface comparison tests are also considered. For example, Chiang and

Puri [1984] proposed a rank order test for parallelism between multi-dimensional

regression surfaces, equivalent to testing for equality between standardised surfaces.
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However, the rank order test considered surfaces produced through linear regres-

sion, where the constants associated with each covariate were known, or had been

estimated. Delgado [1993] presented a statistic for testing the equality of non-

parametric curves which did not depend on a smoothing term. The level and power

of the test was assessed using simulated curves, and the results were found to be

promising over a number of models and error distributions.

Non-parametric tests based on the squared difference between surfaces are also

popular in the applied literature. Wang and Ye [2010] used medical imagery as

motivation to determine a generalised multi-dimensional form of the test statis-

tic derived through non-parametric analysis of covariance by Dette and Neumeyer

[2001]. The work went on to establish the generalised form of asymptotic normality

for this test statistic. Bowman [2006] considered multi-dimensional air pollution

data in the development of a similar test statistic based on the work of Young and

Bowman [1995], which drew analogies with one-way analysis of variance. As op-

posed to the statistic developed by Wang and Ye [2010], which was calculated using

the difference between each individual surface, the statistic developed by Bowman

[2006] was calculated using the difference between the individual surfaces and the

surface generated by the combined dataset.

Wang and Ye [2010] and Bowman [2006] both worked on fixed design problems,

where observed data were taken at pre-determined and fixed points on the regression

surfaces. Srihera and Stute [2010] added to the field by providing a test which was

shift and scale invariant, and considerations were taken for surfaces made up of

observations taken at different locations across the surface, i.e. random designs.

5.1.2 Wind Data Comparisons

5.1.2.1 Flea Creek Valley, NSW

Non-parametric comparison tests were performed on the pairs of wind direction

distributions observed at approximately coincidental locations across Flea Creek

Valley between 2007 and 2014. Figure 5.1 shows a map of the coincidental weather

station pairs; FCV1 (A2-B4), FCV2 (A3-B6), FCV3 (A4-B8) and FCV4 (A4-B10).
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Figure 5.1: Map of coincidental station locations across FCV between 2007 (red; A1 to
A5) and 2014 (blue; B1, B4, B6, B8 and B10).

Table 3.1 describes the vegetation present at each site in 2007 [Sharples et al.,

2010], while Table 3.2 describes the vegetation in 2014. There are clear differences in

language: where Sharples et al. [2010] described “burnt trees” and “sparse canopy”,

the 2014 vegetation was described as “medium density” with “large eucalypts”

surrounding the stations. This regrowth of vegetation around the station sites

would have likely impacted upon the air movement around the anemometers, and

thus provides a unique opportunity to better understand the impact of vegetation

regrowth on wind direction distributions in complex terrain.

Despite seven years of regrowth, the wind response distributions from the same

locations in both years can look visually similar. Figures 5.2 and 5.3 shows the uni-

variate wind direction distributions observed across Flea Creek Valley, conditional

on observing a WNW prevailing wind direction at the ridge top. These distributions

are linearised from the wind roses shown in Chapter 3, and are discussed in more

detail as pairs in relation to the differences between the two sample years which are

more visibly evident when represented on the line.
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(a) (b)

(c) (d)

Figure 5.2: Observed conditional wind direction distributions from 2007 at (a) FCV1
on the leeward slope (A2), (b) FCV2 on the valley floor (A3), (c) FCV3 on the lower
windward slope (A4), and (d) FCV4 on the upper windward slope (A5), assuming a
WNW observed at A1.

FCV1 shows a strong easterly mode in both 2007 and 2014 (Figures 5.2(a) and

5.3(a)), while FCV2 and FCV4 show broad westerly or north-westerly modes in

both years (Figures 5.2(b) and 5.3(b), and Figures 5.2(d) and 5.3(d)). FCV3 shows

clearer differences between the two years. Figure 5.3(c) shows a wide mode centred

around a southerly direction, while Figure 5.2(c) shows a mode around the north-

west to northerly direction.

The estimated continuous wind response distributions using the thin plate smooth-

ing spline technique developed and analysed in Chapter 4, for the four points across

Flea Creek Valley in both 2007 and 2014 are shown in Figures 4.17 and 4.18 in the

previous chapter. Each pair shares a similar number of modes between the two

years, with modes generally in similar positions. It would appear that the variabil-

ity of wind direction has increased in 2014, perhaps due to the increased vegetation
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(a) (b)

(c) (d)

Figure 5.3: Observed conditional wind direction distributions from 2014 at (a) FCV1
on the leeward slope, (B4) (b) FCV2 on the valley floor (B6), (c) FCV3 on the lower
windward slope (B8), and (d) FCV4 on the upper windward slope (B10), assuming a
WNW observed at B1.

and thus turbulence produced around the weather stations [e.g. Finnigan, 2000,

Belcher et al., 2012].

Pairs FCV1 (Figures 4.17(a) and 4.18(a)) and FCV2 (Figures 4.17(b) and 4.18(b))

show the most similarities between the two sample years. For FCV2, four modes

are evident in both years suggesting that the wind direction is relatively variable

throughout the valley floor and this remains consistent with the increased vegeta-

tion. Meanwhile, for FCV1 two dominant modes are evident at approximately (ESE,

ESE) and (WNW, ESE), with a third around (WNW, WNW). The off-diagonal

mode shown at (WNW, ESE) aligns with the distributions shown in Figures 5.2(b)

and 5.3(b), which suggest that under westerly prevailing winds, a wind reversal re-

gion develops on this east-facing slope (leeward to the westerly prevailing) so that

easterly winds are experienced at the surface.
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On the west-facing slope (Figures 4.17(d) and 4.18(d)), FCV4 shows an faint off-

diagonal mode at (ESE, WNW) in both years. This again suggests a wind reversal

region when the west-facing slope is leeward to the easterly winds. An additional

mode is present in 2007 at (ESE, ESE) which represents an alignment of easterly

prevailing winds with easterly surface winds on the leeward slope. This is likely to

have developed due to a greater proportion of easterly prevailing winds observed in

2007 (approximately 29%) as opposed to 2014 (approximately 15%).

Finally, for FCV3, the stations were not placed in identical positions across the two

sample years due to logistical contraints, and so it is not surprising that the distri-

butions show the most discrepancies (as also shown in Figures 5.2(c) and 5.3(c)).

While Figure 4.18(c) suggests that westerly prevailing winds produce predominantly

southerly surface winds with wide variation, Figure 4.17(c) shows a clear mode at

(WNW, WNW) which indicates that surface winds align with the prevailing winds.

Both years, however, also show considerable variation across the bivariate distribu-

tions.

Table 5.1 shows the data sample sizes for the construction of the conditional and

joint distributions between 2007 and 2014. The table highlights the variation in

sample size across both case study periods, and also shows that the sample sizes

dealt with in the application of these comparison tests are far greater than those

handled in the existing literature. For example, Stephens [1965] tabulated per-

centage points for Kuiper’s statistic up to sample sizes of 100, and Peacock [1983]

considered the behaviour of the bivariate KS test up to finite sample sizes of 50.

Table 5.1: Sample sizes for FCV pairs.

Conditional Joint
2014 2007 2014 2007

FCV1 1,046 403 2,537 2,809
FCV2 129 399 346 2,823
FCV3 825 411 1,676 2,964
FCV4 903 338 1,864 2,161

5.1.2.2 National Arboretum Canberra, ACT

Figure 5.4 shows the weather station sites across the NAC used for analysis in

this chapter. Table 5.2 details the comparisons made to understand the impacts of
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varying vegetation under similar topography, and varying topography under similar

vegetation on wind direction across the area.

100m0

Figure 5.4: Map of the NAC with station locations from 2015 (yellow; C1, C2, C5, C7
and C9).

Table 5.2: Location descriptions for comparison pairs at the NAC in 2015.

NAC1 (C2) Clear Leeward Slope (C5) Pine Leeward Slope

NAC2 (C5) Pine Leeward Slope (C7) Pine 45◦ Leeward Slope

NAC3 (C5) Pine Leeward Slope (C9) Pine Cross Slope

NAC4 (C7) Pine 45◦ Leeward Slope (C9) Pine Cross Slope

Figure 5.5 shows the univariate conditional wind direction distributions observed

across the NAC under west-northwesterly (WNW) prevailing wind conditions. Again,

these distributions are linearised from the wind roses shown in Chapter 3, and are

discussed in more detail here in relation to the differences seen between the pairs

detailed in Table 5.2.

Each site experiences a dominant wind direction under the WNW prevailing winds.

On the clear leeward slope (C2, Figure 5.5(a)), and on the cross slope within the pine

plantation (C9, Figure 5.5(d)), westerly winds are experienced. In contrast, on the

leeward slope at C5 and 45◦ leeward slope at C7 within the pine plantation (Figures
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(a) (b)

(c) (d)

Figure 5.5: Observed conditional wind direction distributions from the NAC at (a) C2 on
the clear leeward slope, (b) C5 on the pine leeward slope, (c) C7 on the pine 45◦ leeward
slope and (d) C9 on the pine cross slope.

5.5(b) and (c)), easterly to south-easterly winds are experienced. Perhaps due to far

greater sample sizes observed at the NAC (Table 5.3), due to the increased frequency

of observations over a longer study period, there is less variation across the four

wind direction distributions than observed across FCV. This lack of variability may

also be due to the undulating surrounding terrain and the uniformity the vegetation

across both the clear and forested stands of the study site.

The estimated continuous directional wind response distributions for the four NAC

sites for comparison are shown in Figure 4.19 in Chapter 4. Again the lack of

variability observed in Figure 5.5 is evident. All four sites exhibit two modes; one

is consistent at approximately (ESE, ESE) suggesting that when the less domi-

nant easterly prevailing winds blow across the region, each of the sites experiences

easterly winds, no matter the vegetation or topographical differences between them.
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When westerly prevailing winds are experienced, however, the response of wind flow

varies across the four sites. As shown in Figure 5.5, the surface winds align with the

prevailing westerlies on the cleared leeward slope (C2) and the cross slope within the

pines (C9), showing a (WNW, WNW) mode in Figures 4.19(a) and (d). However,

the leeward and 45◦ leeward slopes within the pines (C5 and C7) experience winds

of the opposite direction, resulting in a (WNW, ESE) mode in Figures 4.19(b) and

(c). This suggests the presence of wind reversal regions within the vegetation at

these sites, caused by not just the vegetation but also the relative aspect of the

terrain with respect to the prevailing wind direction.

Table 5.3 shows the data sample sizes used to construct the conditional and joint

wind direction distributions. This table again highlights the variability in sample

size across the study. The sample sizes for the NAC are considerably larger than

those from FCV due to the increased length of the study period and the increased

sample frequency from 30 minutes to 1 minute. These sample sizes are now many

orders of magnitude greater than those used to develop and analyse the statistical

comparison tests discussed in the previous section.

Table 5.3: Sample sizes for NAC pairs.

Conditional Joint
m n m n

NAC1 42,756 10,844 176,031 32,583
NAC2 10,844 12,484 32,583 28,479
NAC3 12,484 30,191 32,583 74,428
NAC4 10,844 30,191 28,479 74,428

5.2 Univariate Wind Direction

5.2.1 Simulation Study

5.2.1.1 Univariate Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov (KS) test, devised by Kolmogorov [1933] and later adapted

for two samples by Smirnov [1939], compares the probability distributions of two

datasets (as a measure of goodness-of-fit to a known distribution or as a compari-

son of two samples) by considering the maximum difference between the empirical
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distribution functions (EDFs) of each set. There are three key features of the uni-

variate test: it is highly efficient, it is distribution-free and the results of the test

do not depend on the ordering of the data [Peacock, 1983].

In the literature, it is shown that the asymptotic behaviour of the two-sample test

tends towards the asymptotic behaviour of the one-sample test, i.e. comparing a

dataset to a known distributions [Abrahamson, 1967]. For a comparison of two

samples with m and n data points, respectively, the quantity N = mn
m+n

is defined

and the univariate KS test statistic is given by

D
(1)
N = sup

x
|Fm(x)−Gn(x)|, (5.2)

where Fm and Gn are the empirical distribution functions, i.e. Fm(x) = P (X ≤ x)

[Kolmogorov, 1933, Smirnov, 1939].

Since the statistic D
(1)
N is known to be proportional to the sample size [e.g. Kendall

and Stuart, 1979], critical values given by Massey [1951] are d0.01 = 1.63/
√
N at

the 1% significance level, d0.05 = 1.36/
√
N at the 5%, and d0.10 = 1.22/

√
N at the

10% level. An alternative standardised statistic can also be defined [Kolmogorov,

1933, Smirnov, 1939],

Z
(1)
N =

√
ND

(1)
N . (5.3)

The asymptotic behaviour of this statistic was given by Kolmogorov [1933],

P (Z(1)
∞ > z) ' 2 exp(−2z2), (5.4)

accurate to 3 decimal places for z > 1.08, i.e. α < 0.194, with Z
(1)
∞ defined by the

transformation

1− Z(1)
N /Z(1)

∞ = 0.20N−0.6. (5.5)

Stephens [1970] also introduced a modified Kolmogorov-Smirnov statistic D∗N =

D
(1)
N (
√
N+0.12+0.11

√
N), for which the same asymptotic behaviour as in Equation

5.4 was approximated, since for large N this modified statistic reduces to Z
(1)
N .
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5.2.1.2 Univariate Kuiper’s Test

In many applications, including considering wind direction, data can be inherently

circular. In order to apply the KS test as described in the previous section, the

circle would need to be cut to reshape the data on the line. Unfortunately, the KS

test is not invariant to the location at which the circle is cut, and so Kuiper [1960]

introduced an adaptation of the KS statistic to handle such a situation. As with the

KS test, Kuiper’s test is distribution-free and is commonly used in the univariate

form to compare relatively small samples, i.e. less than 100 [e.g. Batschelet, 1981,

Freedman, 1979]. However, in contrast to the KS test, there is little consensus in

the literature regarding the approximation of the asymptotic behaviour of Kuiper’s

test statistic.

To account for circularity, Kuiper’s test statistic is a combination of the maximum

difference and the minimum difference between empirical distribution functions.

The one-dimensional, one-sample statistic is defined as

V (1)
n = D+

n +D−n , (5.6)

where D+
n = supx {Fn(x)− g(x)} and D−n = |infx {Fn(x)− g(x)}|, with Fn(x) =

P (X ≤ x) defined to be the EDF of a sample of size n, and g(x) is some known

distribution.

As with the KS test, this statistic is proportional to the sample size, so Kuiper

[1960] and Stephens [1970] approximated the asymptotic distribution of
√
nV

(1)
n ,

for v > 6/5, as

P
(√

nVn ≥ v
)
'
(
8v2 − 2

)
exp (−2v2)− 8v

3
√
n

(
4v2 − 3

)
exp (−2v2), (5.7)

which is based on continuous distributions, and is therefore conservative when test-

ing discrete distributions. For large n, the second term tends to zero, thus the

approximation tends to

P
(√

nVn ≥ v
)
'
(
8v2 − 2

)
exp (−2v2). (5.8)
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This approximation was applied by Durbin [1973] and Arsham [1988] for large

sample sizes, i.e. n→∞.

Stephens [1970] proposed an alternative statistic to account for sample size,

V ∗n = Vn
(√

n+ 0.155 + 0.24/
√
n
)
, (5.9)

and used the approximate formula for the asymptotic behaviour of
√
nVn given in

Equation 5.8, accurate to 3 decimal places for v > 1.26, i.e. α < 0.447 (or accurate

to 2 decimal places for v > 1.06 or α < 0.74). As for the equivalent KS statistic,

for large n this alternative tends to
√
nVn, therefore the approximate asymptotic

behaviour is given by Equation 5.7, for v > 6/5.

Stephens [1970] gave the upper quantiles of V ∗n as equivalent to those for
√
nVn

given by Stephens [1965], i.e. v∗0.01 = 2.001, v∗0.05 = 1.747 and v∗0.10 = 1.620. When

substituted for v in Equation 5.8, these critical values give; P (V ∗n > 2.001) = 0.0106,

P (V ∗n > 1.747) = 0.0545 and P (V ∗n > 1.62) = 0.110 which are all very close to the

prescribed significance levels. Maag and Dicaire [1971] also showed that Stephens’

approximation to the distribution of Kuiper’s statistic is accurate across a range of

percentage points (0.5% to 10%).

As with the two-sample KS test, the quantity N = mn
m+n

is defined so that the

two-sample Kuiper test statistic is given by

V
(1)
N = D+

N +D−N , (5.10)

where D+
N = supx {Fm(x)−Gn(x)} and D−N = |infx {Fm(x)−Gn(x)}|. The EDFs

of the two sample datasets of sizes m and n are given by Fm and Gn, respectively.

It is shown and assumed throughout much of the literature [e.g. Kuiper, 1960,

Abrahamson, 1967, Mardia and Jupp, 2000] that the distribution of VN (two-sample

statistic) tends to the distribution of Vn (one-sample statistic).

For small sample sizes, i.e. when n 6= m, and n + m ≤ 28, or when n = m and

3 ≤ n ≤ 100, Maag and Stephens [1968] gave exact percentage points for VN as

defined in Equation 5.10. For larger, unequal sample sizes, the test outlined is based

on the assumption that the distribution of
√
NVN (defined as in the two-sample
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KS test) tends to that of
√
nVn as n,m → ∞. It was conjectured by Maag and

Stephens [1968] that the asymptotic behaviour of this two-sample statistic might

be approximated by a function of the form

P
(√

NVN ≥ v
)
'

∞∑
l=1

(
8l2v2 − 2

)
exp (−2l2v2)

+ 2.828 v

√
nm

n+m

∞∑
l=1

(
3l2 − 4l2v2

)
exp (−2l2v2). (5.11)

Once expanded, the first term of this approximation gives the asymptotic distri-

bution of Vn and V ∗n given in Equation 5.8. However, it was remarked by Maag

and Stephens [1968] that Hodges [1957] found erratic behaviour of the distribution

of the KS statistic for large unequal sample sizes, and this behaviour is likely to

extend to Kuiper’s statistic.

In this study a parallel formation of Kuiper’s test is also evaluated. Batschelet

[1981] defined the test statistic; k = mnVN . To determine significance, the one-

sample critical value table from Stephens [1965] is used alongside a translation to

the two-sample test; L (α) = [mn (m+ n)]1/2K (α), where K (α) is the one-sample

critical value for n < m. If k > L (α), the null hypothesis is rejected at level α.

A number of alternative formulations of the asymptotic behaviour of Kuiper’s test

also exist in the literature [e.g. Abrahamson, 1967, Raghavachari, 1973, Steck, 1969,

Upton and Fingleton, 1989], but drawing parallels with the KS test results is more

complicated. The aim of this study is to improve understanding of the sensitivity of

the KS and Kuiper’s tests for better interpretation in application to wind direction

data. With this in mind, the analogous formulations of asymptotic behaviour for

both the KS test and Kuiper’s test are analysed, as well as the statistic given by

Batschelet [1981] which is commonly applied in practice.

5.2.1.3 Simulation Procedure

Distributions were constructed to emulate the properties of the discrete binned

wind direction distributions observed in this research. These simulated baseline

distributions were then compared to similar distributions with shifted structures,

such as changes in mean or standard deviation. All simulations were coded in
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MATLAB R© [2016] using the kstest function, with further details of the code

provided in Appendix D. The following procedure describes how the univariate KS

test was performed. This procedure was conducted for each of the subsequent tests

analysed in this study.

1. Simulate a discrete probability density function (PDF) based on a Normal

distribution; N(8, 1), with random error σ2 ∼ N(0, 0.01). This discrete PDF

consists of 16 bins of unit width in order to emulate the structure of the wind

direction data presented in Chapter 3.

2. Generate a data sample from this PDF by randomly generating a sample size

(N) between 100 and 1000, and then calculating the proportions of the sample

allocated to each discrete bin.

3. Repeat steps (1) and (2) to simulate a second sample for comparison. This

second sample is constructed either under changes in the mean of the Normal

PDF while the standard deviation is held constant, or under relative changes

in the standard deviation while the mean is held constant.

4. The KS test is run to compare the two simulated distributions; generating

the observed test statistics, D
(1)
N and Z

(1)
N defined by Equations 5.2 and 5.3,

respectively.

5. Significance of the test statistics is calculated using the asymptotic p-value

formula for Z
(1)
N given in Equation 5.4 (PZ), and the tabulated critical values

for D
(1)
N at a 1% significance level , defined by Massey [1951]; d0.01 = 1.63/

√
N .

In some cases, the asymptotic distributions of the test statistics are available in

the literature, and so the p-values can be approximated. Alternatively, the p-values

can be calculated using Monte Carlo (MC) simulation schemes. These types of

tests include permutation tests where all possible combinations of the data are

permuted, while maintaining the dataset structures. The test statistics observed

from each permutation form the distribution under the null hypothesis of equality

between the sample distributions [Berger, 2009]. The exact p-value can then be

calculated as the percentage of the distribution that is more extreme than each

observed statistic.
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Bootstrap tests calculate the test statistic for all possible variations of the data

set, without restricting the data design. The exact calculation of the p-value was

traditionally not conducted under the guise of computational resource restrictions,

but with modern computing power, this is generally no longer the case. However,

with large datasets, the calculation of bootstrap style tests can still become cum-

bersome and subsets of all the possible bootstrap simulations (at least 1000) are

used to estimate the exact distribution of the test statistics, and thus the p-value.

This estimate is therefore a conservative approximation of the p-value [Neuhauser,

2012].

In the case of the KS test, it is known that the asymptotic behaviour and corre-

sponding critical values are conservative in their estimate of significance, meaning

that they are more likely to suggest that a pair of distributions are significantly

different since it requires more evidence to support the null hypothesis of equality

[e.g. Massey, 1951, Slakter, 1965]. MC estimates of the p-values for D
(1)
N or Z

(1)
N

are expected to be less conservative than the approximations to the asymptotic

behaviour, but still more conservative than the exact p-value.

In addition to the univariate Normal distributions, simulations of the univariate

von Mises distribution were also used to understand the sensitivity of Kuiper’s test

to changes in modal structure. The von Mises (vM) distribution (considered the

circular analogue of the Normal distribution) requires two parameters; mean and

concentration. The concentration parameter, κ, can be thought of as the inverse

of the standard deviation for the Normal distribution, i.e. a high κ value indicates

high concentration and low variance. The baseline von Mises distribution used for

this study had mean π and concentration 5, vM(π, 5), giving a similar structure to

the N(8, 1) baseline distribution. To assess the ability of Kuiper’s test to handle

circularity, a vM(0, 5) distribution was used as a third baseline.

The MATLAB R© [2016] function, circ_kuipertest, from the CircStat package

[Berens, 2009], uses Batschelet’s statistic [Batschelet, 1981]. The code calculates

the observed statistic k = mnVN , as well as providing the critical value K and

related significance level α of the observed statistic. The significance level can

be thought of as equivalent to the p-value of the test statistic and is reported as
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such, pk, but only takes the discrete α values 0.01, 0.02, 0.05, 0.10 etc. due to the

constraints of using the tabulated critical values of Stephens [1965]. The code was

adapted to also calculate V
(1)∗
N =

√
NVN , along with the asymptotic formula for its

p-value given by Equation 5.8. To summarise, the variables calculated using the

adapted code were;

• V (1)
N = D+

N +D−N ,

• k = mnV
(1)
N (as in circ_kuipertest),

• pk: p-value from circ_kuipertest,

• K: critical value from circ_kuipertest,

• V (1)∗
N =

√
NV

(1)
N , and

• pV ∗ =

(
8
(
V

(1)∗
N

)2

− 2

)
exp

(
−2
(
V

(1)∗
N

)2
)

.

Monte Carlo simulations were also used to form the null distribution of V
(1)
N , k and

V
(1)∗
N , and calculate the approximate p-values for the observed statistics. Further

details of this code are given in Appendix D.

To measure the power of the tests at a given significance level α (i.e. 1%, 5% or

10%), the test statistics and p-values were calculated over 1000 MC simulations,

each time randomly generating the error distribution. The power was calculated

as the percentage of the p-values or critical values that fell within the significance

region, i.e. the percentage of p-values less than the α level, or the percentage of test

statistics greater than the critical value for the α level.

For incremental changes in mean and standard deviation (or concentration), plots

are presented showing the power of the tests using a 1% significance level. Analysis

of 5% and 10% significance levels were also conducted but are not presented here.

It is expected that for shifts close to zero the power of the test would approximately

match the significance level. For a test to be considered powerful, a steep rise in

the curve is then expected as the distributions shift further from the baseline. A

test might be considered powerful against known alternatives if it shows a rejection

rate of say 70% or above. By determining the power of the KS and Kuiper’s tests

against the manipulated alternatives, it is possible to determine thresholds of modal

changes at which the test is sufficiently powerful to reliably detect the difference

between two distributions.
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For changes in standard deviation or concentration, it is expected that the power of

the test is best analysed with respect to the relative change rather than the absolute,

since decreases in standard deviation are constrained and finite, while increases can

be infinite. Reflecting this, analysis not reported here shows that the power of the

KS and Kuiper’s tests against absolute changes in standard deviation or concen-

tration is asymmetric. Relative changes in standard deviation or concentration are

therefore considered such that, for instance, halving the standard deviation of the

Normal distributions (i.e. reducing N(0, 1) to N(0, 0.5), given by a relative change

of −0.5) is equivalent to doubling it (i.e. increasing N(0, 1) to N(0, 2), given by a

relative change of +0.5).

5.2.1.4 Results

Figure 5.6(a) shows the power of the univariate KS test against shifts in the mean

of the Normal distribution, with standard deviation held constant. As expected,

the power is symmetric, showing that increases and decreases in the mean value

have almost identical impacts on the power of the test. The plot shows that the

test is successful when comparing almost identical distributions, with the power

level matching the 1% significance level for changes in the mean of less than 10% of

the discrete bin size. The power of the test then quickly rises to above 70% as the

changes in mean become greater than±30% or±40% (depending on the formulation

of the p-value). This steepness in the power curve indicates only a narrow region

of marginal power at small changes to the mean value (between ±10% and ±40%

of the bin size) for all formulations of the p-value.

Figure 5.6(b) shows that the KS test is again successful when comparing similar

distributions, with power levels matching the significance levels for relative changes

in standard deviation less than ±0.2. The test becomes quickly powerful (above

70%) when standard deviation is changed by a factor of ±0.3 or ±0.4 (depending

on the formulation), again showing a relatively narrow region of marginal power.

Both plots in Figure 5.6 indicate agreement with the literature by showing the

conservative nature of the asymptotic p-value estimate and the critical value (solid

lines). The MC estimates (dotted lines) show consistently higher power curves,

suggesting that they are more sensitive to changes in the mean. The power curves
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Figure 5.6: Power of the univariate KS test to (a) percentage change in mean and (b)
relative change in standard deviation for the Normal distribution, at a 1% level.
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for the critical value and asymptotic p-value are almost identical since they are

derived from the same formula (Equation 5.4). However, the MC power curves

indicate that the D
(1)
N statistic is slightly more conservative than the Z

(1)
N statistic

which is scaled by the sample size.

Figure 5.7 shows the sensitivity of Kuiper’s test to changes in mean and standard

deviation for the Normal distribution. As for the KS test results shown in Fig-

ure 5.6, Kuiper’s test is symmetrically sensitive to changes in mean and relative

changes in standard deviation. The MC p-values (dotted lines) are also consistently

more sensitive to the changes than the conservative critical values and asymptotic

approximations (solid lines), again concurring with the literature. The magnitude

of sensitivity is also similar for Kuiper’s test as it was for the KS test, with similar

changes in mean (less than ±10% of a discrete bin size) and standard deviation

(less than a relative change of ±0.2) showing power levels equivalent to the 1%

significance level. Depending on the test’s form, changes in mean greater than ap-

proximately ±30% to ±40% are required to give a powerful Kuiper’s test (above

70%), again showing a relatively narrow region of marginal power. As noted by

Louter and Koerts [1970], Kuiper’s test appears to be more powerful against shifts

in standard deviation than the KS test, only requiring changes of approximately

±0.2 or ±0.3 to reach powers over 70%.

The asymptotic p-value and v∗0.01 critical value again exhibit similar power curves,

while that for the k statistic appears more conservative. For the MC results, a

hierarchy emerges showing VN to be the most sensitive statistic, followed by the

scaled V ∗N statistic (as shown for the KS test). Finally, the k statistic is the most

conservative, as was also found with the asymptotic results.

The key difference between the results shown in Figure 5.6 and those shown in

Figure 5.7 is given by the approximation to the asymptotic p-values. For changes

in mean of less than ±20% and standard deviation of less than ±0.15, the power

of this p-value increases rather than tending towards the significance level. The

power curves show that the approximate asymptotic p-value gives almost 40% false

positives when the two distributions being tested are identical except for error.

Interestingly, the v∗0.01 critical value does not show such a peak around zero changes.
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Figure 5.7: Power of the univariate Kuiper’s test to (a) percentage change in mean and
(b) relative change in standard deviation for the Normal distribution, at a 1% level.
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For both the KS and Kuiper’s tests, the approximations to the asymptotic p-values

have limited validity. Stephens [1970] stated that the approximate asymptotic p-

value formula for Kuiper’s test was accurate to 3 decimal places for v > 1.26 (or

α > 0.447), while Kolmogorov [1933] gave the approximate asymptotic p-value for

the KS test, accurate for z > 1.08. From the simulation results for Kuiper’s test on

identical or very similar distributions, the v values were very low (as low as 0.42)

meaning that the assumptions underpinning the asymptotic p-value formula were

no longer valid. The difference between the two tests can be clearly explained by

plotting the approximations of the asymptotic p-value for each case; Equations 5.4

and 5.7 (Figure 5.8).
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Figure 5.8: Approximations for the asymptotic p-values for the univariate (a) KS test
(Equation 5.4) and (b) Kuiper’s test (Equation 5.8).

In the case of the KS test (Equation 5.4), the formula takes a Gaussian form, so

peaks at z = 0 and monotonically decreases with increasing z values which result

from increasingly different distributions. In the approximation of the asymptotic

behaviour of the standardised Kuiper’s statistic (Equation 5.8), the negative ex-

ponential is multiplied by a term of order v2. Therefore, the approximation is no

longer monotonic and peaks at approximately v = 0.866. With smaller p-values,

the quadratic term dominates and therefore, as v approaches zero, the approxima-

tion decreases towards -2. This results in small p-value approximations for small

values of v generated by similar or identical distributions (or even negative p-values

for v ≤ 0.5, which are truncated to zero). This is confirmed by the power curves

since empirical results show that the peak in power occurs as consistent simulations
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result in V
(1)∗
N statistic values below 0.866. Therefore, in contrast to the KS test

and with false positive rates reaching 95%, there is clearly a need for caution in the

use of the approximation to the asymptotic behaviour of Kuiper’s test beyond its

range of validity.

Figures 5.9 and 5.10 show the sensitivity of Kuiper’s test to changes in the mean

and concentration of the von Mises distributions. To assess how well Kuiper’s test

accounts for circularity, the sensitivity is shown for a mode simulated in the ‘centre’

of the distribution when represented on the line, vM(π, 5) (Figure 5.9), as well as for

a mode simulated on the ‘edge’ of the distribution, vM(0, 5) (Figure 5.10). As with

the Normal distribution, the power is consistently symmetric to changes in mean

and concentration, and the MC p-value estimates are consistently less conservative

than the asymptotic approximations. No matter whether the mode is simulated at

the ‘centre’ or ‘edge’ of the distribution, Kuiper’s test shows very similar sensitivity

to changes in the mean and concentration to that of the KS test and Kuiper’s

test applied to the Normal distribution. This reinforces the concepts behind using

Kuiper’s test as the circular adaptation of the KS test.

As indicated by Louter and Koerts [1970] and Srinivasan [1971], the sensitivity of

Kuiper’s test appears to vary according to the distribution; Kuiper’s test is more

powerful against the von Mises distribution than when applied to the Normal distri-

bution. The power curves shown in both Figures 5.9 and 5.10 are steeper than those

in Figures 5.6 and 5.7, resulting in narrower regions of marginal power; between

±20% and ±40% for changes in mean, and between ±0.2 and ±0.3 (or ±0.3 and

±0.4, depending on the tests’ form) for relative changes in concentration. Despite

this increase in power, the relative behaviour of the forms of the test remains con-

sistent. The k statistic continues to be the least sensitive to changes in distribution

structure (both in asymptotic form and from the MC results), and the MC power

curves indicate that V
(1)
N is again less conservative than the scaled V

(1)∗
N .

There is again a clear exception to the similarity between power results from the

KS test and Kuiper’s test. As with the application of Kuiper’s test to the simu-

lated Normal distributions, a peak in power is observed for the asymptotic p-value

for changes close to zero. It appears that the behaviour has been exacerbated by
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Figure 5.9: Power of the univariate Kuiper’s test to (a) percentage change in mean and
(b) relative change in concentration for the von Mises distribution with centre mode, at
a 1% level.
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Figure 5.10: Power of the univariate Kuiper’s test to (a) percentage change in mean and
(b) relative change in concentration for the von Mises distribution with edge mode, at a
1% level.
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application to the circular distribution. Power levels reach around 95% when there

is no simulated change in mean or concentration, indicating a 95% false positive

rate. The width of the peak is approximately the same as found for the Normal dis-

tribution for the mean, but has almost doubled in width for shifts in concentration

(comparing Figure 5.7(b) to Figures 5.9(b) and 5.10(b)). Looking at the results in

more detail, the v values for these simulations become as low as 0.31, considerably

below the validity threshold of 1.26 for the use of the approximation.

5.2.1.5 Discussion

Across all results presented for the KS test, it is seen that the MC p-values ex-

hibit higher power across all types of change, suggesting that the MC estimates

are more likely to determine a significant difference between distributions given a

smaller change in distributional structure. This is to be expected since it is re-

ported numerous times in the literature that the asymptotic approximation to the

p-value of the observed D
(1)
N statistic is conservative (particularly for discrete dis-

tributions), meaning that the test is more likely to indicate that two distributions

are significantly different when experiencing only small changes.

The power of the KS test (in all forms) is symmetrical to positive and negative shifts

in the mean value. The test is shown to be powerful, giving high power values at

relatively small changes to the mean; the power reaches almost 100% after a mean

shift equivalent to just ±50% of the discrete bin size. When relative changes in

standard deviation are considered, the KS test is clearly symmetric in its power.

The test is shown to be relatively powerful again, with only a narrow region of

potentially inconclusive test results (between a factor of ±0.2 and ±0.4).

Although in this analysis a power threshold of 70% has been used, the question of

how powerful a test must be to reliably detect a difference between two distributions

is likely to be dependent upon the application. In the case of discrete observed data,

only changes significant after a one-bin mean shift may be considered important, in

which case the KS test is very powerful. However, the form of the test being used

and the desired application have a clear impact on this threshold.
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In general, the results for Kuiper’s test are very similar to those given by the KS

test for the Normal distribution. Both are powerful and symmetric around changes

to the mean and standard deviation. In addition, application to both von Mises

distributions showed very similar power characteristics to those given for the Normal

distribution and the KS test, and results were clearly invariant to the location of

the mode on the von Mises distribution. This all provides empirical evidence to

support the consistency of Kuiper’s test as the circular adaptation of the KS test.

The single variation in behaviour between the KS test and Kuiper’s test was the

peak in power shown for the asymptotic p-value approximation for identical, or very

similar, simulated distributions. The peak in power appeared to worsen with the

application to the von Mises distribution, and empirical results indicate that the

simulated comparisons resulted in consistently lower values of V
(1)∗
N . The behaviour

of this asymptotic approximation can be easily explained with more detailed inspec-

tion of the derived formulae for each test, but the exacerbation with the application

to the von Mises distribution suggests that the form of the distributions being com-

pared may in fact impact these results, despite the distribution-free nature of the

test.

5.2.2 Conditional Wind Direction Distributions

Each of the observed wind direction distributions shown in Figures 5.2, 5.3 and

5.5 is conditional on a WNW prevailing wind direction observed at the reference

stations on the ridge top for each case study. The combined sample size, N = nm
n+m

,

for each univariate wind direction dataset is shown in Table 5.4 along with the

results of the univariate Kolmogorov-Smirnov test applied to each pair.

Across the leeward and windward slopes of Flea Creek Valley, at pairs FCV1, FCV3

and FCV4, the D
(1)
N statistic is significantly greater than the critical values given

by d0.01 and d0.05 at the 1% and 5% significance levels. Similarly, the asymptotic

p-values, P
Z

(1)
N

, are very small. In addition, the Monte Carlo p-values, PMC

D
(1)
N

and

PMC

Z
(1)
N

, are zero for these three pairs. These results indicate that there is significant

evidence against the null hypothesis of equality in these cases, and therefore suggest

that the wind direction distributions from 2007 and 2014 are significantly different.
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Table 5.4: KS test results for univariate conditional wind direction distribution pairs from
FCV and the NAC.

N D
(1)
N d0.01 d0.05 Z

(1)
N P

Z
(1)
N

PMC

D
(1)
N

PMC

Z
(1)
N

Flea Creek Valley

FCV1 291 0.2259 0.0956 0.0797 3.8529 2.55×10−33 0 0

FCV2 97 0.1630 0.1651 0.1377 1.6096 0.0112 0.0008 0.0054

FCV3 274 0.4226 0.0984 0.0821 6.9987 5.70×10−43 0 0

FCV4 246 0.4893 0.1039 0.0867 7.6740 1.41×10−51 0 0

National Arboretum Canberra

NAC1 8,650 0.9432 0.0175 0.0146 87.7213 0 0 0

NAC2 5,803 0.1165 0.0214 0.0179 8.8713 8.77×10−69 0 0

NAC3 7,978 0.9086 0.0182 0.0152 81.1578 0 0 0

NAC4 8,832 0.9062 0.0173 0.0145 85.1599 0 0 0

On the valley floor, for the pair FCV2, the situation is somewhat different. The

value for the D
(1)
N statistic is greater than the critical value given at the 5% level,

but still smaller than that given for the 1% level, suggesting that for this pair there

is not sufficient evidence against the null hypothesis at the 1% significance level (but

there is at the 5% level). Similarly, the asymptotic p-value, P
Z

(1)
N

, is 0.0112, and

therefore the null hypothesis cannot be rejected at the 1% significance level. These

results suggest that the wind direction distributions on the valley floor may not

be significantly different between 2007 and 2014. The Monte Carlo p-values remain

small and suggest that there is a significant difference between the two distributions,

but they are relatively close to 0.01 compared to the other three pairs.

Across the National Arboretum Canberra, all pairs are significantly different ac-

cording to the results shown in Table 5.4. When comparing the leeward slope to

the 45◦ leeward slope within the pines (NAC2), the test statistics D
(1)
N and Z

(1)
N show

the smallest values by far, resulting in the only asymptotic p-value to be non-zero.

This suggests that this pair may be more similar than the others, which agrees with

a visual assessment of the univariate distributions shown in Figure 5.5. The critical

values across all pairs at the NAC are very small (a tenth of those for FCV) due

to the large sample sizes resulting from data collected over a longer period and at

higher frequency than at FCV.

Table 5.5 shows the results of applying Kuiper’s test to the pairs of univariate con-

ditional wind direction distributions across FCV and the NAC. Similar patterns to
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those found using the KS test are evident. At FCV, all four pairs indicate a signifi-

cant difference in wind direction distributions between 2007 and 2014 according to

the statistical results. However, FCV2 shows the largest P
V

(1)∗
N

value and shows the

only non-zero MC p-value for the V
(1)
N statistic. This again indicates that this pair

shows the least statistical evidence of significant difference between the two years.

Table 5.5: Kuiper’s test results for univariate conditional wind direction distributions
pairs from FCV and the NAC.

V
(1)
N V

(1)∗
N P

V
(1)∗
N

k(1) L0.01 PMC

V
(1)
N

PMC

V
(1)∗
N

PMC
k(1)

Flea Creek Valley

FCV1 0.3619 6.1723 2.46×10−31 152,545 49,454 0 0 0

FCV2 0.2399 2.3686 0.0006 12,348 10,431 0.0005 0 0

FCV3 0.4506 7.4631 1.85×10−46 152,784 40,964 0 0 0

FCV4 0.4893 7.6740 3.31×10−49 149,350 38,944 0 0 0

National Arboretum Canberra

NAC1 0.9472 88.0977 0 439.2×106 10.0×106 0 0 0

NAC2 0.1173 8.9326 3.14×10−67 15.9×106 3.6×106 0 0 0

NAC3 0.9228 82.4233 0 302.1×106 7.3×106 0 0 0

NAC4 0.9224 86.6820 0 347.7×106 8.0×106 0 0 0

Across the NAC, the statistical results show that all four wind direction distribution

pairs are significantly different as vegetation and aspect changes. All p-values,

whether asymptotic or MC, are zero except one. For NAC2, the observed statistic

values of V
(1)
N , V

(1)∗
N and k(1) are all considerably smaller than for the remaining

pairs, and the P
V

(1)∗
N

value is the only non-zero p-value but is still extremely small.

5.2.2.1 Discussion

Visually, changes in wind direction are difficult to interpret across Flea Creek Val-

ley due to higher noise levels in the wind distributions (Figures 5.2 and 5.3), but

across the National Arboretum Canberra there are clear shifts in the observed wind

direction modes as the vegetation and aspect conditions change (Figure 5.5). From

the findings of the simulation study, it is expected that the KS style tests would

be very powerful against the definitive shifts in mean shown across the NAC where

the spread of the modes does not appear to vary. It was shown in the simulation

studies that both the KS and Kuiper’s tests were powerful against small changes in

mean and standard deviation (or concentration) relative to the size of the discrete

bins observed here. This gives confidence in the application of the tests across both
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case studies, and the consistent results across all forms of the tests provide strong

evidence to support the conclusions.

In the simulation study, the Monte Carlo p-value estimates were shown to be less

conservative than the asymptotic approximations. This is evident in the results

shown in Tables 5.4 and 5.5 where most MC p-values are zero, indicating that all

but one pairings are significantly different. Using the raw test statistics and the

asymptotic results, Tables 5.4 and 5.5 show that only the wind direction pairs of

FCV2 and NAC2 consistently yielded the least evidence in support of the rejection of

equality. This suggests that, except at these two sites, the univariate wind direction

distributions changed significantly with the vegetation regrowth experienced at FCV

and the changing vegetation and topographical conditions across the NAC.

At FCV2, the observed wind direction distributions show some of the greatest

variation, meaning that the KS and Kuiper’s tests were inhibited in developing

evidence against the null hypothesis and thus determining the distributions to be

significantly different. This high variation may be caused by a number of localised

features creating increased turbulence around the station, including within-canopy

effects and topographical features such as the knoll on which the station was situated

within the valley floor [e.g. Finnigan, 2000, Belcher et al., 2012].

The pair NAC2 compares the forested leeward slope at the National Arboretum

Canberra to the forested 45◦ leeward facing slope to the WNW prevailing winds.

Figure 5.5 indicates that the observed conditional wind direction distributions were

very similar between these two sites. An easterly peak shown in these distribu-

tions indicate a wind reversal region beneath the vegetation under WNW prevail-

ing winds. This suggests the existence of vegetation and aspect thresholds for the

generation of wind reversals, consistent with the computational findings of Simpson

et al. [2013] where such thresholds indicated the sufficient conditions for atypical

fire spread.
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5.3 Bivariate Wind Direction

5.3.1 Simulation Study

5.3.1.1 Bivariate Kolmogorov-Smirnov Test

Peacock [1983] and Justel et al. [1997] proposed an extension of the univariate KS

test to the bivariate case, while maintaining its attractive features (high efficiency,

distribution-free and invariant to ordering). The test was extended through con-

sidering the EDF of a bivariate sample, {x, y}, in terms of the four probabilities;

P1 = P (x ≤ X, y ≤ Y ), P2 = P (x ≥ X, y ≤ Y ), P3 = P (x ≤ X, y ≥ Y ) and

P4 = P (x ≥ X, y ≥ Y ). The bivariate KS test then considers the maximum of

the maximum differences between each of these probabilities. After applying the

test to a variety of surface structures, Peacock [1983, page 621] concluded that the

test was sufficiently distribution-free under all “reasonable” surfaces, but not under

those that were highly correlated.

For a comparison of two samples, with m and n data points such that N = mn
m+n

,

the bivariate KS test statistic is defined as

D
(2)
N = max(DP1

N , DP2
N , DP3

N , DP4
N ), (5.12)

where DP
N defines the maximum absolute differences between the empirical distri-

bution functions, Fm and Gn, constructed over the four probabilities for example

DP1
N = sup

(x,y)

|F P1
m (x, y)−GP1

n (x, y)|, (5.13)

where F P1
m (x, y) = P (x ≤ X, y ≤ Y ) [Gosset, 1987]. Again, as in the univariate

case, D
(2)
N is expected to be proportional to the sample size [Peacock, 1983, Gosset,

1987], so the standardised statistic is also defined as

Z
(2)
N =

√
ND

(2)
N . (5.14)

In this study, the search for the supremum of the difference between EDFs over

all four quadrants of the bivariate space was conducted across only the data points
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observed in the dataset, thus employing the methodology suggested by Fasano and

Franceschini [1987] to reduce the computational demand of the test.

The asymptotic behaviour of the Z
(2)
N statistic was given by Peacock [1983] and

Gosset [1987], for the area of interest P (Z
(2)
N > z) . 0.2, as

P (Z(2)
∞ > z) ' 2 exp(−2(z − 0.5)2), (5.15)

where Z
(2)
∞ is derived from the relationship

1− Z(2)
N /Z(2)

∞ = 0.53N−0.9, (5.16)

with m,n & 10.

Peacock [1983] gave a table of critical values for Z
(2)
N , but with only small sample

sizes up to 50; z0.01 = 2.06, z0.05 = 1.83 and z0.10 = 1.70. This is orders of magnitude

smaller than the sample sizes used in this study.

5.3.1.2 Bivariate Kuiper’s Test

Similar in format to the bivariate extension of the two sample KS test, an extension

of Kuiper’s test is proposed. For a comparison of two samples, with m and n data

points such that N = mn
m+n

, the bivariate Kuiper’s test statistic is defined as

V
(2)
N = max(V P1

N , V P2
N , V P3

N , V P4
N ), (5.17)

where V P
N defines the univariate Kuiper’s statistic between the empirical distribution

functions, Fm and Gn, constructed over each of the four probabilities defined in

Section 5.3.1.1. For example,

V P1
N = (D+

N)P1 + (D−N)P1, (5.18)

where (D+
N)P1 = sup(x,y)

{
F P1
m (x, y)−GP1

n (x, y)
}

, with F P1
m (x, y) = P (x ≤ X, y ≤

Y ), and likewise (D−N)P1 =
∣∣inf(x,y)

{
F P1
m (x, y)−GP1

n (x, y)
}∣∣.

Using V
(2)
N as a basis, two further test statistics could be defined to standardise

the value with respect to the sample size. As for the previous tests, the statistic is
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standardised with respect to the sample size to give

V
(2)∗
N =

√
NV

(2)
N . (5.19)

The third test statistic is drawn in parallel with the univariate statistic defined by

Batschelet [1981],

k(2) = mnV
(2)
N . (5.20)

Approximating the asymptotic behaviour of these proposed test statistics lies out-

side the scope of this study, but it is considered that issues in the approximation

might include, for example, the need to show each test statistic to be at least suffi-

ciently distribution-free as in the bivariate extension of the KS test. The statistics’

invariance to data ordering, or the location at which the torus is cut to represent the

plane, should also be rigorously established. The proposed test statistic may be cal-

culated over each possible toroidal permutation, with non-parametric combination

techniques then applied to form an invariant statistic.

It might also be expected that the asymptotic behaviour of an extended Kuiper’s

statistic takes a similar exponential form to that of the univariate KS and Kuiper’s

tests and the bivariate KS test. However, the issues shown for this approximation

with the univariate Kuiper’s test may also extend to the bivariate case. Without

approximations to the asymptotic behaviour of the proposed test statistics readily

available, this study focusses on the Monte Carlo estimates of the p-values.

5.3.1.3 Simulation Procedure

For the bivariate KS test, a symmetric bivariate Normal (BN) distribution was

simulated and tested using the procedure defined in Section 5.2.1.3. The baseline

distribution was given by BN

 8

8

 ,
 3 0

0 3

, with an error distribution given

by N(0, 0.001). Here, zero cross-correlation is assumed in order to simplify the

simulated distributions. In addition, the analysis and modelling of spatial and

temporal correlations between wind direction distributions is beyond the scope of

this research. However, it is noted that these correlations may not be insignificant,
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and analysis of such would make up a vital component of further study leading from

this research.

To run the simulations of the bivariate KS test, code was adapted from the function

kstest2, available in MATLAB R© [2016]. Further details of this code are given in

Appendix D. From the above discussion, and in parallel to the univariate KS test

simulations, the following statistics were calculated using this code;

• D(2)
N = max(DP1

N , DP2
N , DP3

N , DP4
N ),

• Z(2)
N =

√
ND

(2)
N , and

• PZ ' 2 exp(−2(Z
(2)
N − 0.5)2).

Monte Carlo methods were also used to construct a null distribution of the test

statistics D
(2)
N and Z

(2)
N over 1000 simulations, and the p-values for the observed

statistics were then derived.

As for the bivariate KS test, a bivariate Normal distribution is simulated to under-

stand the sensitivity of these proposed bivariate Kuiper’s test statistics. A bivariate

von Mises (BvM) distribution is also simulated to investigate the application of the

statistics to bivariate circular distributions. To reduce the number of parameters

in the bivariate von Mises distribution, the Sine model given by Singh et al. [2002]

is used. By setting the covariance parameter, λ, to zero, this approximation re-

duces to the product of two univariate von Mises distributions [Mardia, 2013], and

also produces a single symmetric mode similar to that simulated for the bivariate

Normal distribution.

A bivariate von Mises distribution (Sine model) is simulated to extend the analysis

of the univariate Kuiper’s test; BvM

 π

π

 ,
 5 0

0 5

, with errors simulated

as for the bivariate KS test. Analysis of the univariate Kuiper’s test showed that

the formulation of the test statistic handles circularity in the data well, so only one

bivariate von Mises distribution is simulated.

To run the simulations of the proposed bivariate test, code was adapted from the

functions circ_kuipertest and kstest2, written in MATLAB R© [2016]. Again,

further details of this code is given in Appendix D. From the above discussion, and
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in parallel to the univariate Kuiper’s test simulations, the following statistics were

calculated;

• V (2)
N = max(V P1

N , V P2
N , V P3

N , V P4
N ),

• k(2) = mnV
(2)
N , and

• V (2)∗
N =

√
NV

(2)
N .

Again, Monte Carlo methods were used to form a null distribution of each of the

test statistics over 1000 simulations, and the p-values for the observed statistics

were then derived.

As with each of the univariate tests, the power of the p-values against changes

in mean and standard deviation of the bivariate Normal distribution, and mean

and concentration of the bivariate von Mises distribution were calculated over 1000

Monte Carlo simulations. In the bivariate case, the mean was shifted independently

in the x and y directions. This allows for comparison of power results with those

given by the univariate KS test. The changes in standard deviation and concentra-

tion are again considered in relative terms, and were made symmetrically around

the single mode of the simulated bivariate Normal and von Mises distributions.

Brief analysis (not presented here) of the sensitivity of the bivariate KS and Kuiper’s

tests to shifts in mean along the diagonals, i.e. combined symmetric x and y shifts,

show very similar behaviours to those discussed in the following section.

5.3.1.4 Results

Figure 5.11(a) shows the sensitivity of the bivariate KS test to shifts in the bivari-

ate mean. The lines on the plots indicate the power of the test as the mean of the

bivariate Normal distribution was shifted through the y direction, while triangular

points indicate that similar power behaviour was observed for shifts in the x direc-

tion. The sensitivity of the bivariate KS test remains symmetric to shifts in the

mean, as in the univariate case. When considering the asymptotic p-value derived

for the Z
(2)
N statistic, the sensitivity behaviour is very similar to that shown in Fig-

ure 5.6(a). However, the power curve is less steep in the bivariate case, resulting in

a region of marginal power between changes in mean of ±10% up to ±80% of the

bin size.
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Figure 5.11: Power of the bivariate KS test to (a) percentage change in mean and (b)
relative change in standard deviation for the bivariate Normal distribution, at a 1% level.
Lines represent mean changes in the y direction. Triangles represent mean changes in the
x direction.
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Figure 5.11(b) shows the sensitivity of the bivariate KS test to relative changes in

the standard deviation of the bivariate Normal distribution. As in Figure 5.6(b),

the power curve is symmetric for the asymptotic approximation of the p-value for

Z
(2)
N , but it is again considerably wider. This increased width results in a region of

marginal power between a relative change in standard deviation of ±0.1 and ±0.6.

The MC results again indicate that the D
(2)
N statistic is less conservative than the

scaled Z
(2)
N statistic. However, as opposed to those shown for the univariate case

in Figure 5.6, the MC estimates in the bivariate case are far more conservative

than the asymptotic approximation, i.e. less sensitive to small changes in mean or

standard deviation. In this case, the MC estimates show power levels close to (if

not equal to) zero for shifts in mean values up to ±100% of the discrete bin size.

The power curves for the MC estimates are then very steep, resulting in a powerful

test (above 70%) for changes in mean of around ±140% to ±150%.

The MC power curves for the relative changes in standard deviation are slightly

asymmetric in the bivariate case, but the curves remain very steep. Regions of

marginal power are reduced to relative changes of +0.6 to +0.8 and −0.8 to −1.0.

The asymmetry shown in these curves may develop through the structural con-

straints of changing the standard deviation (i.e. reductions can only be finite, but

increases infinite), and these become more obvious in the bivariate case as per-

haps more MC simulations are required to estimate the null distribution of either

statistic.

Figure 5.12 shows the sensitivity of the proposed bivariate Kuiper’s tests to changes

in mean and standard deviation for the bivariate Normal distribution. Only MC

estimations for p-values are calculated since no asymptotic approximations exist,

but these estimations show very similar behaviour to the MC estimates for the

bivariate KS test. The k(2) statistic is again shown to be the most conservative

of the three statistics, and V
(2)∗
N is again shown to be more conservative that the

unscaled V
(2)
N statistic.

In addition, sensitivity is again symmetric around changes in the mean of the bi-

variate Normal distribution, with similar behaviours shown for shifts in mean along

the x and y directions. All three statistics show very low powers (approximately
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zero) up to shifts of ±100% in the mean. The power curves are then very steep,

getting up to 70% power under shifts of ±120% or ±140%, resulting in very small

regions of potentially inconclusive test results. Slight asymmetry is again observed

in the power of the tests against relative changes in standard deviation. However,

the power curves are almost vertical, giving thresholds for significance at around

+0.8 and −0.9.

Figure 5.13 shows the sensitivity of the proposed bivariate Kuiper’s test to changes

in mean and concentration of the bivariate von Mises distribution. Although the

behaviours are similar to those found by application to the bivariate Normal distri-

bution, the power curves for the three tests are much closer to each other.

The asymmetry seen in Figure 5.12 is reversed in Figure 5.13 due to the inverse re-

lationship between standard deviation for the Normal and concentration for the von

Mises distributions. This provides further evidence that the asymmetry is an arte-

fact of the parameter limits. Interestingly, further increases in concentration beyond

approximately +0.9 appear to make no further change to sensitivity. This is due

to the discretisation of the surface, meaning that further increases in concentration

result in the same single grid cell of maximum probability. The variation shown in

the results between increases of +0.9 and +1.0 suggest that further Monte Carlo

simulations might be necessary in this bivariate case in order to better approximate

the asymptotic behaviour of the test.

5.3.1.5 Discussion

The approximation to the asymptotic p-value given for the bivariate KS test behaves

in a very similar way to that for the univariate KS test. This suggests that the

extension of the KS test from the univariate version is indeed consistent, and both

tests are comparable in terms of power for application. This begs the question of

whether a similar extension can be applied to Kuiper’s test.

For the proposed bivariate Kuiper’s test, Figures 5.12 and 5.13 show very different

behaviours to those shown for the univariate Kuiper’s test in Figures 5.7, 5.9 and

5.10. However, the MC results are similar to those shown by the MC estimates for

the bivariate KS test in Figure 5.11. For both sets of bivariate test statistics, the
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Figure 5.12: Power of the bivariate Kuiper’s test to (a) percentage changes in mean and
(b) relative changes in standard deviation for the bivariate Normal distribution, at a 1%
level. Lines represent mean changes in the y direction. Triangles represent mean changes
in the x direction.
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Figure 5.13: Power of the bivariate Kuiper’s test to (a) percentage changes in mean and
(b) relative changes in concentration for the bivariate von Mises distribution, at a 1%
level. Lines represent mean changes in the y direction. Triangles represent mean changes
in the x direction.
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MC p-value estimates are very conservative compared to the asymptotic p-value

approximations. However, the power curves are very steep, resulting in narrow

regions of inconclusive test results and definitive thresholds for significance.

The wide MC power curves observed for both bivariate tests may be explained

in a number of ways. For instance, the increased dimensional complexity of the

bivariate data is not explicitly taken into account in the bivariate extension of the

tests and may result in the greater conservatism. It is conjectured that larger

changes in mean and standard deviation (or concentration) are required to develop

statistical evidence of a significant difference between two bivariate distributions.

Equally, by considering the maximum statistics over the four EDF probabilities,

the tests inherently account for larger differences between the distributions, making

it more difficult to develop statistical evidence against the null hypothesis when

distributions are similar.

As suggested in the previous section, the results may also not reflect the true be-

haviour of the bivariate test statistics, and simply more MC simulations may be

required in the bivariate case to capture the added complexity. A brief investigation

into increasing the MC runs ten-fold (to 10,000) appeared to have limited impacts

on the sensitivity results. However, since the bivariate extension at least squares

the complexity of the univariate problem, perhaps at least 100,000 MC simulations

would be required to adequately capture the true behaviour of the test statistics.

The similarities in MC p-value sensitivity shown between the bivariate tests sug-

gest that the proposed bivariate extension of Kuiper’s test is a reasonable circular

extension of the bivariate KS test. Unfortunately, however, more insight is required

to understand whether the extension from the univariate Kuiper’s test is valid. Fur-

ther research is required to develop an approximation to the asymptotic behaviour

of the proposed test statistics. It may be possible that an approximation based

on the consistent exponential form derived for the KS tests would yield similar

relationships between the univariate and bivariate cases, which would become an

important consideration in application.
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5.3.2 Joint Directional Wind Response Distributions

5.3.2.1 KS Style Tests

Table 5.6 shows the results of the bivariate KS test comparing the discrete observed

directional wind response distributions from both case studies. Across Flea Creek

Valley, all of the wind response pairs can be considered statistically different, with

very small asymptotic p-values. As discussed previously, the MC p-value estimates

are less conservative than the bivariate asymptotic approximations, and this is

evident in Table 5.6.

As in the univariate case, the lowest D
(2)
N and Z

(2)
N values and largest asymptotic

p-value are given by FCV2, which visually shows the most similarities between

the two years (Figures 4.17 and 4.18). The MC p-value for the Z
(2)
N statistic is

also reasonably large, suggesting less evidence of significant difference between the

directional wind responses observed in 2007 and 2014.

Table 5.6: Bivariate KS test results for directional wind response distribution pairs from
FCV and the NAC.

N D
(2)
N Z

(2)
N P

Z
(2)
N

PMC

D
(2)
N

PMC

Z
(2)
N

Flea Creek Valley

FCV1 1,333 0.3309 11.84 4.45×10−112 0.0002 0.0002

FCV2 308 0.2931 5.02 3.79×10−18 0.0001 0.1166

FCV3 1,071 0.4574 14.94 1.79×10−181 0 0

FCV4 1,001 0.4617 14.57 2.10×10−172 0 0

National Arboretum Canberra

NAC1 27,494 0.6173 102.18 0 0 0.0001

NAC2 15,197 0.2936 36.19 0 0.3067 0.2923

NAC3 22,662 0.7461 112.24 0 0 0

NAC4 20,598 0.7148 102.53 0 0 0

For the comparison of directional wind response at the NAC, similar patterns are

again shown between the bivariate and the univariate test results. All asymptotic p-

values for the Z
(2)
N statistic are found to be zero in this case, but the less conservative

MC p-value estimates show very high values for NAC2. This strongly indicates that

this pair are not significantly different, suggesting that the directional wind response

observed at the NAC is the same on the leeward slope as on the 45◦ leeward slope
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within the pines. Visual inspection of the distributions in Figure 4.19 confirms the

similarities between the distributions.

Table 5.7 shows the results of the bivariate Kuiper’s test between directional wind

response distributions, which are again consistent with the previous bivariate and

univariate KS and Kuiper’s test results. Across Flea Creek Valley, the valley floor

pair (FCV2) shows the smallest statistic values, and gives a very large MC p-value

for the k(2) statistic, suggesting that the pair of distributions are not significantly

different. Similarly, a large p-value is found for NAC2 using k(2), alongside small

values for all three test statistics, again suggesting that this is the only pair of the

four to not show evidence of significant difference. As consistent with Table 5.6,

non-zero p-values for the k(2) statistic are also shown for FCV1 and NAC1.

Despite the conclusive results shown for the k(2) statistic, the p-values for both V
(2)
N

and V
(2)∗
N are all zero. In analysing the sensitivity of these newly proposed statistics,

it was found in Section 5.3.1 that k(2) was the most conservative and so least likely

to determine two distributions as significantly different, thus concurring with the

results shown in Table 5.7.

Table 5.7: Bivariate Kuiper’s test results for directional wind response distribution pairs
from FCV and the NAC.

V
(2)
N V

(2)∗
N k(2) PMC

V
(2)
N

PMC

V
(2)∗
N

PMC
k(2)

Flea Creek Valley

FCV1 0.5823 2.7525 1171 0 0 0.001

FCV2 0.5204 1.1767 147 0 0 0.6423

FCV3 0.7333 3.1637 1100 0 0 0

FCV4 0.6728 2.8048 818 0 0 0

National Arboretum Canberra

NAC1 1.0959 23.9658 1.88×106 0 0 0.0324

NAC2 0.5042 8.2086 1.42×105 0 0 0.1399

NAC3 1.4740 29.2914 1.08×106 0 0 0

NAC4 1.4081 26.6852 9.07×105 0 0 0

5.3.2.2 Non-parametric Surface Comparison Tests

To compare the estimated continuous distributions, this study also considers two

non-parametric statistics based on the squared difference between the two estimated
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surfaces, f̂1(Xst) and f̂2(Xst), where Xst = {(φs, ψt) : s, t = 1, ...360}. In the esti-

mation of the quasi-continuous surface, each point on the realised 360×360 grid

had a calculated proportion value such that the entire surface sums to unity. The

grid points were therefore taken to be the data points in these comparison tests.

In order to compare two estimated surfaces, the biases in each estimate should be

controlled for. In this research, this is done through fixing the smoothing parameter

of the thin-plate-smoothing spline used to estimate the quasi-continuous surfaces

f̂1(Xst) and f̂2(Xst).

The first test statistic is defined by Wang and Ye [2010], as the mean squared

difference between the two surfaces;

TW =
1

c2

c∑
s,t

{
f̂1(Xst)− f̂2(Xst)

}2

, (5.21)

where c = 360, the number of quasi-continuous data points in each dimension.

Under the null hypothesis, H0, it is assumed the two surfaces, f̂1(Xst) and f̂2(Xst),

are drawn from the same distribution. Under this assumption, a third smooth

surface, f̂(Xst), can be defined as the surface estimated using both datasets com-

bined. In practice, this is constructed by combining the proportions of data at each

point on the discrete 16×16 grid, then estimating the continuous combined surface,

f(Xst). The second statistic, developed by Bowman [2006], is analogous to analysis

of variance by forming a function of the squared difference between each individual

smooth surface and this combined null surface,

TB =
1

ν2

∑
k

c∑
s,t

{
f̂k(Xst)− f̂(Xst)

}2

, (5.22)

with ν2 = 1
d2

∑
k

∑d
i,j

{
Yk(Xij)− f̂(Xij)

}2

, where d = 16 is the number of observed

data points in each dimension, thus scaling out the effect of error variance.

Establishing theoretical limit distributions of these statistics under the null hypoth-

esis has been shown to be difficult and slow [Wang and Ye, 2010], and no asymptotic

results are available. Therefore an empirical approach is taken by using a bootstrap

algorithm to produce a Monte Carlo style scheme similar to those used for the KS
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and Kuiper’s tests. The bootstrap procedure is given in Appendix D. In order to

form a distribution of the test statistics TW and TB under the null hypothesis, the

two observed datasets are combined under the assumption that both samples are

drawn from the same population. The bootstrap is performed on the residuals taken

between each of the two individual samples and the estimated quasi-continuous sur-

face from the combined dataset. These pairs of bootstrapped residuals are added

onto this combined surface to generate pairs of bootstrapped samples. The sample

pairs are then used to calculate the two test statistics under the null hypothesis.

For this study, the application of the above bivariate statistical comparison tests

was conducted in MATLAB R© [2016] with code developed using, amongst others,

the bootstrp function. Further details can be found in Appendix D.

Table 5.8 shows the MC p-value results of the TW and TB statistical comparison

tests applied to the estimated quasi-continuous directional wind response surfaces

for FCV and NAC. Table 5.8 shows a third estimation method labelled ‘Truncated

TPS’. By defining a cut-off across the TPS surfaces such that very small values

were assumed zero, potential bias in the test statistics could be mitigated against.

The cut-off across the TPS surfaces was taken to be 0.00005; any value smaller than

this is forced to zero. This cut-off was chosen through consideration of the average

surface value, and using the visual surfaces as a guide.

Table 5.8: Bivariate squared difference test results (p-values) for directional wind response
distributions pairs from FCV and the NAC.

Cubic TPS Truncated TPS
TW TB TW TB TW TB

Flea Creek Valley

FCV1 0.946 0.825 0.235 0.521 0.013 0.165

FCV2 0.996 0.946 0.865 0.920 0.272 0.465

FCV3 0.540 0.576 0.005 0.148 0 0.010

FCV4 0.567 0.612 0 0.119 0 0.037

National Arboretum Canberra

NAC1 0.415 0.542 0 0.044 0 0.044

NAC2 1 1 1 0.982 1 0.992

NAC3 0.201 0.422 0 0.050 0 0.065

NAC4 1 1 0.999 0.988 0 0.035

Of note is that, across all estimation methods and both tests, the pairs FCV2 and

NAC2 give the largest p-values. This suggests that despite the statistical techniques,
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the least evidence against the null hypothesis is developed for these pairs, and so

the distributions are not considered significantly different. This is consistent with

the results shown for the bivariate KS and Kuiper’s test analysed in the previous

section. However, aside from this, Table 5.8 suggests that the applied statistical

techniques can have considerable impacts on the results.

Under cubic estimation, all comparison pairs across both case studies are found to

be not significantly different for both the TW and TB test statistics. Cubic approxi-

mation exactly interpolates the data points without allowing for noise, and so does

not produce a smooth surface. When comparing two surfaces, it is difficult for both

statistical tests based on the squared difference between the estimated surfaces to

build statistical evidence against equality. This is because all distributions con-

structed under the null hypothesis will exhibit high levels of variation across the

entire surface, and so distinct modal patterns are difficult to identify.

When the TPS spline is applied to the directional wind response distributions, it is

possible to differentiate between the different comparisons and infer more complex

relationships. At Flea Creek Valley, FCV1 and FCV2 continue to show very high

p-values for both tests, thus continuing to suggest no significant difference between

the estimated directional wind response between the two years. For FCV3 and

FCV4, the p-values for the TB test remain relatively high and so again suggest no

significant difference between the surfaces, but the TW statistic gives small p-values

which suggest that the pairs are significantly different between the sample years.

This contradictory result highlights the differences between the construction of the

test statistics. By taking the difference between each surface and the combined

surface, the TB statistic appears to be less sensitive to changes in distributions as

peaks are averaged out in the calculation of the combined surface. This makes it

harder for the test to develop statistical evidence against the null hypothesis. This

is also evident in the NAC results, where p-values for TB are larger than those

for TW for NAC1 and NAC3, where the TW results suggest that the surfaces are

significantly different.

When the TPS spline approximation is truncated, differences between the surfaces

become more obvious so both TB and TW are able to identify shifts in individual
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modes across the distributions. In this form, the results for both bivariate tests

agree with those shown using the bivariate and univariate KS style tests on the

discrete data. In this case, FCV2 and NAC2 stand out as the pairs with the highest

p-values suggesting no significant difference between the distributions. However, it

is still evident that TB is less sensitive than TW . At the 1% significance level, all

other pairs are still shown to be significantly different using TB, while for TW FCV1

gives a p-value slightly above the threshold.

5.3.2.3 Discussion

Across Tables 5.6 and 5.7, only the wind direction pairs of FCV2 and NAC2 were

consistently shown not to have sufficient evidence to support the rejection of equal-

ity. As in the univariate case, this suggests that directional response distributions

across most of FCV and the NAC have changed significantly due to the vegetation

regrowth and changing vegetation and topographical conditions. The test results

from the NAC, as well as visual inspection of the directional wind response dis-

tributions in Figure 4.19, again reinforce the existence of vegetation and aspect

thresholds for the generation of wind reversal regions. This research indicates that

these wind reversals persist beneath the canopy where in fact more turbulent be-

haviours would be expected to dominate wind flow [Finnigan, 2000, Belcher et al.,

2012].

In contrast to the univariate case, it was shown in Section 5.3.1, that the MC p-value

estimates for the bivariate KS style tests are considerably more conservative. This

inverse feature of the bivariate tests is evident in the results shown in Tables 5.6 and

5.7 where the asymptotic p-values are zero or very small compared to those given

by the MC estimates. Table 5.7 also highlights that the k(2) statistic is expected

to be more conservative than the other proposed bivariate Kuiper statistics, again

concurring with the findings in Section 5.3.1.

For the bivariate mean squared difference based statistical tests applied to the esti-

mated quasi-continuous directional wind response distributions, the surface approx-

imation method had a clear effect on the test results. Under cubic approximation,

all distributions could not be considered significantly different due to the high level
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of variation across the interpolated surfaces. Although very computationally effi-

cient, it is unlikely that this method would be utilised to estimate directional wind

response due to its susceptibility to noise, highly likely to be present in wind data.

The TPS spline provided much smoother and more reasonable approximations to

the true underlying directional wind response shown in Figures 4.17, 4.18 and 4.19,

and allowed a better understanding of the impacts of using different test statistics

in the comparisons shown in Table 5.8. The TB statistic was perhaps not sensitive

enough to identify shifts in wind direction modes since they were averaged out in

the comparison of each surface with the combined dataset. However, using the

TPS suggested that FCV1 and FCV2, as well as NAC2 and NAC4 were not sig-

nificantly different. At FCV1, wind reversal modes were dominant in both years

which suggests that the increased vegetation in the area has not changed the gen-

eration of wind reversals on the leeward slope. For NAC4, the test result is less

convincing against the visual representation of the distributions (Figure 4.19) since

the off-diagonal mode present on the 45◦ leeward slope appears to move back to the

diagonal on the cross slope within the pines.

Finally, when the TPS is truncated to avoid bias toward small estimation values,

the TW results agree with those given by the KS style tests, while the TB p-values

remain considerably larger. Using the truncation allows the tests to distinguish

between individual modes and identify when they have shifted. As discussed earlier,

the construction of the TW statistic allows this test to be more sensitive to such

changes.

5.4 Concluding Remarks

To better interpret the results of non-parametric statistical comparisons, it is impor-

tant to understand the power of the available tests against a variety of alternatives.

By considering the power of the KS and Kuiper’s tests against changes in mean and

variance, or concentration, of both the Normal and von Mises distributions, it was

shown that both tests exhibit steep power curves under all conditions. However,

thresholds for significance determined from these power curves were dependent on
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the form of the test statistic and the method of determining significance. In prac-

tice, this allows researchers to ensure the appropriate application of either the KS

or Kuiper’s test. Regions of marginal power, resulting in inconclusive test results,

are defined in terms of percentage changes in mean and relative changes in spread.

Although it may be difficult to determine when these conditions occur, practitioners

should avoid applying the tests under such circumstances.

For bivariate data, the extended KS test is also shown to be powerful against

changes in mean and standard deviation above defined thresholds. Although the

test becomes more conservative using Monte Carlo methods to approximate the

p-value of the test statistic, it does provide a much more conclusive threshold for

significance than the asymptotic approximation. Similar behaviour is observed for

a proposed bivariate extension of Kuiper’s test, suggesting that the proposition is

a reasonable extension of the bivariate KS test to account for circularity.

Further research is required to develop an understanding of the asymptotic be-

haviour of the proposed bivariate Kuiper’s test, but a caution is provided in the

analysis of the univariate version. The power curve of the univariate Kuiper’s test

revealed extremely high false positive rates when comparing identical distributions

using an asymptotic approximation of the test statistics’ behaviour. Although this

behaviour occurred outside the specified region of validity for this approximation,

similar approximations in the bivariate case may also suffer from the same issue.

Application of these statistical comparison tests suggests that both conditional uni-

variate wind direction distributions and bivariate directional wind response dis-

tributions were clearly impacted by vegetation and topography across both case

studies. Vegetation regrowth had a significant impact at FCV, but visually similar

behaviours could still be identified. On the valley floor, where there was considerable

variation in wind direction, perhaps caused by persistent within-canopy turbulence

or the impacts of local topography, the vegetation regrowth appeared to have lim-

ited impact on the distribution of wind direction. At the NAC, the introduced

vegetation in the pine stand had a clear and structural impact on wind direction,

while changing topography within the pine stand also impacted the distribution of
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wind direction. The shift in the wind direction mode experienced under WNW pre-

vailing winds clearly indicated that vegetation and aspect were important factors

in the generation of recirculation or wind reversal regions within the vegetation.

Given these findings there is a clear need to better characterise the spatial variation

in wind direction distributions. The empirical identification of conditions for gener-

ation of different wind mechanisms will play a significant role in progressing towards

a parametric model for wind direction distributions that can be used to better in-

corporate the spatial variability of the inputs in fire spread models, particularly

across complex landscapes.

The aim of this chapter is to compare non-parametric statistical tests, and so the

results of each test discussed in the chapter are considered independently. However,

the tests may be applied simultaneously to each set of wind direction data (uni-

variate discrete, bivariate discrete and bivariate quasi-continuous). When applying

more than one test to the same set of data it is easier to build evidence to reject the

null hypothesis, and so a statistical correction must be applied to the significance

level. One such technique is the Bonferroni correction which divides the desired

significance level by the number of tests applied [Bonferroni, 1936, Dunn, 1959,

1961]. For instance, for the univariate and bivariate discrete datasets, both the KS

and Kuiper tests are applied so an adjusted significance level of 0.01/2 = 0.0050

can be used. For the quasi-continuous estimated surfaces, two non-parametric tests

are applied, each under 3 different estimation methods, and so the adjusted sig-

nificance level of 0.01/6 = 0.0017 may be used. In all three cases, the application

of a Bonferroni correction does not alter the discussions arising from the results in

this chapter. In fact, for some results, the correction strengthens the conclusions

detailed above.

There are many areas that warrant further investigation, including analysis of the

statistical methods used to estimate and analyse wind direction distributions, and

consideration of which methods are most practically useful in the context of wind

and fire modelling. Further data collection would also be valuable in quantifying

features such as surface roughness across these case studies (and new ones), leading

towards parametrisation of wind models using physical and observable parameters.
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The results and conclusions of these simulation studies are also limited to under-

standing the power of KS style tests under changes to unimodal distributions. Brief

investigations using idealised bimodal distributions were considered by varying the

location and spread of individual modes. Resulting power curves showed very sim-

ilar behaviours to those discussed in this chapter. Further development of this

research would consider the sensitivity of KS style tests to changes in more com-

plicated distribution structures, such as simultaneous changes to multiple modes or

simultaneous changes to mean and variance, or concentration.
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Chapter 6

Evaluation of Wind Field Modelling over Complex Terrain

For effective modelling of fire spread, input variables need to be accurately rep-

resented across a range of relevant spatial scales. This is particularly true for

wind. Although it is known that broad-scale weather interactions have consider-

able impacts on the spread of large bushfires through mechanisms such as synoptic

wind changes or the formation of thunderstorms, there are numerous studies on

fire behaviours driven by phenomena at scales of only 10s to 100s of metres within

the landscape and close to the surface [e.g. Sharples et al., 2012, Simpson et al.,

2013]. With emerging research into the dynamics of extreme fire behaviour and

the variability of fire spread, it is increasingly important for wind models used in

operational fire prediction to capture areas of complex flow across rugged terrain.

Typically, wind for bushfire modelling is realised at a height of 10m or 20ft. Within

the context of bushfire modelling uncertainty discussed in Chapter 2, an evaluation

of weather predictions used for current operational models is vital to understanding

the uncertainty of model outputs used within the fire management process. How-

ever, meteorological datasets observed at spatial resolutions relevant to extreme fire

behaviour, particularly near-surface winds, are rare.

This chapter first considers the evaluation of a diagnostic wind model that is cur-

rently used operationally within state-of-the-art fire modelling frameworks across

Australia and the USA. In contrast to previous evaluation studies, this research

considers how the traditional deterministic approach to wind modelling might be

improved through ensemble-style application, providing outputs that can be rep-

resented in probabilistic terms. The probabilistic understanding of wind fields
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across complex terrain developed throughout this thesis can complement the current

physics-based deterministic models. In particular, probabilistic representations of

wind model outputs allow for a discussion of uncertainty in the context of ensemble-

based fire prediction frameworks, leading to a better understanding of fire prediction

uncertainty.

As wind direction modelling is analysed across complex landscapes, wind speed as a

key driving force for surface fire spread cannot be ignored. In the current suite of op-

erational fire spread models, wind speeds measured in the open environment (above

the vegetation layer) are modified to represent wind speeds at ‘mid-flame’ height

using adjustment factors. In general, these adjustment factors assume constant

vertical wind speed profiles throughout the vegetation layer. However, empirical

studies have shown that wind speeds beneath canopies can vary significantly with

height above ground as well as with forest type and prevailing wind speed.

The second section of this chapter considers the variability of wind speed within

vegetation across complex terrain. This study uses the data collected for this re-

search over complex terrain to evaluate empirical wind reduction profiles developed

for a number of forest types in areas of flat terrain. Through better understanding

of wind speed reduction beneath the canopy across landscapes from mountainous

ranges through to flat plains, wind speed reduction models for bushfire spread pre-

diction can be adapted to incorporate the variation observed in vertical wind speed

profiles within the vegetation layer.

The research presented in this chapter has been summarised in the following journal

article and conference proceedings;

Quill, R., Sharples, J.J., Sidhu, L.A., Wagenbrenner, N. and Forthofer, J. (In

Prep) A wind direction evaluation of a diagnostic wind model over complex terrain

in the context of ensemble-based fire spread modelling.

Quill, R., Moon, K., Sharples, J.J., Sidhu, L.A., Duff, T. and Tolhurst, K. (2016)

Wind speed reduction induced by post-fire vegetation regrowth. Proceedings from

the Bushfire and Natural Hazards CRC & AFAC conference, Brisbane, 30 Aug - 1

Sep 2016.
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6.1 Predicted Wind Direction using a Diagnostic Wind Model

6.1.1 Background

As discussed in Chapter 2, mesoscale Numerical Weather Prediction (NWP) is

accurate and operational for real-time weather prediction, but the horizontal reso-

lutions (from 4km up to 25km) are not sufficient to resolve underlying terrain for

surface fire behaviour in an operational context. In addition, Butler et al. [2015]

highlight the limited nature of traditional broad-scale weather prediction in under-

standing the variability of wind fields across complex terrain; indicating the need

for downscaling models to better predict meteorological variables at finer spatial

resolutions. As an example of one such downscaling model, WindNinja is currently

used operationally in Australia within the state-of-the-art fire modelling framework

Phoenix Rapidfire [Forthofer et al., 2014b, Tolhurst et al., 2008]. As a diagnostic

model, WindNinja is generally preferred for operations (as opposed to prognostic

approaches of full computational fluid dynamics models) due to the computational

constraints on producing useful, fine-scale wind model outputs in real or near-real

time [Forthofer et al., 2014b].

In order to understand the uncertainty of these downscaling models, evaluation of

their performance must be completed in comparison to observed wind dynamics.

However, it is often noted throughout the literature [e.g. Butler et al., 2015] that

there is a lack of wind data observed across complex terrain for effective evaluation

of wind modelling approaches used in operational fire modelling. Key wind data

sources have previously included Askervein Hill [e.g. Forthofer and Butler, 2007,

Lopes, 2003], Tighvein Hill [e.g. Vosper et al., 2002, Burton et al., 2006] or Bol-

und Hill [e.g. Berg et al., 2011]. These data represent landscapes that, although

real, are simplistic in their topographical features, e.g. flat plains surrounding a

single hill with limited vegetation. While wind data have been collected from more

complex terrain, i.e. within mountain ranges, to identify important landscape-scale

wind flow features such as mechanical channelling through valleys [e.g. Gross and

Wippermann, 1987, Whiteman and Doran, 1993, Weber and Kaufmann, 1998], data

collected at finer scales relevant to fire behaviour and spread across mountainous

landscapes are rare.
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A visual comparison of predicted fire spread using output from a full computa-

tional fluid dynamics wind model with that from a mass-consistent wind field

model showed the stark differences between the two models on the leeward side

of Askervein Hill [Forthofer et al., 2014a]. By accounting for conservation of mo-

mentum in the wind field, the fire spread was predicted to significantly reduce in

speed on the leeward slope, while using the mass-consistent wind model showed

little reduction in rate of spread.

Further to this study, the authors conducted a comparison of mass and mass-and-

momentum conserving wind field models with observed wind data from Askervein

Hill and Waterworks Hill, the latter of which exemplified “slightly more complex

topography” [Forthofer et al., 2014b, page 973]. Both cases exhibit limited vege-

tation cover across the study regions. The results of this comparison showed that

although both the mass and mass-and-momentum conserving wind models accu-

rately predicted wind speeds on windward slopes, both models showed the greatest

limitations in the modelling of wind speed and direction on leeward slopes. In fact,

Forthofer et al. [2014b] warned that users of such models should be aware of these

limitations and interpret results cautiously where appropriate.

Butler et al. [2015] introduced a high-resolution dataset collected over yet more

complex terrain but still limited to grasses and low-level brush vegetation. Wagen-

brenner et al. [2016] compared the application of a previous version of WindNinja

(version 2.5.2), a mass-conservation model, against these observations. The im-

provements downscaling models, such as WindNinja, make on broad-scale numer-

ical weather prediction were highlighted, particularly in relation to the variability

of wind speeds experienced across complex terrain [Wagenbrenner et al., 2016].

However, the study reiterated the limitations of the WindNinja 2.5.2 model in pre-

dicting wind speed and direction on leeward slopes. Since this scheme was designed

to account for only mass-conservation across the landscape and not momentum

conservation, which is the cause of features such as recirculation on leeward slopes,

Wagenbrenner et al. [2016] noted that these limitations were to be expected. With

characteristics such as flow separation on leeward slopes being linked to extreme

fire behaviours [Sharples et al., 2012, Simpson et al., 2013] as well as being shown to
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have significant impacts on fire propagation across the landscape, the consequences

of not capturing such wind features are significant in the fire modelling context.

As discussed in Chapter 2, operational wind and fire models are often deterministic

in their nature, while wind fields and fire spread are driven by a range of processes,

many of which are beyond current physical modelling capabilities. To deal with the

gaps between reality and model outputs, we can consider the underlying processes

in terms of probabilistic approaches. While statistical approaches have limitations

and rely upon previous system behaviours (which can include outliers), they are

able to capture the inherent variability of wind and fire across the landscape and

are better suited to emerging ensemble-based fire prediction frameworks.

Specifically, SABRE [Twomey and Sturgess, 2016] and FireDST [French et al.,

2014d], incorporate probabilistic approaches to fire modelling through variation of

input variables across distributional structures. However, these frameworks account

for variability in input parameters in relatively simplistic terms, assuming standard

distributional behaviour, such as Normal, Uniform or point processes, around a de-

terministically predicted mean value. Wind fields, as input to fire spread prediction,

have been recast in a probabilistic light in a limited number of studies [e.g. Sharples

et al., 2010]. Throughout these studies, and within the research presented in this

thesis, the variability of wind direction at a given point is consistently shown to not

be well represented by a Normal or Uniform distribution. Moreover, the structure

of wind direction distributions can vary considerably across the landscape. How-

ever, there have been very few (if any) studies into the characterisation of this

spatial wind direction variability and the parameterisation of such distributions

using physical variables.

The aim of this study is to evaluate the diagnostic wind model WindNinja in the

context of bushfire prediction over areas of complex terrain and vegetation using the

data collected over Flea Creek Valley in 2014. By considering wind fields in prob-

abilistic terms, this study also aims to advance discussions of uncertainty in wind

and fire modelling, and progress towards spatial characterisation of wind direction

distributions for input into ensemble-based fire prediction frameworks.
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6.1.2 Wind Direction Data and Modelling

6.1.2.1 Winds over Flea Creek Valley in 2014

In this study, the 1-minute wind direction data collected between July and Decem-

ber 2014 across Flea Creek Valley are used to evaluate the diagnostic wind model,

WindNinja. To account for the accuracy of the instrumentation, data points with

observed wind speeds less than 0.4ms−1 were excluded from the analysis.

In Chapter 3, Figure 3.6 indicates the distribution of wind directions observed at

the eleven weather stations across the valley. In summary, wind data collected from

the ridge top stations on both the western and eastern sides of the valley (B1, B2

and B11) indicate the most frequently observed WNW prevailing wind direction.

Less frequent easterly prevailing winds were also observed at all three sites. On the

east-facing slopes of the valley (B3, B4 and B5), observed dominant easterly wind

directions indicate the prevalence of wind reversals when these slopes were leeward

to the WNW prevailing winds.

On the valley floor (B6 and B7), observed wind directions were more variable than

at other sites but northerly and southerly modes suggest that channelling or thermal

flows may have dominated wind movement through this region. Finally, on the west-

facing slope (B8, B9 and B10), north-westerly winds indicate a northerly bias in the

winds when this slope was windward to the WNW prevailing winds. Channelling

indicated on the valley floor may have induced this effect on the eastern slopes,

but local topographical features such as nearby gullies could have also caused this

deviation from the prevailing wind direction.

Figure 6.1 shows the average hourly wind speed and direction for 0300h, 0900h,

1500h and 2100h at each site across the valley. As expected, wind speeds increased

during the afternoon, with wind directions at the north-western ridge top station

(B1) rotating from NE overnight (0300h) through to NW in the afternoon (1500h).

This is echoed by a similar regional wind direction change observed at Canberra

Airport. This change of direction was coupled with the increase in wind speed

across the valley. However, the higher wind speeds were only felt along the valley
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floor and on the west-facing (or windward) slope of the valley. The east-facing

leeward slope winds remained relatively low during the afternoon period.
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Figure 6.1: Observed average hourly wind directions at each site across FCV, at (a) 0300h,
(b) 0900h, (c) 1500h and (d) 2100h.

Despite the almost 180◦ change in prevailing wind direction measured at B1, the

remaining stations showed relatively stable wind directions. Each other station ex-

perienced consistent wind directions throughout the night and day, suggesting that

diurnal effects had little impact on wind flow beneath the canopy across the valley.

Most prominently on the valley floor (B6 and B7), northerly average flows agreed

with the dominant northerly modes shown in Figure 3.6, with average northerlies

experienced throughout the day and night. However, no strong average southerly

wind directions were shown across the 24 hours. It appears that the southerly mode

shown at B7 in Figure 3.6 manifested as more westerly wind directions around 0900h

(Figure 6.1(b)). This suggests that channelling through the valley (forming the

north and south modes shown in the wind rose for B7) was mechanically forced due
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to frictional gradients occurring at short time scales, rather than thermal gradients

induced as part of a diurnal cycle.

It is also clear that local topography had a significant impact on wind direction at

specific sites. For instance, the south-western ridge top station (B2) consistently ex-

perienced SW winds, even when B1 (representative of the prevailing wind) recorded

NE winds at 0300h. Also, the southerly winds experienced at B5 on the east-facing

valley slope were likely due to the localised steep south-facing slope on which the

station was situated. In this case, very localised mechanical flows may have been

evident as the winds shifted to flow eastwards overnight.

On the east-facing slope of the valley, B3 and B4 showed consistent easterly wind

directions up the slope of the valley wall. The easterlies experienced at 1500h, when

the prevailing winds were westerly, indicate the existence of a recirculation region

within the canopy, concurring with Figure 4.16 as well as analyses conducted by

Sharples et al. [2010] which showed the prevalence of leeward slope eddies.

Finally, on the west-facing slopes (B8, B9, B10 and B11), consistent average westerly

winds were observed throughout the day and night. This again concurs with the

wind roses shown in Figure 4.16, but also shows that even when easterlies were

experienced at B1 on the western ridge top, westerlies were recorded on the eastern

slope. This identifies further potential for a recirculation region on the leeward

west-facing slope under easterly prevailing winds, i.e. the converse to those shown

at B3 and B4 on the east-facing slope under westerly winds at 1500h.

6.1.2.2 Traditional Deterministic Wind Modelling

The diagnostic wind model WindNinja was used to predict the wind field across Flea

Creek Valley. Two solver options were used within the model; a mass conserving

solver (packaged within WindNinja 2.5.2, referred to herein as the ‘native solver’),

and a beta version of a mass-and-momentum conserving solver (later modified and

released within WindNinja 3.0.0, referred to herein as the ‘momentum solver’).

Input parameters for the model runs included a surface roughness set to ‘Trees’,

input and output winds at 5 metres above the surface and 1ms−1 average domain

wind speeds. Modelled wind directions were adjusted to align with observations
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of WNW (298◦) winds at B1 on the western ridge top. Using a domain averaged

wind speed of 1ms−1, modelled wind speeds at B1 were approximately 2ms−1 for

WindNinja with both solvers.

The wind field prediction is defined at 5 metres above the clear ground or any

vegetation layer, whereas wind observations were taken at 5 metres above the ground

within the approximately 15-metre-high vegetation layer. To account for this, it is

common to adjust wind speeds using wind reduction factors which are discussed

later in this chapter [e.g. Andrews, 2012, Moon et al., In Press]. However, for fire

modelling applications wind directions are not transformed beneath the canopy.

Therefore, the wind directions predicted at 5 metres above the canopy are taken to

indicate the wind directions predicted beneath the canopy.

Outputs from both models were analysed in ArcGIS [ESRI, 2011] to generate the

5-metre predicted wind fields shown in Figures 6.2 and 6.3. Table 6.1 shows the

wind speed and wind direction outputs given by WindNinja with native solver and

with momentum solver for each of the station sites. Using WindNinja with native

solver (Figure 6.2), the predicted wind field was relatively smooth across the valley,

maintaining a dominant WNW direction across both the leeward and windward

slopes, as highlighted in the predictions given in Table 6.1. Wind speeds were

highest across the western and eastern ridge tops, with very low speeds recorded

on the valley floor.

Using the momentum solver (Figure 6.3), the predicted wind field showed some

subtle variations. These variations were most prominent on the leeward slope where

small lateral circulations were shown around the gully features near B2 and B5.

Larger-scale channelling down the valley (shown by the northerly bias in predicted

wind directions in Table 6.1) was strongly enhanced with the additional momentum

conservation conditions. Wind speeds were again highest across the ridge tops, with

the addition of some variations around small topographical features. In addition

to the fastest winds observed at B1 and B2 on the western ridge top, wind speeds

were shown to be much faster across the eastern windward slope around B10 and

B11 than on the western leeward slope.
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Figure 6.2: WindNinja with native solver prediction over FCV, using domain averaged
wind speeds of 1ms−1.
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Figure 6.3: WindNinja with momentum solver prediction over FCV, using domain aver-
aged wind speeds of 1ms−1.
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Table 6.1: WindNinja with native solver and WindNinja with momentum solver wind
direction (WD, ◦) and wind speed (WSp, ms−1) predictions for each site across FCV.

Native Solver Momentum Solver
WD WSp WD WSp

B1 298 WNW 1.99 298 WNW 2.28
B2 299 WNW 1.94 303 WNW 2.08
B3 298 WNW 1.25 316 NW 0.86
B4 298 WNW 1.25 317 NW 0.96
B5 312 NW 0.93 48 NE 0.07
B6 322 NW 0.60 9 N 0.97
B7 331 NNW 0.55 359 N 1.13
B8 309 WNW 0.54 344 NNW 1.16
B9 300 WNW 0.58 341 NW 1.28
B10 300 WNW 0.60 335 NNW 1.48
B11 297 WNW 1.03 313 NW 1.91

6.1.2.3 Ensemble Approach to Wind Modelling

For a comparison between observed wind direction distributions and a probabilistic

representation of WindNinja, predicted unconditional wind direction distributions

were constructed by running WindNinja with the momentum solver in an ensemble-

style framework. Since the momentum solver forms the next generation of wind

models used operationally with fire prediction, the native solver was not analysed

within this framework.

Due to the deterministic nature of the model, it was run once for each of the wind

directions relating to the 16 points of the compass to generate a look-up table for

the modelled wind directions at each of the eleven sites across the valley given the

wind direction at the ridge top station, B1. This results in a 16-by-11 look-up table,

or wind library. Using the 1-minute data from B1 throughout the study period i.e.

July to December 2014, this look-up table was cross referenced at each time point

in order to construct expected frequency distributions of wind directions for each

site across Flea Creek Valley. These predicted wind direction distributions were

then compared to the observed unconditional wind direction distributions at each

station site.
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6.1.3 Evaluation Results

6.1.3.1 Deterministic Prediction

Figure 6.4 shows the observed conditional wind direction distributions at B4 on

the east-facing slope, B7 on the valley floor, and B8 and B11 on the west-facing

slope, for a prevailing wind speed threshold (T ) of 0ms−1 and WNW wind direction

measured at B1. Predictions from Table 6.1 are shown in red (native solver) and

green (momentum solver). For all stations, Table 6.2 gives the proportion of the

observed distributions that agree with each model prediction for increasing wind

speed thresholds (T ), which is taken to be the number of observations in the pre-

dicted segment divided by the total observations for the time period. In general,

the percentage agreements are low due to the deterministic nature of the predic-

tions; the single model outputs are not capable of capturing the variability of the

distributions observed in Figure 6.4.

Table 6.2: Proportion of agreement between predicted wind direction (as compass point)
and observed wind direction distribution at each site across FCV, conditional on observing
a wind direction of WNW, and a minimum wind speed of T at B1.

Native Solver Momentum Solver
T 0.4ms−1 2ms−1 4ms−1 0.4ms−1 2ms−1 4ms−1

B1 WNW – – – WNW – – –
B2 WNW 0.1892 0.2070 0.1561 WNW 0.1892 0.2070 0.1561
B3 WNW 0.0321 0.0177 0.0210 NW 0.0229 0.0143 0.0126
B4 WNW 0.0173 0.0134 0.0095 NW 0.0370 0.0165 0.0143
B5 WNW 0.0228 0.0123 0.0000 NE 0.0718 0.0498 0.0141
B6 NW 0.0932 0.0566 0.0462 N 0.0850 0.0657 0.0838
B7 NW 0.1348 0.1161 0.0898 N 0.1802 0.1550 0.0898
B8 NNW 0.0504 0.0447 0.0120 NNW 0.0394 0.0358 0.0000
B9 WNW 0.2007 0.1830 0.1475 NW 0.0343 0.0140 0.0164
B10 WNW 0.0633 0.0792 0.0561 NNW 0.0333 0.0298 0.0374
B11 WNW 0.1561 0.1747 0.1754 NW 0.0253 0.0283 0.0994

The highest agreements, for model predictions with either solver, are found on the

ridge tops (B2 and B11) and valley floor (B6 and B7) where the models are able

to capture the dominant wind direction modes of the broader scale wind field. On

the western ridge top (B2), there is no difference between the predictions from both

models, whereas on the eastern ridge top (B11) and valley floor (B6 and B7), the

momentum solver prediction shows a bias towards northerly winds. This bias has

little impact on the percentage agreements observed on the valley floor, but the
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(a) (b)

(c) (d)

Figure 6.4: Observed conditional wind direction distributions at (a) B4 on the east-facing
slope, (b) B7 on the valley floor, (c) B8 on the lower west-facing slope and (d) B11 on
the upper west-facing slope, assuming a WNW observed at B1. Predictions shown for
the native solver (red) and the momentum solver (green).

agreement values between observation and prediction at B11 are much lower for the

momentum solver than for the native solver at all wind speed thresholds, i.e. 0.0253

at T = 0ms−1 as opposed to 0.1561 for the native solver. The highest individual

agreement values are found at B2 with T = 2ms−1 where the percentage agreement

reaches above 20%.

For many of the sites (e.g. from B2 to B9), across both the native and momen-

tum solver, the agreement reduces as the wind speed threshold increases. This

suggests that both versions of the model are less capable of predicting wind di-

rection behaviour at higher prevailing wind speeds. The observed wind direction

distributions (shown in Appendix A) indicate that the variance of dominant modes

decreases as wind speed thresholds increase, resulting in a lower percentage agree-

ment if the model does not accurately predict the key mode. However, due to the
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relatively low wind speeds experienced throughout the study period the highest wind

speed thresholds also have smaller sample sizes to construct the distributions for

comparison, somewhat reducing the reliability of subsequent conclusions. Further

model runs with higher domain-averaged wind speed might also indicate different

behaviours when the momentum solver is used (it was found that increased wind

speeds under the native solver had little impact on predicted wind direction).

On the western wall of the valley, leeward to the WNW prevailing winds, neither

model is able to capture the easterly winds observed. As seen in Figures 6.2 and

6.3, the model with either solver predicts predominantly westerly flows across the

entire valley when the prevailing winds are from the WNW. The observations at B3

and B4 clearly show dominant easterly modes at these stations (e.g. Figure 6.4(a)),

suggesting the existence of recirculation within the vegetation on the leeward slope.

The discrepancies between predictions and observations result in extremely low

agreement percentages of 3.2% or less for the native solver, and 3.7% or less for the

momentum solver. With the concentration of modes (or reduction in variance) as

prevailing wind speeds increase, the percentage agreements drop to below 1% and

1.5% for the native and momentum solvers, respectively.

The persistence of leeward slope easterly modes under higher wind speed conditions

suggests that the recirculation is mechanically driven. Analysis of the timing of

similar easterly modes experienced in the same location across the valley by Sharples

et al. [2010] also showed limited diurnal patterns, suggesting that this recirculation

region is in fact an area of persistent leeward slope eddies within the vegetation layer,

rather than thermally driven up-slope winds. While WindNinja with either solver is

not intended to predict within-canopy flows, with no mechanism for wind direction

adjustment these eddies are not captured within fire modelling frameworks.

Finally, on the eastern slope (B8, B9 and B10) agreement percentages are somewhat

larger than for the western slope. The momentum solver predicts a considerable

northerly bias to the flow through the valley, and this appears to have the greatest

impact on the eastern slope. Due to this, the native solver performs better than

the momentum solver at all three sites for all wind speed thresholds. In particular,

at B9 the native solver predicts a WNW direction which captures the edge of the
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mode, while the momentum solver misses the mode by predicting a NW direction,

resulting in agreement values of less than 3% as opposed to values up to 20% given

by the native solver. This dramatic difference is also in part due to the discretisation

of wind direction, i.e. the binning of observations, which results in a considerable

difference in observations between two adjacent bins.

6.1.3.2 Ensemble Prediction

Figure 6.5 shows the discrete observed unconditional wind direction distributions

for B1, B4, B7, B8 and B11 across Flea Creek Valley (with T = 0ms−1), as well

as the predicted wind direction distributions produced using an ensemble-style ap-

plication of WindNinja with the momentum solver. On the western and eastern

ridge tops (B1 and B11, respectively), the predictions capture the dominant modal

structures observed at the stations. In particular, at B1 the model captures the

dominant WNW prevailing wind directions and the secondary easterly prevailing

wind direction (Figure 6.5(a)). At B11, although a bimodal distribution is pre-

dicted, the modes are very concentrated, covering only single wind direction bins

(Figure 6.5(e)). This lack of variation shown in the predicted wind direction distri-

butions is evident across the valley.

Under ensemble-style prediction, the model generally predicts at least one mode

coincident with the observed dominant wind direction modes at each site. At B3

and B4, in contrast to the deterministic predictions, the predicted distributions

pick up the wind reversal modes, e.g. the dominant easterly mode shown in Figure

6.5(b), while at B9 and B10, the dominant westerly modes are predicted. Through

the valley floor (B6 and B7), the model indicates strong bimodal structures to the

wind direction distributions which are somewhat evident in the observations, but

dampened by considerable variation (e.g. Figure 6.5(c)).

The high variation in the wind directions observed at the valley floor sites reduces

the efficacy of the prediction, but the variation itself may be induced by local

features affecting the wind field which are at higher resolutions than the model

can resolve. For instance, B6 is located on top of a knoll at the bottom of the

valley, which may induce localised flows or eddies which cannot be represented

at the resolution used to predict the wind field (i.e. 90m). This is again evident
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(a)

(b) (c)

(d) (e)

Figure 6.5: Observed (blue) and predicted (red) unconditional wind direction distributions
at (a) B1 on the western ridge top, (b) B4 on the east-facing slope, (c) B7 on the valley
floor, (d) B8 on the lower west-facing slope and (e) B11 on the upper west-facing slope.
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at B8 on the eastern slope (Figure 6.5(d)); observed wind directions are almost

uniform around the compass, whereas the model predicts an approximately bimodal

distribution representative of winds along the valley axis.

Table 6.3 shows the proportion of time that WindNinja with the momentum solver

predicted the same wind direction as observed, or within one or two compass sectors

(i.e. ±22.5◦ or ±45◦). At the western ridge top (B1) the model is very accurate,

consistently predicting wind directions within one sector of the observations. At

the remaining ridge top stations (B2 and B11), as well as on the western slope (B3

and B4) and on the eastern slope (B9), the model predicts wind directions within

the same compass quadrant as those observed (i.e. within ±45◦) over 50% of the

time. These sites show the greatest similarity between the observed and predicted

wind direction distributions.

Table 6.3: Proportion of overlap between predictions and observations at 1-minute time
steps. ‘Overlap’ is taken to be a prediction of wind direction in the same compass sector,
within one sector (or ±22.5◦) or within two sectors (or ±45◦).

Same Sector ± One Sector ± Two Sectors

B1 0.7352 1.0000 1.0000
B2 0.1210 0.3797 0.5396
B3 0.1577 0.4049 0.5812
B4 0.1485 0.4072 0.5843
B5 0.0345 0.1056 0.1706
B6 0.1214 0.3374 0.4674
B7 0.0646 0.1886 0.3184
B8 0.0558 0.1652 0.3051
B9 0.1469 0.3973 0.5768
B10 0.0617 0.2055 0.3699
B11 0.1140 0.3760 0.5843

The proportions of overlap between observed and predicted wind directions are lower

at locations across the valley where greater variation was shown in the observed

distributions (i.e. B5, B7, B8 and B10). Table 6.3 shows an overlap within ±45◦ for

B6 of 47%. At this site, a strong bimodal distribution is predicted, while a secondary

wind direction mode was not strongly observed. The lowest overlap proportions are

shown at B5, with only 17% overlap within two compass sectors. On inspection

of the predicted distribution (not shown here), it appears that the model has not

captured the structure of the observed wind direction distribution, i.e. a dominant

southerly mode is observed while the model predicts a bimodal distribution.
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6.1.4 Discussion

In the pursuit of accurate fire spread and behaviour prediction, the accuracy and

uncertainty of model inputs must be considered. Traditional deterministic physics-

based models can be complemented with probabilistic information formed by empir-

ical data. This study shows a stark comparison between the application of a diagnos-

tic wind model using the traditional deterministic approach and an ensemble-style

approach incorporating empirical information. The differing results have consider-

able consequences when considered within fire modelling frameworks.

In the deterministic application of WindNinja with both native and momentum

solvers, the model outputs were able to capture broad-scale dominant wind direction

features, i.e. dominant westerly winds on the ridge tops and eastern (windward)

slopes and the northerly flows through the valley floor. With the addition of the

momentum solver, WindNinja was able to better capture some topographic impacts

on wind flow across the valley, including recirculation through gullies and larger-

scale channelling. However, large-scale northerly channelling through the valley

predicted by the model was not strongly observed in the data. This over-prediction

of channelling by the momentum solver led to lower performance on the windward

slope; reducing percentage agreements from 20% down to only 3%. In the context

of fire, this significant difference between predicted and observed wind direction

may cause considerable difference between predicted and observed fire spread.

Both model solvers were extremely limited by their deterministic nature, leading to

very small agreement percentages between single predictions and observed distribu-

tions. As previously noted in the literature [Forthofer et al., 2014b,a, Butler et al.,

2015, Wagenbrenner et al., 2016], the models performed least well on the leeward

slope. On this slope, dominant modes representative of leeward slope recirculation

or eddies were not captured by the model with either solver. It has now been well

researched and shown that such leeward slope eddies can create the necessary con-

ditions for dangerous and extreme fire behaviour [Sharples et al., 2012, Simpson

et al., 2013]. Through an inability to model important wind behaviours there is

potential to misrepresent the spread and behaviour of a wildfire in the landscape.
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Ensemble-style application of the WindNinja model with momentum solver clearly

gave results in probabilistic terms that were more informative than the individual

deterministic predictions. The predicted wind direction distributions were able

to capture many of the key structures of the wind distributions observed across

the valley. Bimodal distributions were predicted at a number of sites where the

deterministic application of the model was only able to predict a single outcome.

The ensemble predictions were also able to capture the recirculation modes observed

on the western slope of the valley, leading the way for better modelling of the

potential for associated extreme fire behaviours in such areas of the terrain.

Although the ensemble predictions were able to capture key wind direction modes

at each site, they showed a lack of variability compared to the observations. In areas

where wind directions were highly variable, overlap percentages between predictions

and observations (to within an entire compass quadrant) could be as low as 17%.

There are always potential improvements to be made to better capture underlying

physical processes, but dynamic downscaling models can still be limited by resolu-

tion. Mechanisms existing at finer scales will continue to contribute uncertainty to

model outputs. From this study, it is clear that the ensemble-style application of

WindNinja shows differing levels of accuracy across the landscape. There is poten-

tial to identify expected levels of model uncertainty depending on physical features

such as the terrain or vegetation. Using developing ensemble-based approaches

[French et al., 2014d, Twomey and Sturgess, 2016], this quantification of input un-

certainty can be fed through the fire modelling framework to allow assessment of

uncertainty around operational fire spread and behaviour predictions.

6.2 Wind Speed Reduction Beneath the Canopy

6.2.1 Background

Vertical wind profiles within the boundary layer are most often described using a

logarithmic profile [Touma, 1977]. This profile becomes disturbed near the surface

due to roughness of varying length scales, from topographical scales down to vegeta-

tion. These disturbances close to the ground, or at ‘mid-flame’ height are the wind

patterns that drive surface bushfires beneath the canopy. In the current suite of
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fire spread prediction models, wind speeds measured in the open environment (with

no vegetation or above the vegetation layer) are translated to predict wind speeds

within forests or vegetation using adjustment factors. The ‘wind reduction factor’

(WRF) [Cionco, 1972, Rothermel, 1972] is used within operational fire spread mod-

elling in Australia, and is essentially defined as the ratio of open wind speeds and

those observed within the vegetation. In the USA, the reciprocal of the WRF is

utilised and known as the ‘wind adjustment factor’ (WAF) [Andrews, 2012], taking

sheltered wind speeds as the numerator and open wind speeds as the denominator.

Both the WRF and WAF have been empirically derived for a number of structural

vegetation features including crown ratios and vegetation age, and assume the wind

reduction profile to be constant throughout the vegetation layer. However, Moon

et al. [2013] presented empirical wind speed reduction profiles for different forest

types, showing that profiles within the canopy were in fact non-constant. These

wind profiles varied considerably with prevailing wind speeds as well as height

above ground within the canopy. Cruz and Alexander [2013] noted that aside from

topographical features, the principal drivers behind the behaviour of spreading fires

are fuel moisture and wind speed. Alongside the recognition by Van Wagner [1989]

that the prediction of surface fires may well be more difficult than that of crown

fires due to the complexity of understorey fuels, the variation of wind fields within

the vegetation layer adds further complications to the modelling of surface fires

spreading beneath the canopy.

Fire spread prediction models are not immune to the effects of error accumulation,

and it has been noted that the main sources of errors in fire model predictions

include input data error [Cruz and Alexander, 2013]. It is within the interest of

the fire research industry to better understand, and therefore model, the variability

of wind fields within vegetation layers. A Generalised Algebraic Modelling System

(GAMS) is being used to develop an empirical model for wind speed reduction

profiles under various conditions (K. Moon, pers. comm., 2015). This new model

is based upon data collected in flat terrain areas, where the impacts of topography

were intentionally minimised. Although there is a significant body of work on wind

behaviour over topographical features [e.g. Holmes et al., 1997, Glanville and Kwok,

1997, Cleugh, 2002] and within canopies [e.g. Finnigan, 2000, Belcher et al., 2012],
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there are only a limited number of studies that consider the combined impacts of

vegetation over complex terrain [e.g. Allen, 2006].

The data collected as part of this research provide an ideal opportunity to extend

the work of Moon et al. [2013, In Press] to understand the impacts of vegetation

regrowth on wind speeds experienced within the canopy over complex terrain. Wind

data collected across FCV and the NAC are used to evaluate the applicability of the

empirical wind speed reduction profiles described by Moon et al. [2013, In Press] to

rugged landscapes, particularly valley structures within mountain ranges, and ridge

lines or spurs across undulating hills.

6.2.2 Empirical Wind Speed Reduction Profiles

Moon et al. [2013, In Press] describe the collection and analysis of wind data from

seven different vegetation types in Victoria, Australia. Data were collected at

heights of 1, 2, 5, 10 and 15m using guyed-masts with horizontal cup anemome-

ters. At each site, average 30-minute wind speed measurements were taken between

four closely located weather stations, with a fifth station located at a nearby ‘open

environment’ site. Data were collected over approximate 1-month periods.

To avoid the effects of topography, the stations were located in flat areas, and

all stations were at least 20 times the vegetation height away from the vegetation

boundary to avoid edge effects. To account for the accuracy of the cup anemome-

ters, wind speeds below 1kmh−1 (≈ 0.278ms−1) were excluded from the analysis

presented in Moon et al. [In Press]. For the case studies analysed in this thesis,

wind speeds below 0.4ms−1 (≈ 1.4kmh−1) were excluded, again to account for the

accuracy of the instrumentation.

Akin to the WRF, Moon et al. [2013, In Press] calculated the reduction of wind

speed induced by each forest type, termed Relative Wind Speed (RWS), as the wind

speed measured within the vegetation, UV , divided by the wind speed measured at

the nearby ‘open’ site, UO;

RWS =
UV
UO

. (6.1)
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In this study, relative wind speeds were calculated under increasing minimum pre-

vailing wind speed thresholds (observed at the ridge top sites) to understand the

changes in RWS as prevailing wind speeds increased; T = 0.4ms−1 (≈ 1.4kmh−1),

T = 2ms−1 (≈ 7.2kmh−1) and T = 4ms−1 (≈ 14.4kmh−1). Relative wind speed

results for each case study were compared to expected RWS values given in Moon

et al. [2013, Fig. 3] for 10kmh−1 to 20kmh−1 winds, as well as the wind speed

profiles and results shown in Moon et al. [In Press, Figs. 2 and 3].

6.2.3 Evaluation Results

6.2.3.1 Relative Wind Speed at Flea Creek Valley

In this study, wind speeds are compared at the ridge top stations and at the four co-

located stations between the two sample years (using the 30-minute data observed

between April and July). These sites are shown in Figure 5.1, and a summary of

average wind speeds observed across Flea Creek Valley in 2007 and 2014 are given

in Table 6.4. The ridge top pair (A1-B1) will be referred to as ‘FCV0’, while the

four co-located pairs across the valley will be referred to as FCV1, FCV2, FCV3

and FCV4, as defined in Chapter 5 (Section 5.1.2.1).

Table 6.4: Average wind speeds for each site across FCV, at minimum wind speed thresh-
olds, T , observed at A1 in 2007 and B1 in 2014.

2007 2014
T 0.4ms−1 2ms−1 4ms−1 0.4ms−1 2ms−1 4ms−1

FCV0 1.2583 2.6655 4.2722 1.2194 2.7704 4.6071

FCV1 0.8484 1.3801 2.5013 0.4798 0.4753 0.6250

FCV2 0.9670 1.3848 1.8590 0.7735 0.9516 1.3974

FCV3 0.8699 1.3225 1.5974 0.5550 0.7253 1.1122

FCV4 0.8365 1.2587 1.6217 0.6507 0.9182 1.3379

At Flea Creek Valley, 2014 wind speeds were considered relative to 2007 wind

speeds where vegetation already existed. Therefore, the expected relative wind

speed between the two years was calculated by taking the ratio of RWS for the

regrowth open forest and RWS for the mature open forest, as defined by Moon et al.

[2013]. For the normalised height of 0.3 (i.e. at 5m in 15m high vegetation), the

relative wind speeds shown in Moon et al. [2013, Fig. 3] were 0.11 for both regrowth

and mature open forest, for 10-20kmh−1 open winds. If height was read directly

at 5m, the RWS values were 0.11 and 0.09 for regrowth and mature open forest,
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respectively. Thus, using this direct 5m vegetation height, the RWS from regrowth

to mature open forest was approximately 0.82, while considering the normalised

height the RWS was 1.00. In addition, when considering the results shown in Moon

et al. [In Press, Fig. 2], the RWS for both regrowth and mature open forests at a

normalised height of 0.3 was approximately 0.15, giving a RWS value between the

two forest types of 1.00. Moon et al. [In Press, Fig. 3] also shows that the RWS

between regrowth and mature forest is approximately 1.00.

Figure 6.6 shows the relative wind speed results from Flea Creek Valley. For the

western ridge top pair (FCV0), all RWS values at this site correspond well with the

findings of Moon et al. [2013, In Press]. After accounting for the relative change in

vegetation, RWS values appear around 1.00, indicating that the increased vegetation

between the two years has had very little impact on wind speeds experienced on

the ridge top.

On the valley floor (FCV2) and eastern ridge top (FCV4), RWS values are at the

lower end of the expected RWS range, indicating that the increased vegetation at

these sites has induced higher levels of wind speed reduction than those observed

by Moon et al. [2013, In Press]. On the walls of the valley, relative wind speeds ap-

pear considerably lower than those observed on flat terrain. On the predominantly

windward slope (the eastern valley wall, FCV3), RWS values are around 0.6, with

increased wind speeds having limited impact on the RWS values.

In contrast, on the predominantly leeward slope (or western valley wall, FCV1),

RWS values are approximately 0.7 for the lowest wind speed threshold and values

reduce consistently as the threshold increase. With open wind speeds above 4ms−1,

wind speeds experienced beneath the mature canopy in 2014 are only a third of the

speeds experienced under the sparse canopy of 2007. These results suggest that for

increasing open wind speeds, greater reduction of wind speed beneath the canopy

on the leeward slope is experienced. This concurs with the results shown in Moon

et al. [In Press, Fig. 3], but goes against the profiles shown in Moon et al. [2013].
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(a) (b) (c)

(d) (e)

Figure 6.6: Relative wind speed observed between 2007 and 2014 at (a) FCV0 on the
ridge top, (b) FCV1 on the east-facing slope, (c) FCV2 on the valley floor, (d) FCV3 on
the lower west-facing slope and (e) FCV4 on the upper west-facing slope. Findings of
Moon et al. [2013, In Press] are indicated with red lines; RWS = 1.00 (solid), and RWS
= 0.82 (dotted).

6.2.3.2 Relative Wind Speed at the National Arboretum Canberra

In this study, the ‘open’ wind speed was taken to be that recorded on the clear slope

at C1. The RWS was calculated between each weather station down the cleared

east-facing slope and the parallel station on the east-facing slope within the pine

plantation, therefore maintaining similar topographical features between stations.

The pairs compared in this chapter will be referred to as ‘N0’ (C1-C4) on the ridge

top, ‘N1’ (C2-C5) on the mid-slope and ‘N2’ (C3-C6) on the lower slope. These

sites are shown in Figure 3.7, and a summary of wind speeds observed across the

National Arboretum Canberra in 2015 is given in Table 6.5.

Results from the NAC were directly comparable to results from the ‘Pine plantation’

class in Moon et al. [2013, In Press]. From Moon et al. [2013, Fig. 3], relative wind
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Table 6.5: Average wind speeds across the NAC, at minimum wind speed thresholds, T ,
observed at C1.

Clear Slope Pine Stand
T 0.4ms−1 2ms−1 4ms−1 0.4ms−1 2ms−1 4ms−1

N0 3.8754 5.2196 6.5378 0.5913 0.5921 0.5968

N1 2.7591 3.4209 4.2462 0.8171 0.8215 0.8342

N2 2.2523 2.6587 3.1843 0.6547 0.6545 0.6529

speeds for mature pine forest at a normalised height of 0.3 (or a direct height of

5m) and a wind speed between 10kmh−1 and 20kmh−1, were around 0.035. Moon

et al. [In Press, Fig. 3] indicated a higher RWS value of approximately 0.1 for a

normalised height of 0.3. Furthermore, Moon et al. [In Press, Fig. 3] showed that

for wind speeds over approximately 4ms−1, the RWS stabilised at approximately

0.08. For lower wind speeds, however, RWS values increase to approximately 0.2

for 2ms−1 wind speeds, and up to 0.4 for wind speeds as low as 0.4ms −1.

Figure 6.7 shows the relative wind speeds between the parallel transects of the clear

slope and the pine plantation slope at the NAC. At the ridge-top stations (N0),

average wind speeds of 3.9ms−1, 5.2ms−1 and 6.5ms−1 were recorded for the three

increasing open wind speed thresholds, respectively. At these wind speeds, it is

expected from Moon et al. [In Press] that the RWS values have reached stabilisation

at 0.08. It is clear from Figure 6.7 that the observed RWS values approach this

value as the wind speed threshold increases.

Down the predominantly lee-slope of the transect (N1, N2), RWS values are much

higher, but average open wind speeds are lower; between 2.8ms−1 and 4.2ms−1 for

N1 and between 2.3ms−1 and 3.2ms−1 for N2. At these lower open wind speeds, it

is expected from Moon et al. [In Press, Fig. 3] that RWS values should be between

0.2 and 0.4, and results shown in Figure 6.7 agree with this expectation.

6.2.4 Discussion

Figures 6.6 and 6.7 show that results across sites representative of broader-scale

terrain or undulating landscapes (i.e. FCV ridge top and valley floor, or the NAC

transect) exhibit good agreement with the findings of Moon et al. [2013, In Press]

for the relevant forest types and wind speed thresholds (allowing for the relative

change in forest type at FCV). On the leeward and windward slopes of FCV, wind
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(a) (b) (c)

Figure 6.7: Relative wind speed observed between cleared east-facing slope and the par-
allel Radiata pine stand at the National Arboretum Canberra for (a) N0 on the ridge top,
(b) N1 on the mid-slope and (c) N2 on the lower slope. Findings of Moon et al. [2013, In
Press] are indicated with red lines; RWS = 0.40 (solid), RWS = 0.20 (dashed), and RWS
= 0.08 (dotted).

speed reduction is much more significant between 2007 and 2014 than suggested

by Moon et al. [2013, In Press]. These results suggest that the terrain features

have a compounding role to play in wind speed reduction, and there is still further

analysis required to better understand wind speed reduction beneath the canopy

over complex terrain.

In further research, the compounding effects of topography may be characterised

through the consideration of drag coefficients and streamlining [as noted by Moon

et al., In Press]. Consideration of vegetation structure and penetrability, as well as

three-dimensional turbulence will also be relevant to this future discussion. As an

immediate extension of this study, RWS could also be calculated between each NAC

station within the vegetation and the station on the clear ridge top. Differences

between such results and those shown in Figure 6.7 would indicate any compounding

effects of topography on RWS.

In this study, the average height of vegetation at both FCV and the NAC was

significantly less than heights reported by Moon et al. [2013, In Press]. In addition,

the vegetation structure was not quantified for both case studies, and it is important

to consider where in the strata the 5m observations would sit. At the NAC, within

the pine stand, the 5m wind observations were within the dense pine canopy, but at

FCV, within the open forest, it is possible that the observations were made within a
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secondary maxima in the wind speed profile. The comparison of normalised height

results goes a considerable way to account for this with good agreement between

results, yet further quantification of vegetation structure would be necessary to

progress this research and characterise the impacts of vegetation and topography

on wind speed reduction.

It is noted by Moon et al. [In Press] that the vegetation structure is itself dynamic,

and varies over time. This variation is contemplated over long periods of time,

with vegetation growth and interference due to human or natural causes. With

shorter periods of data collection, i.e. less than one year, the seasonality of plant

density, particularly through the open eucalypt forest may have a significant impact

on relative wind speeds. In this study, although data collection periods spanned

considerably different time scales (nine months for the case studies compared to one

month collected by Moon et al. [2013, In Press]), there was good agreement between

results at the broader landscape scale. Further investigation into the impacts of

seasonality on RWS is possible with this dataset and it would be expected to further

advance the discussion of drag effects and penetrability as areas for characterisation

of the impacts of vegetation and topography on wind speed reduction. This could

have significant implications for the application of wind speed reduction factors or

models in fire spread prediction.

This study is limited by the caveats of wind data collection in the field. Data were

collected using low-cost Davis cup anemometers which have been reported to show a

bias towards lower wind speeds [Moon et al., In Press]. This form of data collection

records horizontal wind speeds; limiting analysis to the horizontal, while vertical

wind flow is unaccounted for and may have significant impacts on fire spread below

the canopy. As noted by Moon et al. [In Press], more accurate data collection and

more detailed analysis would be possible with three-dimensional sonic anemometers.

Possible edge effects at the NAC, observed on both the clear slope and within

the Radiata pine stand, also need to be considered as a limiting factor in this

study. Stations were at distances in the order of only a few times the height of the

vegetation from the boundary of the pine stand, rather than 20 times the height of

the vegetation as used by Moon et al. [2013, In Press]. In light of this, it might be

181



Statistical Characterisation of Wind Fields over Complex Terrain

expected that the wind speed reduction observed at the stations would be less than

that observed further away from the edge of the vegetation. However, in the results

shown in Figure 6.7, this does not appear to be the case. Furthermore, analysis of

wind direction across the NAC has shown that edge effects have minimal impacts

on the wind fields experienced at the study sites.

Finally, it should be noted that reported wind speeds in this study were generally

relatively low, but in application to fire spread prediction, high wind speeds are of

most relevance in the context of extreme bushfire behaviour. Despite this, the focus

here is on conditions driving surface fires beneath the canopy where conditions may

be less extreme. Indeed, as noted by Moon et al. [In Press], in cases of prescribed

burning conditions are ideally mild, so understanding low wind speed interactions

within the vegetation layer is important in the development of accurate bushfire

spread models.

6.3 Concluding Remarks

From the studies presented in this chapter, it is clear that observations of wind

characteristics over areas of broad-scale topography or undulating terrain align well

with deterministic wind direction predictions, as well as empirical wind speed pro-

files developed for flat terrain. However, within more complex landscape features,

i.e. valley walls and leeward slopes, modelled wind fields can experience significant

departures from observed wind behaviours. As expected from the discussions in

Chapter 5, these results enhance the understanding of the significant impact that

complex terrain has on wind flow and its variability.

Adaptation and further development of existing modelling techniques is therefore

required to improve prediction of wind and fire (as well as their associated uncer-

tainties) across the landscape. Probabilistic approaches used to complement cur-

rent approaches are capable of better capturing variability in wind characteristics

where traditional methods are limited. The approach highlighted in the first half

of the chapter is not only better suited to the emerging probabilistic fire prediction

frameworks, but also allows quantification of uncertainties to provide more detailed

information to fire managers within operational time-scales.
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The collection and analysis of wind data within complex terrain has a number of

caveats, which have perhaps led to the lack of such datasets being available for

model validation. As such, the evaluations in this chapter are constrained by the

limits of the datasets themselves. For instance, conditional wind direction distribu-

tions were considered only under WNW prevailing winds across Flea Creek Valley,

while significant easterly prevailing winds were also observed. Aggregation of the

1-minute observation intervals to longer time frames, such as 10-minute or 1-hour

intervals, might also reveal different characteristics of the wind at varying resolu-

tions. Analysis of these different scenarios may result in different conclusions to

the evaluation of existing methods. However, the results presented in this chapter

strongly highlight that the evaluation of models employed within the fire spread

modelling process is a necessary step to reducing errors and characterising uncer-

tainties in fire prediction.
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Chapter 7

Discussions and Conclusion

This chapter will discuss and conclude the findings of this thesis in reference to

the aim set out in Chapter 1: to improve understanding of wind flow over complex

terrain from a statistical perspective, in the context of bushfire prediction.

The findings of the research are discussed in three sections. Firstly, the implications

of the new wind direction datasets introduced in Chapter 3 and the probabilistic

representation of wind direction shown in Chapter 4 are considered. Secondly, the

methodological implications of the sensitivity analysis detailed in Chapter 5 are

discussed. Thirdly, an in-depth discussion of the new knowledge and approaches

that this thesis can contribute to modelling frameworks leads from Chapter 6.

Following these discussions, the thesis is concluded before some future directions

for research are outlined.

7.1 Wind Direction: A New Perspective

7.1.1 New Datasets

An issue identified across the literature regarding wind and bushfire prediction, is

the lack of data available to verify developing models and analysis. The validation of

current wind models used for operational fire prediction has therefore been limited

to a few case studies where terrain and vegetation have been restricted to create

idealised scenarios. For instance, vegetation may be minimised to low-level grasses

to remove its impacts on wind flow [e.g. Wagenbrenner et al., 2016, Butler et al.,
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2015, Forthofer et al., 2014b], or flat terrain areas are chosen to avoid topographical

influences on wind speed [e.g. Moon et al., In Press].

The datasets collected and analysed in this research provide a unique set of wind

measurements across a variety of vegetation types in both complex and undulating

landscapes in south-eastern Australia. The complicated environments in which the

data for this research were collected are in many ways their asset; however they

also contribute to the limitations of the datasets. The complex topography and

vegetation of the Flea Creek Valley case study limits the generalisation of results.

However, through analysis of the same location over two time periods it was shown

that the regrowth of mixed Eucalyptus forest (akin to much of the forests across

south-eastern Australia) had a significant impact on wind direction behaviours. In

particular, it was clear that what was relatively uniform regrowth across the region

had different impacts depending on the aspect of the terrain in relation to the

dominant prevailing winds.

The National Arboretum Canberra case study attempted to reduce some of the

complexities of the natural environment surrounding the data collection. Through

taking advantage of discrete stands of vegetation types, it was possible to com-

pare wind fields over similar topography with contrasting vegetation, and likewise

through similar vegetation with changing topography. This study helped to rein-

force the findings from Flea Creek Valley that vegetation and aspect in relation

to the prevailing winds play a significant role in the occurrence of wind reversal

regions, or persistent leeward slope eddies, within the canopy.

Despite some of the limitations of the data collection, such as the use of cup

anemometers resulting in the collection of only horizontal winds with an accuracy

of 0.4ms−1, very large quantities of data were collected throughout this research.

These data were at temporal resolutions down to one minute and spatial resolutions

captured in only a handful of similar case studies across the globe. The research

presented in this thesis did not allow for analysis of the detailed behaviours of the

wind direction and speed at fine temporal scales, or spatial analysis such as cor-

relations between sites, but the data remain available for further study (Appendix

A). These datasets can therefore continue to contribute to the further development
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and validation of current wind and fire modelling frameworks in realistic landscapes

where fine-scale (temporal and spatial) fire behaviours may develop.

7.1.2 Directional Wind Response Distributions

It is clear from the literature discussed in Section 2.1.3 that dealing with uncer-

tainty in fire modelling is a key issue in the prediction of fire spread and behaviour.

Recent developments consider the use of ensemble-based or stochastic modelling

frameworks to predict a range of possible fire outcomes which can be characterised

with likelihoods and probabilities [e.g. French et al., 2013, 2014d, Twomey and

Sturgess, 2016]. A probabilistic representation of input variables, such as wind

fields, is ideally suited to these emerging frameworks and can help to provide accu-

rate characterisation of uncertainty throughout the modelling process. At present,

simplified probabilistic representations of wind characteristics, such as direction and

speed, are formed with Uniform or Normal distributions [Twomey and Sturgess,

2016]. However, the literature discussed in Section 2.3, and the data detailed in

Chapter 3, suggest that wind direction distributions are often not well described by

these standard functions, and in fact can vary significantly across the landscape.

Joint wind direction distributions, referred to in this research as directional wind

response distributions, have been used to identify broad-scale meteorology as well

as smaller-scale wind mechanisms relevant to bushfire behaviour in mountainous

terrain [e.g. Whiteman and Doran, 1993, Sharples et al., 2010]. Using the discrete

data collected in this research, the underlying continuous directional wind response

process can be estimated. Unfortunately, however, there are limited estimation

methods designed for bivariate circular (or toroidal) datasets that are readily avail-

able to practitioners.

It was shown in Chapter 4 that a conceptually simple adaptation to planar estima-

tion methods can be used to accurately estimate toroidal surfaces. In some cases, the

adaptation performed better than existing toroidal estimation techniques. However,

there are a number of elements that were not handled in great detail in this research

that may have significant impacts on the results presented, including the selection

of smoothing parameters and bandwidth for the estimation methods. There are

also clear considerations that must be made when applying the simple adaptation,
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including the impacts of surface structure on the toroidality of the estimation. With

these considerations in mind, it is possible to pre-process a toroidal dataset such

that planar estimation methods can be optimally applied to provide an accurate

toroidal surface approximation.

The resulting estimated continuous directional wind response distributions can be

used to identify key wind behaviours and quantify their likelihoods. Consideration

of the timings of distribution modes can also identify the mechanisms driving wind

behaviours. For example, the timing of apparent channelling in Flea Creek Valley

showed that thermal flows did not play a key role in wind direction behaviour

through the valley (Section 6.1). Having estimated wind direction distributions

and identified these key wind behaviours, it becomes of interest to understand

how physical features such as vegetation and topography impact upon them. The

following section deals with how statisticians can look to resolve such questions.

7.2 Statistical Techniques for Analysing Wind Direction

7.2.1 Comparison Tests

To understand the impacts of vegetation or topography on wind direction distribu-

tions, a statistical hypothesis testing framework was developed in Chapter 5. Given

two observed distributions (either univariate or bivariate), the null hypothesis as-

sumed that both datasets originated from the same underlying distribution, while

the alternative hypothesis stated that the two originated from different processes.

To test such a hypothesis, a number of statistics are available; within this thesis,

two approaches were taken. The first considered Kolmogorov-Smirnov (KS) style

tests based on the difference between empirical distribution functions. Sensitivity

analysis in Chapter 5 highlighted the power of these tests, and the means by which

statistical significance is established, against structured alternative distributions.

The two-sample univariate KS test for the comparison of linear datasets was ex-

tended by Kuiper [1960] to account for circularity, such as that found in wind direc-

tion data. The sensitivity of these tests to changes in Normal and von Mises distri-

butions showed that both tests exhibited similarly powerful behaviour to changes
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in mean and standard deviation, or concentration. This equivalent behaviour in-

dicates that Kuiper’s test is indeed a valid extension of the KS test. However,

results for the approximation of the asymptotic behaviour of Kuiper’s statistic for

distributions that were very similar suggested that, unlike for the KS test, extreme

caution should be taken in applying the approximation outside its valid range.

The extension of the KS test to compare bivariate distributions has received less

analysis in the literature but is well used in certain fields, e.g. astronomy [Peacock,

1983]. Comparison of the sensitivity of the bivariate KS test to that of the univari-

ate test revealed very similar behaviours for the approximation to the asymptotic

behaviour of the test statistic. This again suggests a robust extension of the uni-

variate KS test. However, the use of Monte Carlo simulations to discern significance

of an observed test statistic was far less powerful under the bivariate extension.

It would appear that no bivariate extension currently exists for Kuiper’s test to

compare bivariate circular datasets. Using the basis of the bivariate KS test, an

extended Kuiper’s test statistic was proposed. An approximation to the asymptotic

behaviour of such a statistic was outside the scope of this thesis, and so Monte

Carlo simulations were relied upon to determine the significance of an observed

test statistic. As in the case of the bivariate KS test, the Monte Carlo p-values

were shown to be not very powerful for small changes in distribution structure,

but showed a strong threshold for determining significance that could be utilised

in application of the test. Similarities between the behaviour of the bivariate KS

test and that of the proposed bivariate Kuiper’s test suggest it to be a viable

bivariate extension of Kuiper’s test. However, more theoretical work is required to

understand and analyse its asymptotic properties, as well as to determine whether

it might exhibit similar behaviour to the asymptotic properties of the univariate

Kuiper’s test.

The second statistical approach taken in Chapter 5 considered the mean squared

difference between the estimated bivariate directional wind response distributions.

Under this approach, the distributions were treated as surfaces or images to be

compared, thus circularity was not inherently accounted for. It was found that

these statistics were sensitive to the surface estimation methods, particularly to
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small surface values approximated away from the key distribution modes, and so

truncating the surfaces above a constant (but small) value allowed for more useful

results. In practice, this may only be possible when the practitioner can be assured

that these small values are insignificant to the comparison. In the case of directional

wind response, it was often clear where the modes were centred and there were only

ever a few. In more complex images, it would be important to consider a truncation

that minimises the loss of information while maximising the usefulness of the test

results.

The sensitivity studies in Chapter 5 were able to shed light on the sensitivity of

univariate and bivariate two-sample tests to changes in standard unimodal distri-

butions. A number of lessons were then available in the application of such tests

throughout the chapter. However, the simulated distributions were highly idealised,

and changes in mean and standard deviation, or concentration, were dealt with inde-

pendently. In reality, a significant test result may arise from a variety of differences

between two distributions. It may well be possible to discern these visibly, but

further parametric estimation and comparison of distributions may be required to

fully interpret distribution changes.

7.2.2 Application of Statistical Techniques

In the application of the above statistical tests to both univariate and bivariate wind

direction distributions, in general it was found that vegetation regrowth at Flea

Creek Valley and the changes in vegetation and aspect at the National Arboretum

Canberra had significant impacts on observed directional wind response. Although

results varied somewhat between different tests, there were two clear exceptions to

this finding.

At Flea Creek Valley, the exception was a site where high levels of variation were

observed. At this site, the high variation persisted through the regrowth of vege-

tation and so the difference between the distributions was not found to be statis-

tically significant. At the National Arboretum Canberra, no significant difference

was suggested between the wind direction distributions observed on the forested

leeward and 45◦ leeward slopes. Significant differences shown to exist between the

45◦ leeward slope and the cross slope indicated a threshold for aspect in relation to
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the prevailing wind for the existence of wind reversal regions beneath the canopy.

Equally, significant differences between the cleared and forested slopes also indi-

cated the existence of a threshold for surface roughness in order to produce wind

reversal regions on the leeward slope.

The most important finding from these comparisons was that the impacts of vegeta-

tion varied considerably across the landscape. Therefore as fire research approaches

the challenge of statistically modelling wind flow, it must consider the relationship

between wind flow and its environment as dynamic.

7.3 Statistical Characterisation of Wind in the Context of Bushfire

7.3.1 New Knowledge in the Existing Framework

The knowledge gained from new datasets and analysis shown throughout this thesis

can be used to enhance and complement current wind and fire modelling approaches.

The empirical information drawn from analysis of wind direction distributions builds

on previous understanding of wind mechanisms that can form conditions susceptible

to extreme or dynamic fire behaviour. For instance, the requirement of sufficiently

steep terrain, increased surface roughness and a leeward aspect for the formation of

wind reversals within the canopy concurs with that found in computational research

into atypical lateral spread of bushfires [Simpson et al., 2016].

Although the studies detailed in this research do not yet provide comprehensive

quantification, there is clear potential for probabilistic information derived from

directional wind response distributions to be applied within the fire modelling pro-

cess. Likelihood information regarding wind behaviours, such as channelling or

reversals, could be overlaid as simple filters within existing frameworks, or enhance

existing terrain filters such as that detailed by Sharples et al. [2012]. Inevitably, the

limitations of the datasets and analysis within this research would be paramount

when considering the generalisation of such information across broader regions, and

more validation would be required with the potential for further data collection.

Aside from a more detailed understanding of wind direction developed through

empirical analysis, an investigation into vegetation induced wind speed reduction
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across both case studies was presented in Chapter 6. The new data allowed for ver-

ification of existing approaches to wind speed reduction modelling. Although em-

pirical wind speed reduction profiles developed by Moon et al. [2013, In Press] were

accurate across broad-scale terrain, it was shown that more complex topographical

features could have a significant compounding impact on wind speed reduction. As

a key variable in the driving of surface fires beneath the canopy, this work helps to

shed light on the variation of such a parameter across the landscape and indicates

where new research is required.

7.3.2 New Modelling Approaches

Probabilistic representation of parameters such as wind direction or wind speed

allows for quantification of uncertainty for current and emerging modelling frame-

works. A comparison between current wind model outputs and distributions of

observed wind directions detailed in Chapter 6 highlighted the limitations of deter-

ministic modelling approaches, and provided numerical values for varying levels of

uncertainty across Flea Creek Valley. The accuracy levels of a single determinis-

tic model output compared to a full distribution of observed wind directions were

extremely low in some cases, and distributions most often did not fit the standard

probability distribution functions utilised in emerging ensemble-based fire predic-

tion frameworks.

With an ensemble-style application of the operational downscaling wind model

WindNinja, it was possible to more accurately replicate the full distributions of

wind direction observed across Flea Creek Valley. This positive result shows that

it is possible to easily adapt current physics-based models in conjunction with new

empirical probabilistic information to better capture the variation in wind direction

that is experienced over complex terrain. However, further work is required in order

to improve the predictions of the full wind direction distributions. Future directions

in ensemble-based fire modelling are looking towards incorporation of the stochastic

behaviour expected by wind flow to better characterise variation in wind direction

and speed. Through a more detailed understanding and better characterisation

of the spatial variability of inputs to fire models, it is possible to better capture

uncertainty of the modelled outputs. This increased information provides decision
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makers with better tools and understanding when faced with the management of a

bushfire.

7.4 Conclusion

In the process of modelling bushfire as it spreads and changes behaviour across

the landscape, the accurate modelling of its driving forces is fundamental. Wind

speed and direction at the surface have a direct influence over how and where a fire

propagates, but wind flow over complex terrain is driven by complicated physical

mechanisms that cannot all be captured by real-time physics-based models. A sta-

tistical characterisation of wind flow in complex terrain can capture the uncertainty

related to wind modelling, and allow analysis of scenarios and their likelihoods.

The research presented in this thesis details an analysis of wind direction in prob-

abilistic terms. Through the collation of new datasets and a fresh perspective on

the representation of wind direction, this research has developed a unique under-

standing of wind behaviours across complex and undulating terrain. Key insights

include, but are not limited to, the distinct variation in directional wind response

according to changing vegetation and topography across the landscape. Through

investigation into the techniques available to handle wind direction data, better

interpretation of statistical analyses of directional wind response is now available.

Finally, this research has highlighted how new approaches to wind modelling can

draw from and complement current approaches within fire prediction. This opens a

pathway for developing more accurate frameworks capable of handling uncertainty

and providing more detailed information to decision makers and fire managers.

7.5 Further Work

As is the case for many projects, this work has posed a number of new research

questions that are yet to be answered. Here, some of these possible further questions

are introduced.

• What are the likelihoods of certain wind behaviours within complex terrain?
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Using probabilistic representations of directional wind response, it is possible to

extend the work in this thesis to analyse the likelihood of given wind mechanisms

such as leeward slope eddies or channelling through valleys. Generalisation of such

likelihoods across the landscape would depend upon the constraints of this dataset

and new data used for validation, but applicable probabilistic information could

then be directly fed into wind and fire modelling frameworks.

• How can directional wind response be statistically modelled?

New developments with mixtures of bivariate von Mises distributions would allow

for a model of multimodal bivariate circular distributions. The use of bivariate

copulas may be employed to deal with the spatial correlations between prevailing

and surface winds. A key issue within such parametric modelling would be the

interpretation of parameters. For fire modelling applications, it would be required

that these parameters be defined in terms of observable physical variables such as

vegetation, slope or aspect.

• Is the extension of Kuiper’s test reasonable, robust and consistent?

A theoretical basis for the extension of Kuiper’s test to the bivariate case needs to be

developed to ensure the statistic is robust and consistent. A key issue in this area is

to determine whether the test statistic is distribution-free. It may also be preferable

to develop an approximation to the asymptotic behaviour of the extended statistic

in the same form as that of the univariate statistic, and equivalent KS statistics.

• How sensitive are fire modelling frameworks to variation in their inputs?

Probabilistic representations of wind direction should now be tested within ensemble-

based fire models to understand the repercussions of their application. Detailed

sensitivity analyses of fire modelling frameworks to variation in such input values

have yet to be completed in detail. Such analyses would allow researchers and

end users to identify the most significant inputs, parameters and structures in the

modelling process and identify areas where further research is required.
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Appendix A

Wind Data Summaries

The data used for analysis throughout this thesis are stored in Comma-Separated-

Value format. Individual data files for each station over each case study (or time

period) exist, as well as data files compiled for each variable; wind speed, wind

direction, temperature, relative humidity and solar radiation. These data files may

be accessed on request through the author, or the School of Physical, Environmental

and Mathematical Sciences at UNSW Canberra.

A.1 Calibration Analysis

After the 2007 data collection by Sharples et al. [2010], the portable automatic

weather stations (PAWS) were placed in storage for approximately 6 years, before

being recommissioned in 2014 for the research presented in this thesis. To reaf-

firm the accuracy of the PAWS (±5% or ±1ms−1, whichever greater), the stations

were set up at the UNSW Canberra Field Site, where observations from a sonic

anemometer (SA) were available for comparison.

Using the SA, wind speed and wind direction observations were recorded at a height

of 10 metres, logging at 10Hz intervals. The SA wind data were converted to 1-hour

time intervals and compared with that recorded by the PAWS between 19th and

23rd February 2014. To account for the height discrepancy between the 10m SA

and the 5m PAWS observations, the 1/7th power law was used [Touma, 1977];

SA5m = (5/10)0.143 SA10m.
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Figure A.1 shows the absolute percentage difference between the mean wind speed

data recorded across the eleven PAWS and the wind speed recorded by the SA, with

the red line indicating ±1ms−1 on the SA5m observations. This figure, as well as in-

dividual station analysis not presented here, shows that the wind speed observations

recorded by all eleven PAWS were generally within this accuracy region.

0 1 2 3 4 5 6 7 8
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Figure A.1: Absolute percentage difference between PAWS and SA5m wind speed obser-
vations between 19th and 23rd February 2014. Red line shows SA5m ± 1ms−1.

Figure A.2 shows the time series of wind direction recorded by the eleven PAWS

(blue dots) and those recorded by the SA (red line). The figure again indicates that

the PAWS wind direction observations were consistent with the SA5m observations

throughout the calibration time period. Therefore, the PAWS were taken to be

recording consistent and accurate wind speed and direction observations.
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Figure A.2: Wind direction time series for PAWS (blue dots) and SA5m (red line) between
19th and 23rd February 2014.

A.2 Flea Creek Valley 2007

Figure A.3 shows the data record from the five weather stations across Flea Creek

Valley in 2007. The gap in the data record was due to battery outages over the

winter of 2007, and lack of access to the valley due to snow [Sharples et al., 2010].

After this gap, the weather stations were set to observe data at 1-hour intervals,

rather than the 30-minute intervals that had been used up until July.

Figure A.3: Data records across FCV between April and December 2007.

197



Statistical Characterisation of Wind Fields over Complex Terrain

Figure A.4 shows each of the wind speed time series for the data collected across

Flea Creek Valley between April and June 2007.

Table A.1 summarises the proportions of wind direction data observed within each

compass sector, for each station across Flea Creek Valley between April and June,

2007. The empty data points were discarded from analysis.

Table A.1: Proportion of winds originating from each compass direction across FCV
between April and June 2007.

A1 A2 A3 A4 A5

Empty 0.03 0.01 0.01 0.00 0.00
Calm 0.01 0.07 0.07 0.06 0.26

N 0.00 0.03 0.12 0.04 0.03
NNE 0.02 0.02 0.15 0.02 0.04
NE 0.04 0.03 0.12 0.04 0.06

ENE 0.02 0.08 0.06 0.12 0.02
E 0.10 0.19 0.02 0.05 0.02

ESE 0.13 0.19 0.02 0.03 0.02
SE 0.06 0.10 0.02 0.02 0.03

SSE 0.05 0.02 0.01 0.03 0.01
S 0.05 0.02 0.04 0.05 0.01

SSW 0.02 0.03 0.08 0.04 0.03
SW 0.03 0.03 0.06 0.05 0.06

WSW 0.12 0.02 0.05 0.04 0.08
W 0.13 0.04 0.04 0.07 0.10

WNW 0.12 0.07 0.04 0.18 0.09
NW 0.07 0.04 0.03 0.12 0.09

NNW 0.01 0.02 0.08 0.05 0.06
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A.3 Flea Creek Valley 2014

Figure A.5 shows the record for the data collected across Flea Creek Valley between

April and December 2014. The gaps in the record are most often caused by battery

outages due to a lack of solar radiation at the sites, as well as a number of other

challenges discussed in Chapter 3. The Raspberry Pi systems were installed in

July 2014 and the observation frequency was increased to 1-minute rather than 30-

minute intervals, but continued battery issues were experienced. After completed

testing, B3 was installed in September 2014.

Figure A.5: Data records across FCV between April and December 2014.

Figure A.6 shows the time series of wind speed data collected at each station across

Flea Creek Valley in 2014. The gaps in the data highlighted in Figure A.5 are also

evident in these time series.

Table A.2 summarises the proportion of observations within each wind direction

sector from the data collected across Flea Creek Valley in 2014. A greater proportion

of ‘Empty’ data points were recorded due to battery issues experienced throughout

data collection. A greater proportion of ‘Calm’ observations were also recorded as

compared to the 2007 Flea Creek Valley data shown in Table A.1.
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Table A.2: Proportion of winds originating from each compass direction across FCV
between April and December 2014.

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11

Empty 0.28 0.66 0.65 0.15 0.19 0.10 0.20 0.54 0.70 0.27 0.16
Calm 0.13 0.11 0.18 0.31 0.49 0.41 0.54 0.28 0.14 0.40 0.28

N 0.01 0.00 0.01 0.01 0.01 0.04 0.03 0.01 0.01 0.01 0.02
NNE 0.01 0.00 0.01 0.03 0.01 0.04 0.02 0.01 0.01 0.01 0.01
NE 0.02 0.00 0.02 0.05 0.02 0.07 0.01 0.01 0.01 0.01 0.01

ENE 0.03 0.00 0.03 0.10 0.01 0.06 0.01 0.01 0.01 0.01 0.01
E 0.10 0.00 0.03 0.10 0.01 0.02 0.01 0.01 0.00 0.01 0.01

ESE 0.08 0.00 0.01 0.05 0.02 0.01 0.01 0.01 0.00 0.01 0.01
SE 0.01 0.01 0.01 0.03 0.02 0.01 0.01 0.01 0.00 0.01 0.01
SSE 0.00 0.03 0.01 0.02 0.03 0.01 0.01 0.01 0.00 0.01 0.01

S 0.01 0.03 0.01 0.04 0.04 0.01 0.02 0.01 0.00 0.02 0.01
SSW 0.00 0.02 0.01 0.01 0.05 0.02 0.02 0.01 0.01 0.07 0.02
SW 0.00 0.02 0.01 0.01 0.04 0.03 0.01 0.01 0.02 0.06 0.05

WSW 0.01 0.02 0.01 0.02 0.02 0.03 0.01 0.01 0.02 0.04 0.10
W 0.08 0.02 0.01 0.03 0.02 0.02 0.01 0.02 0.02 0.04 0.12

WNW 0.18 0.04 0.00 0.01 0.01 0.02 0.02 0.02 0.02 0.03 0.08
NW 0.05 0.05 0.00 0.01 0.01 0.04 0.03 0.02 0.01 0.02 0.06

NNW 0.01 0.00 0.00 0.01 0.01 0.03 0.03 0.01 0.01 0.01 0.03

A.4 National Arboretum Canberra 2015

Figure A.7 shows the record of data collected across the National Arboretum Can-

berra in 2015. Again, regular gaps in the data record exist due to interruptions

in data collection, mostly resulting from battery outages. Data were collected at

1-minute observation intervals throughout the data collection period.

Figure A.7: Data records at the NAC between April and December 2015.
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Figure A.8 shows the wind speed time series for each weather station across the

National Arboretum Canberra in 2015. The clear slope time series (C1, C2 and C3)

clearly show far higher observed wind speeds than the remaining stations within

the Radiata pine stand.

Table A.3 summarises the proportions of wind directions observed within each com-

pass sector for each site across the National Arboretum Canberra. Again, due to

battery issues, there is a relatively high proportion of ‘Empty’ data points. The

percentage of ‘Calm’ observations is considerably higher within the Radiata pine

stand than on the cleared slope (up to 79% compared to only 11%).

Table A.3: Proportion of winds originating from each compass direction across the NAC
between April and December 2015.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11

Empty 0.23 0.29 0.01 0.09 0.66 0.32 0.69 0.17 0.33 0.23 0.43
Calm 0.04 0.08 0.10 0.68 0.24 0.45 0.23 0.48 0.37 0.61 0.29

N 0.01 0.01 0.03 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NNE 0.01 0.02 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
NE 0.01 0.05 0.09 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

ENE 0.05 0.06 0.08 0.00 0.00 0.02 0.00 0.04 0.00 0.00 0.00
E 0.10 0.04 0.05 0.00 0.02 0.04 0.01 0.03 0.00 0.00 0.00

ESE 0.07 0.05 0.05 0.00 0.04 0.05 0.02 0.03 0.03 0.00 0.00
SE 0.09 0.04 0.05 0.00 0.02 0.05 0.03 0.08 0.02 0.02 0.00

SSE 0.01 0.01 0.03 0.00 0.00 0.03 0.01 0.07 0.01 0.03 0.00
S 0.00 0.00 0.02 0.01 0.00 0.01 0.00 0.04 0.01 0.02 0.00

SSW 0.00 0.01 0.02 0.02 0.00 0.00 0.00 0.02 0.01 0.01 0.00
SW 0.00 0.01 0.02 0.05 0.00 0.00 0.00 0.02 0.02 0.01 0.01

WSW 0.00 0.03 0.04 0.03 0.00 0.00 0.00 0.00 0.02 0.02 0.04
W 0.05 0.12 0.11 0.01 0.00 0.00 0.00 0.00 0.13 0.02 0.03

WNW 0.18 0.11 0.11 0.01 0.00 0.00 0.00 0.00 0.04 0.02 0.06
NW 0.11 0.05 0.09 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.10

NNW 0.03 0.02 0.05 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.01
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Appendix B

Directional Wind Response

B.1 Flea Creek Valley, 2007

Figure B.1 shows the discrete observed directional wind response distributions for

the valley sites (A2 to A5) across Flea Creek Valley between April and June 2007.

At each site, the distributions are shown for three minimum ridge top wind speed

thresholds, observed at A1; T = 0ms−1, T = 2ms−1 and T = 4ms−1.

B.2 Flea Creek Valley, 2014

Figures B.2 and B.3 show the discrete observed directional wind response distribu-

tions for the valley sites (B2 to B11) across Flea Creek Valley between April and

December 2014. At each site, the distributions are shown for three minimum ridge

top wind speed thresholds, observed at B1; T = 0ms−1, T = 2ms−1 and T = 4ms−1.

B.3 National Arboretum Canberra, 2015

Figures B.4 and B.5 show the discrete observed directional wind response distribu-

tions for the sites (C2 to C11) across the National Arboretum Canberra in 2014.

At each site, the distributions are shown for three minimum ridge top wind speed

thresholds, observed at C1; T = 0ms−1, T = 2ms−1 and T = 4ms−1.
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(a) A2, T = 0ms−1 (b) A2, T = 2ms−1 (c) A2, T = 4ms−1

(d) A3, T = 0ms−1 (e) A3, T = 2ms−1 (f) A3, T = 4ms−1

(g) A4, T = 0ms−1 (h) A4, T = 2ms−1 (i) A4, T = 4ms−1

(j) A5, T = 0ms−1 (k) A5, T = 2ms−1 (l) A5, T = 4ms−1

Figure B.1: Observed discrete directional wind response distributions across FCV at (a-l)
A2 to A5, with minimum wind speed thresholds of T = 0ms−1, T = 2ms−1 and T =
4ms−1 at A1, between April and June 2007.
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(a) B2, T = 0ms−1 (b) B2, T = 2ms−1 (c) B2, T = 4ms−1

(d) B3, T = 0ms−1 (e) B3, T = 2ms−1 (f) B3, T = 4ms−1

(g) B4, T = 0ms−1 (h) B4, T = 2ms−1 (i) B4, T = 4ms−1

(j) B5, T = 0ms−1 (k) B5, T = 2ms−1 (l) B5, T = 4ms−1

(m) B6, T = 0ms−1 (n) B6, T = 2ms−1 (o) B6, T = 4ms−1

Figure B.2: Observed discrete directional wind response distributions across FCV at (a-
o) B2 to B6, with minimum wind speed thresholds of T = 0ms−1, T = 2ms−1 and T =
4ms−1 at B1, between April and December 2014.
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(a) B7, T = 0ms−1 (b) B7, T = 2ms−1 (c) B7, T = 4ms−1

(d) B8, T = 0ms−1 (e) B8, T = 2ms−1 (f) B8, T = 4ms−1

(g) B9, T = 0ms−1 (h) B9, T = 2ms−1 (i) B9, T = 4ms−1

(j) B10, T = 0ms−1 (k) B10, T = 2ms−1 (l) B10, T = 4ms−1

(m) B11, T = 0ms−1 (n) B11, T = 2ms−1 (o) B11, T = 4ms−1

Figure B.3: Observed discrete directional wind response distributions across FCV at (a-o)
B7 to B11, with minimum wind speed thresholds of T = 0ms−1, T = 2ms−1 and T =
4ms−1 at B1, between April and December 2014.
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(a) C2, T = 0ms−1 (b) C2, T = 2ms−1 (c) C2, T = 4ms−1

(d) C3, T = 0ms−1 (e) C3, T = 2ms−1 (f) C3, T = 4ms−1

(g) C4, T = 0ms−1 (h) C4, T = 2ms−1 (i) C4, T = 4ms−1

(j) C5, T = 0ms−1 (k) C5, T = 2ms−1 (l) C5, T = 4ms−1

(m) C6, T = 0ms−1 (n) C6, T = 2ms−1 (o) C6, T = 4ms−1

Figure B.4: Observed discrete directional wind response distributions across the NAC at
(a-o) C2 to C6, with minimum wind speed thresholds of T = 0ms−1, T = 2ms−1 and T =
4ms−1 at C1, between April and December 2015.
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(a) C7, T = 0ms−1 (b) C7, T = 2ms−1 (c) C7, T = 4ms−1

(d) C8, T = 0ms−1 (e) C8, T = 2ms−1 (f) C8, T = 4ms−1

(g) C9, T = 0ms−1 (h) C9, T = 2ms−1 (i) C9, T = 4ms−1

(j) C10, T = 0ms−1 (k) C10, T = 2ms−1 (l) C10, T = 4ms−1

(m) C11, T = 0ms−1 (n) C11, T = 2ms−1 (o) C11, T = 4ms−1

Figure B.5: Observed discrete directional wind response distributions across the NAC at
(a-o) C7 to C11, with minimum wind speed thresholds of T = 0ms−1, T = 2ms−1 and
T = 4ms−1 at C1, between April and December 2015.
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Appendix C

Matlab Code for Toroidal Estimation

This appendix outlines the MATLAB R© [2012, 2016] code used to analyse and apply

the toroidal estimation techniques discussed in Chapter 4.

Initially, the input parameters are defined:

s=16; % size of discrete grid

c=360; % size of quasi-continuous grid

k=16; % number of iterations of Algorithm 1

a=250; % number of Monte Carlo runs

The ‘true’ continuous distribution is then simulated over a c×c grid, with no noise

and standardised to sum to unity. Within a Monte Carlo scheme, i.e. b=1:a, the

toroidal estimation is conducted using the cubic spline, thin plate smoothing spline

or kernel density estimation methods.

First, the discrete ‘observed’ distribution, y, is simulated with random noise over

an s×s grid. Then, for each iteration, i.e. n=0:k, Algorithm 1 is implemented:

% Algorithm 1

yS=zeros(s+(2*n),s+(2*n));

yS(n+1:n+s,n+1:n+s)=y;

yS(s+n+1:s+n+n,:)=yS(n+1:n+n,:);

yS(:,s+n+1:s+n+n)=yS(:,n+1:n+n);

yS(1:n,:)=yS(s+1:s+n,:);

yS(:,1:n)=yS(:,s+1:s+n);
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Each estimation method is performed on this repeated grid, yS, which is individually

reformatted for input into each function. The resulting surface, m, is evaluated over

the quasi-continuous c×c grid and standardised to sum to unity. The following

functions are used for the estimation techniques:

% Cubic spline with default boundary conditions

dough0 = csape({x1_1,x2_1},yS);

% Cubic spline with periodic boundary conditions

dough0 = csape({x1_1,x2_1},yS,’periodic’);

% TPS spline, adapted to give iterative solutions for all data sizes

t=tpaps2(dirxy,dirdat,0.001);

% KDE von Mises, using LCV for k=0 and then fixed

[f,xi,bw]=ksdensity2(kx,kxi,’Kernel’,’circ_vmpdf’, ...

’bandwidth’,[49.9947 49.9947]);

% KDE Normal, using Scott’s Rule for k=0 and then fixed

[f,xi,bw]=ksdensity2(kx,kxi,’bandwidth’,[42.2090 42.2090]);

To calculate the bandwidth for the kernel density estimation, the function bw.CV is

called from the NPCirc package in R [Oliveira et al., 2013, 2014a].

Finally, the difference metrics are calculated for each Monte Carlo run, b:

% Mean Squared Error

mse(b,n+1)=mean(mean((m(1:c,1:c)-y(1:c,1:c)).^2));

% Difference in Edge Values

dif_t(b,n+1)=sum(m(1,:)-m(c+1,:))/size(m,1); % rows

dif_l(b,n+1)=sum(m(:,1)-m(:,c+1))/size(m,2); % cols

% Difference in Edge Derivatives

der_t(b,n+1)=sum(diff(m(1:2,:))-diff(m(c+1:c+2,:)))/size(m,1); % rows

der_l(b,n+1)=sum(diff(m(:,1:2),1,2)- ...

diff(m(:,c+1:c+2),1,2))/size(m,2); % cols

The mean and standard deviation of these difference metrics for each iteration are

calculated and used to plot the figures discussed in Chapter 4.
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Appendix D

Matlab Code for Surface Comparison Tests

This appendix outlines the MATLAB R© [2012, 2016] code used to conduct the

simulation studies discussed in Chapter 5.

D.1 Simulation Procedure

Firstly, the following pseudo-code provides the general format of the simulation

procedure, as well as the Monte Carlo schemes used to estimate the p-values and

power of the test statistics.

MC=1000; % number of Monte Carlo runs

% Pre-define matrices for test statistics and p-values.

stat_value=zeros(1,MC); stat_pvalue=zeros(1,MC);

for s=1:MC

% Simulate standardised distributions with error, e.g. uni Normal.

y1; y2;

% Generate two samples based on the distributions, with random

% sample sizes between 100 and 1000.

S1; S2

% Perform the statistical test.

[stat, p]=test(S1,S2);

% Allocate statistics and p-values to matrices.

stat_value(s)=stat; stat_pvalue(s)=p;

% Calculate p-values using Monte Carlo permutations
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mcp=1000;

stat_mcpvalue=zeros(length(mcp),1);

for sm=1:mcp;

% Combine data sets and randomly split to calculate KS stat

% under null of equality.

A1; A2;

[stat_m, p_m]=test(A1,A2);

stat_mc(sm)=stat_m;

end

% Calculate MC p-values for statistic.

stat_pmc=length(stat_mc(stat_mc>stat))/length(stat_mc);

stat_mcpvalue(s)=stat_pmc;

end

% Calculate level of each p-value (asymptotic and MC), e.g. stat_pvalue

level1=length(stat_pvalue(stat_pvalue<0.01))/length(stat_pvalue);

level5=length(stat_pvalue(stat_pvalue<0.05))/length(stat_pvalue);

level10=length(stat_pvalue(stat_pvalue<0.1))/length(stat_pvalue);

D.2 Univariate KS Style Tests

The kstest2 function, available in MATLAB R© [2016], was used for the analysis

and application of the univariate KS test.

The code used for the analysis and application of the univariate Kuiper’s tests was

adapted from the circ_kuipertest function (available in the CircStat package

for MATLAB R© [2016]). The adaptation added the capacity to calculate the V
(1)∗
N

statistic and p-value.

function [d1, d2, v, k, p_k, K, v1, p_v1] = circ_kuipertest2(alpha1,

alpha2, res, vis_on)

...

% Calculate v1-statistic

v1 = sqrt(n*m/(m+n)) * v;
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% Calculate p-value for v1

pv1 = (8*v1^2 - 2) * exp(-2*v1^2);

if pv1>=0.447; p_v1=1;

elseif pv1<=0; p_v1=0;

else p_v1=pv1;

end

D.3 Bivariate KS Style Tests

The code used for the analysis and application of the bivariate KS test was adapted

from the function, kstest_2s_2d1, available for MATLAB R© [2016], and redefined

as kstest_2s_biv.

function [pValue, KSstatistic, Zn] = kstest_2s_biv(x1, x2, alpha)

...

% A function handle to perform comparisons in all possible directions

fhCounts = @(x, edge)([

sum(x((x(:, 1) >= edge(1)) & (x(:, 2) >= edge(2)),3))...

sum(x((x(:, 1) <= edge(1)) & (x(:, 2) >= edge(2)),3))...

sum(x((x(:, 1) <= edge(1)) & (x(:, 2) <= edge(2)),3))...

sum(x((x(:, 1) >= edge(1)) & (x(:, 2) <= edge(2)),3))]);

KSstatistic = -inf;

for iX = 1:size(x1,1) %(n1+n2)

% Choose a starting point

edge = x1(iX,1:2);

% Estimate the CDFs for both distributions around this point

vfCDF1 = fhCounts(x1, edge)./sum(x1(:,3));

vfCDF2 = fhCounts(x2, edge)./sum(x2(:,3));

% Two-tailed test statistic

vfThisKSTS = abs(vfCDF1 - vfCDF2);

fKSTS = max(vfThisKSTS);

1by Qiuyan Peng @ ECE/HKUST, and adapted by Dylan Muir (13th October, 2012). Ac-
cessed 18th February 2015, via http://au.mathworks.com/matlabcentral/fileexchange/38617-two-
dimensional–2d–paired-kolmogorov-smirnov-test
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% Final test statistic is the max abs diff in CDFs

if (fKSTS > KSstatistic)

KSstatistic = fKSTS;

end

end

% Gosset Z calculation and P estimation

n = n1 * n2 /(n1 + n2);

Zn = sqrt(n) * KSstatistic;

pValue = 2 * exp(-2 * (Zn - 0.5).^2);

The code used for the analysis and application of the bivariate Kuiper’s test was

adapted from the kstest_2s_biv function to calculate the proposed statistics.

function [VStat, kStat, VStar] = kuiper_biv(x1, x2, alpha)

...

VStat = -inf; kStat = -inf; VStar = -inf;

for iX = 1:size(x1,1) %(n1+n2)

% Choose a starting point

edge = x1(iX,1:2);

% Estimate the CDFs for both distributions around this point

vfCDF1 = fhCounts(x1, edge)./sum(x1(:,3));

vfCDF2 = fhCounts(x2, edge)./sum(x2(:,3));

% Two-tailed test statistic

dplus = max([0 vfCDF1-vfCDF2]);

dminus = max([0 vfCDF2-vfCDF1]);

% Calculate v-statistic

vfThisV = dplus + dminus;

ThisV=max(vfThisV);

% Final test statistic is the maximum stat in CDFs

if (ThisV > VStat)

VStat = ThisV;

end
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% Calculate k-statistic

kStat = n1 * n2 * VStat;

% Calculate v1-statistic

VStar = sqrt(n1*n2/(n1+n2)) * VStat;

end

D.4 Mean Squared Difference Tests

Finally, the following procedure and MATLAB R© [2016] code were used to perform

the mean squared difference based tests conducted in Chapter 5.

1. Calculate the observed discrete bivariate histograms, Yk. Each set is given by

k = 1, 2, and k = 3 represents the equally weighted combined set.

2. Estimate the continuous surface, mk, for each dataset, using the selected

estimation method; Cubic, TPS or Truncated TPS.

3. Calculate the observed test statistics, TW and TB, using the following code;

% Calculate T_W (Wang and Ye, 2010)

w=360*360;

T_W=(1/w)*sum(sum((m(:,:,1) - m(:,:,2)).^2));

% Calculate T_B (Bowman, 2006)

e=zeros(16,16,2);

for k=1:2

for n=1:16

for p=1:16

% Calculate the combined residuals (yS_i - m_3)

e(n,p,k)=yS(n+1,p+1,k)-m(round(n*22.5),round(p*22.5),3);

end

end

end

sigma2=(1/256)*(sum(sum((e(:,:,1)).^2))+sum(sum((e(:,:,2)).^2)));

T_B=(1/sigma2)*(sum(sum((m(:,:,1)-m(:,:,3)).^2))...

+sum(sum((m(:,:,2)-m(:,:,3)).^2)));

219



Statistical Characterisation of Wind Fields over Complex Terrain

4. Perform the bootstrap procedure to construct the estimated distribution of

each test statistic: TW and TB.

(a) Draw a bootstrap residual, e∗k, using the following code;

% Bootstrap Residual

re=reshape(e(:,:,k),1,16*16);

[bstat,bsam]=bootstrp(1,[],re);

for boot=1:length(re)

reb(boot)=re(bsam(boot));

end

eb(:,:,k)=reshape(reb,16,16);

(b) Construct a bootstrap sample under the null, Y ∗k = m3 + e∗k.

(c) Estimate the continuous bootstrap surface, m∗k, using the selected esti-

mation method from (2).

(d) Calculate T ∗W and T ∗B, using the code outlined in (3).

(e) Repeat (a)-(d) 1000 times to construct distributions of T ∗W and T ∗B under

the null hypothesis.

(f) Calculate the p-values for each observed statistic; TW and TB, according

to these distributions.
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