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ABSTRACT 
Live fuel moisture content is a key factor that determines the flammability of 
vegetation in ecosystems. Prediction of live fuel moisture content is inherently a 
very difficult problem since it is modulated by the complex physiological, 
phenological and ecological processes characteristic of the plant species. Soil 
moisture is one of the key variables that is known to influence plant water use. 
Recently, a new live fuel moisture content near-real-time product has been 
developed for Australia using a radiative transfer model inversion technique on 
the MODerate Resolution Imaging Spectroradiometer reflectance data. This live 
fuel moisture content product forms the basis of the Australian Flammability 
Monitoring System. At the same time, an advanced soil moisture analysis system 
has been developed by the Bureau of Meteorology recently, called the Joint 
United Kingdom Land Environment Simulator based Soil Moisture Information 
(JASMIN). JASMIN can estimate soil moisture at 5 km resolution on a daily 
timestep for the whole of Australia. 

The present study brings together the above two products and explores the live 
fuel moisture content–soil moisture relationship on a national scale. This study will 
report the preliminary work carried out in understanding live fuel moisture 
content–soil moisture relationship and suggests an approach that may be 
constructive in advancing the ability to predict live fuel moisture content reliably 
to support fire management. A preliminary analysis is being conducted over 60 
selected locations where JASMIN is found to have good skill. These 60 sites 
together represent a range of land cover types and climate zones typical of the 
Australian landscape. All the possible soil moisture profiles that can be derived 
from the four JASMIN soil layers are used for the analysis. Lag-correlation analysis 
shows that the strength of the relationship between live fuel moisture content 
and soil moisture varies from site to site and in general, is moderately strong 
(median lag-correlation of ~0.5). However, the strength of the relationship varies 
with vegetation type and also with soil profile depth. At all the sites, soil moisture 
is found to be an (important) leading indicator of live fuel moisture content. The 
lag also varies with the location and is found to range from days to months. 
Except for the forested sites, the top two soil layers exhibit a higher correlation 
with live fuel moisture content compared to the deeper layers. We develop a 
simple model to predict live fuel moisture content. The model is found to have 
good skill with an average R2 of 0.64 over the 60 sites. The normalized root mean 
square error for the model prediction is found to be less than 25% in general. 
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INTRODUCTION 
Fuel moisture content (FMC) is a critical variable affecting fire interactions with 
fuel and partly controls the efficiency of fire ignition and burning. For example, 
Dowdy and Mills (2012) showed that FMC influences the risk of ignition from 
lightning in south-east Australia. The moisture content of dead fuel (forest leaf 
litter, twigs etc.) is found to be dependent on the atmospheric variability (Viney, 
1991) and can be modelled reasonably well using weather variables (Matthews, 
2013). However, the moisture content of live vegetation is more complicated 
because it depends on eco-physiological properties that may significantly vary 
among different plant species (Pellizaro et al., 2007). The living vegetation may 
act as a heat source or a heat sink, conditional to the moisture content and the 
fire heat flux, and thereby either contributing to or inhibiting fire propagation and 
intensity (Nelson, 2001). 

Live fuel moisture content (LFMC) is defined as a ratio of the mass of water 
contained within vegetation to that of dry mass, expressed as a percentage 
(Yebra et al., 2019). LFMC variations are related to both environmental conditions 
(e.g. meteorological variables, soil water availability) and eco-physiological 
characteristics of the plant species (Castro et al., 2003). Research has shown that 
LFMC can be derived with good accuracy on a continental scale using 
measurements from optical remote sensing-based satellite platforms (Yebra et 
al., 2018). Such a product not only offers the large-scale observability but also 
provides a much higher temporal and spatial resolution compared to the point-
based, weekly-monthly resolution typical of the tradition-al, manual observing 
methods. Recently, a new LFMC near-real-time product has been developed for 
Australia using a radiative transfer model inversion technique on MODerate 
resolution Imaging Spectroradiometer (MODIS) reflectance data (Yebra et al., 
2018). This LFMC product forms the basis of the Australian Flammability Monitoring 
System (AFMS), a web-based interface monitoring the LFMC routinely across the 
landscapes (http://anuwald.science/afms). 

Optical remote-sensing based LFMC products, however, lack the predictive 
capability desir-able for fire management. Also, the sampling density is limited by 
the satellite over-pass frequency and cloud-cover. Therefore, it is desirable to 
have models that could reasonably predict the LFMC from more easily 
accessible parameters. The soil moisture (SM) state is a key factor in assessing the 
dryness of vegetation due to the relationship that exists between the two 
variables (Burgan, 1988; Viegas et al., 1992). The Keetch-Byram Drought Index 
(KBDI), which measures cumulative soil water deficit in forested ecosystems is 
found to exhibit a strong relationship with LFMC (Dimitrakopoulos and 
Bemmerzouk, 2003). There are a variety of indices in use across the world which 
estimate SM as a proxy for land dryness and can be related to LFMC. For ex-
ample, Viegas et al. (2001) and Castro et al. (2003) found that a non-linear 
relationship can be derived between moisture codes in the Canadian Forest Fire 
Weather Index (FWI) system and LFMC data for Mediterranean vegetation. 

Although estimating the soil moisture deficit indices using meteorological data is 
relatively easy to achieve, there are a few issues in using them to model LFMC. 
First, drought indices are traditionally computed at point locations and may not 
be representative of larger areas. Secondly, these indices are rather simplified, 

http://anuwald.science/afms
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empirical, water balance models that do not consider most factors that 
influence SM dynamics. For example, the KBDI and Soil Dryness Index (SDI) 
methods used operationally in Australia neglect spatial variations in soil type, 
vegetation type, terrain and aspect. The above indices also over-simplify 
evapotranspiration and runoff processes, potentially leading to large errors in 
estimated SM state. Studies have shown that SM from land surface models is 
more accurate than the above indices (Vinodkumar et al., 2017). Hence, efforts 
were made to develop a prototype system based on Joint UK Land Environment 
Simulator (JULES) land surface model (LSM) to estimate soil moisture deficit for fire 
danger rating (Dharssi and Vinodkumar, 2017). This system, called the JULES 
based Australian Soil Moisture Information (JASMIN), estimates SM at a spatial 
resolution of 5 km for the whole of Australia. Verification against ground-based 
SM observations shows that a prototype version of this system is significantly 
better than the KBDI and SDI models (Dharssi and Vinodkumar, 2017). SM is not a 
direct input in fire danger calculations in Australia. Holgate et al. (2017) proposed 
that the fuel availability measure in McArthur’s Forest Fire Danger Index (FFDI) 
could entirely be replaced with SM alternatives, but the recalibration of the FFDI 
to actual bushfire conditions would be required to be accepted operationally. 
Consequently, there is a need to determine how SM can be integrated 
effectively into existing fire danger rating systems to facilitate greater use of SM 
information in fire management and its relation to fuel moisture conditions. 

The present study aims to combine the AFMS-LFMC and JASMIN-SM dataset to 
conduct some preliminary investigation on the suitability of SM as a predictor for 
LFMC. Our research aims to determine the strength of the relationship between 
LFMC and SM over the Australian landscape. The study also aims to develop a 
simple model to predict LFMC changes using SM estimates. An understanding of 
the complex live fuel – soil moisture content relationship can help in designing 
operational fire behaviour forecasting models. 
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DATASETS 

JASMIN 

The JASMIN system runs at 5 km resolution with an hourly time interval (Dharssi 
and Vinodkumar, 2017). The soil column extends from the surface to 3 m and is 
divided into four layers of thickness 10 cm, 25 cm, 65 cm and 200 cm. JASMIN is 
driven mainly by observation-based analyses based on various Bureau of 
Meteorology (BoM) systems. The BoM’s Mesoscale Surface Analysis System 
(MSAS; Glowacki et al., 2012) data is used to provide the JULES driving data for 
air temperature, specific humidity, wind speed and surface pressure. The 
downward surface solar radiation data is from a near-real-time BoM product 
derived from the Himawari Geostationary Meteorological Satellites and is 
available at about 5 km resolution. The downward surface longwave radiation 
data is obtained from BoM’s regional numerical weather prediction model at 12 
km resolution (Puri et al., 2013). Rainfall data is from the Australian Water 
Availability Project (AWAP; Jones et al., 2009) and available as daily 
accumulations. Tropical Rainfall Measuring Mission (TRMM; Huffman et al., 2007) 
data is used to disaggregate AWAP rainfall to 3-hourly values. The 
disaggregation methodology is part of the JULES modelling framework (Williams 
and Clark, 2014). The TRMM data is also used to fill spatial gaps in AWAP data. 

LIVE FUEL MOISTURE CONTENT 

The LFMC data is derived by using a radiative transfer model inversion technique 
on the MODIS reflectance data (Yebra et al. 2018). First, three different radiative 
transfer models, one for each fuel type, are used to simulate reflectance spectra 
for the moisture content range for three fuel types (grasslands, shrublands and 
woodlands/forest). These simulated spectra are then used as reference lookup 
tables to map the corresponding LFMC values from the quality-controlled 
observed MODIS reflectance data of the day. MODIS land cover maps are used 
to identify the dominant fuel type corresponding to each pixel. The MODIS 
reflectance and land cover data are at 500 m resolution resulting in LFMC 
retrievals of 500 m spatial resolution every four days. The methodology used to 
map FMC in Australia is based on previous experience in retrieving FMC in Europe 
(Jurdao et al. 2013; Yebra and Chuvieco 2009a, b). Existing field LFMC data 
collected in grassland, shrubland and forest between 2004 to 2014 were used to 
validate the algorithm retrievals (Yebra et al., 2018). 
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METHODS, RESULTS AND DISCUSSIONS 

LOCATION-BASED ANALYSIS 

Our approach is to first evaluate the relationship between the two variables at 
selected locations which sample the climatic zones and vegetation types typical 
of the Australian landscape. In that respect, we analyse the datasets over three 
well-known SM networks, named CosmOz, OzFlux and OzNet (Figure 1).  The three 
networks together comprise of about 60 sites spanning across the whole country. 
Another reason to select these locations is the demonstrated skill of JASMIN at 
these sites (Vinodkumar and Dharssi, 2019). 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 1. SITES OVER WHICH THE LOCATION-BASED ANALYIS OF LFMC AND SM IS CARRIED OUT. THE LOCATIONS CORRESPOND TO THE THREE IN SITU 
SOIL MOISTURE NETWORKS – COSMOZ (GREEN SQUARE), OZFLUX (RED CIRCLE) AND OZNET (BLACK DIAMOND). 

The location-based analysis is conducted for a period spanning from 2010 to 
2019. The JASMIN SM ana-lysed here is in volumetric units (m3 m-3). The data at 
each location is collocated using the nearest-neighbour approach. In general, 
LFMC displays a strong seasonality where the values typically reach their lowest 
before the seasonal rains have commenced. This annual cycle is illustrated 
through the time series plot over Baldry in the southern tableland region of New 
South Wales (black, dotted line; Figure 2). The Baldry site is part of the CosmOz 
network with the land classified as a mix of pasture and reforested woodland. 
The site is situated in a semi-arid environment with annual rainfall dominated by 
winter precipitation produced by mesoscale extra-tropical disturbances. The 
LFMC time series over Baldry shows peaks after the wet season and the 
vegetation gradually drying out into the drier summer months. The site also 
displays short-lived spikes after significant rain events, highlighting that the plants 
can utilize moisture transported into the shallow soil layers after a rain event. 

JASMIN has four soil layers and it is not precisely clear which of these layers best 
represents the root zone at a given location. The top two layers are often found 
to be influenced by weather events characterized by sharp wetting and drying 
phases. The temporal dynamics of these two layers at Baldry typify the widely 
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occurring pattern across the landscape (Figure 2). Temporal variations in the 35-
100 cm layer are less sizable and rather smooth compared to the two layers over 
it. This deepest layer is less influenced directly by what happens at the surface as 
the top two layers act as a natural filter in modulating the water transport 
downwards. The bottom-most soil layer in JASMIN is even less dynamic due to the 
depth and thickness of the layer. In general, the bottom two layers show similar 
temporal characteristics across locations as well. There is a visible hysteresis and 
only the significant and persistent rain events recharge the bottom layers. 

 

 

 

 

 

 

 
 

FIGURE 2. TIME SERIES PLOTS OF LFMC, SM AND 24-HOUR ACCUMULATED RAINFALL OVER THE BALDRY SITE IN NEW SOUTH WALES (MIX OF PASTURE AND 
REFORESTED WOODLAND). LFMC DATA IS FROM THE AFMS, SM FROM THE JASMIN AND RAINFALL FROM THE AWAP. SM FROM ALL FOUR SOIL LAYERS 
IN JASMIN IS SHOWN AND IS PRESENTED IN VOLUMETRIC UNITS (M3 M-3). 

A lag-correlation analysis is conducted between LFMC and SM from all the native 
JASMIN layers and the combination of layers that can be rationally derived using 
the four native soil pro-files (using weighted average based on layer depth). The 
results presented in Figure 3 depict the maximum lag-correlation and the 
corresponding lag (in days) for each site. The skill scores are segregated into four 
broad land cover types. The land cover classification is made based on the 
information from in-situ locations. The results indicate that the strength of the 
relationship between LFMC and SM varies from site to site. The observed variation 
in the correlation can be caused by a variety of factors, including spatial 
variability in plant type, physiology and morphology, climate, soil properties and 
depth. The range in lag time indicates that there is a significant difference in the 
physical processes happening at each location, from the transport of water 
through the soil from the surface to the root-zone and the eventual uptake of 
moisture by plants. 

The present study aims to develop a simple model to explain the relationship 
between LFMC and SM. In that respect, we prefer to use a single SM profile as 
the predictor for LFMC. From our analysis, we identify soil moisture content from 
the 0-35 cm profile (SMC0-35cm) provides the best skill in terms of the correlation 
with LFMC. The SMC0-35cm dis-plays a strong relationship with the LFMC at 
different land cover types. One possible reason for this larger degree of 
agreement is that both the SMC0-35cm and LFMC exhibits strong seasonality. The 
deeper layers may not always display the strong seasonality exhibited by the 
shallower layers. Besides, the deeper layers may miss the short-term variations 
associated with individual weather events to which the plants and shallow soil 
profiles respond. Also, the upper and deeper soil layers can be disconnected in 
land surface models due to uncertainties in the parameterizations. This may result 
in deeper layers exhibiting little seasonality, rendering them less useful to predict 
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season-al LFMC changes. This also gives rise to artificial correlations at a longer 
time lag, as evident from the box and whisker plots for the 100-300 cm profile 
(Figure 3).   

 

 

 

 

 

 

 

 

 

 
FIGURE 3. BOX AND WHISKER PLOT REPRESENTING A) LAG-CORRELATION AND B) LAG IN DAYS BETWEEN LFMC AND SM FROM VARIOUS JASMIN NATIVE 
AND DERIVED LAYERS. THE GROUPING IS DONE BASED ON THE LAND-USE/LAND -COVER (LULC) TYPE OF THE OBSERVING SITE. THE OUTLIERS ARE 
MARKED AS DIAMONDS. 

In general, a strong linear relationship is found between the LFMC and SMC0-35cm, 
except for forested locations (Figure 3). The average maximum lag-correlation 
observed for grasslands, woodlands, forestlands and croplands between LFMC 
and SMC0-35cm are 0.71, 0.69, 0.47 and 0.5, respectively. The corresponding 
average lag is 14.28, 64.54, 218.91 and 16.85 days. The forested sites generally 
display a stronger correlation to the thicker, 0-300 cm soil profile. This is likely a 
consequence of the deeper roots typical of over-story forest canopies which can 
draw water from a much thicker soil profile than the 0-35 cm layer. The skill lost 
by using the 0-35cm profile instead of the 0-300 cm is 0.02 (0.09) in terms of mean 
(median) correlation. 

The association of SMC0-35cm to LFMC exhibits very different behaviour for different 
land cover types as indicated by the correlation analysis. This is suitably illustrated 
by the frequency histogram of normalized SMC0-35cm and LFMC for grassland and 
evergreen broadleaf forest land cover types over locations and periods where a 
fire is detected (Figure 4). The normalization scales the volumetric data between 
(0, 1) using the minimum and maximum values from the respective time series. 
Thus, the normalization gives a "relative" SM field which represents the "fraction of 
full wetness" and is often called simply soil wetness (SW) in the literature 
(Vinodkumar et al., 2017). The occurrence of fire is identified using the MODIS fire 
radiative power (FRP) data. FRP estimates are available with every active fire 
pixel reported in the MOD14 and MYD14 fire products derived from the MODIS 
instrument onboard Terra and Aqua satellites (Giglio et al., 2016). The MODIS FRP 
retrieval is based on the relationship between the emitted fire energy and 
infrared brightness temperature estimates in the 4 μm region (Kaufman et al., 
1998). The algorithm is valid for FRP retrievals of fires with flaming temperatures 
greater than 600 K and occupying a pixel fraction less than 0.1 (Wooster et al., 
2003). The FRP is given in a unit of megawatts (MW) per pixel. Only pixels with FRP 
> 50 MW are selected. The evaluation against FRP is carried out for the January 
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2010 – October 2016 period. The land cover classification is made based on the 
500 m resolution MODIS land cover land use type dataset (Broxton et al., 2013). 

 

 

 
 

 

 

 

 

 

 

 

 

 

FIGURE 4. FREQUENCY OF SW FROM 0-35CM PROFILE AND LFMC OVER GRASSLANDS (A & B), AND EVERGREEN BROADLEAF FORESTS (C &D) 
RESPECTIVELY. EACH DATA POINT CORRESPONDS TO THE LOCATION IDENTIFIED AS FIRE HOTSPOTS BY THE MODIS FRP DATA COVERING THE WHOLE 
AUSTRALIA. 

Over grasslands, 90% of fire occurs when the SW is ≤ 0.5 (Figure 4a). Some of the 
highest FRP values (≥ 1000 MW) corresponds to very dry soils (SW < 0.25; results not 
shown). Also, ~93% of fires occur over grasslands when the LFMC is <100% (Figure 
4b). The relationship is found to be more complicated for the evergreen forest 
sites (Figure 4c). Here, about 56% of total fires are found to occur over wetter soils 
(SW > 0.5) and only the remaining 44% of fires occur when SW < 0.5 (Figure 4c). 
The drier soils under grassland, compared to the forest, may reflect the fact that 
the soil water uptake in grasses is higher than that in woody vegetation (Köchy 
& Wilson 2000). This is facilitated by higher (~20 times) fine root lengths in grassland 
soils than in forest soils (Jackson et al. 1997). Besides, the root-shoot ratio is nearly 
30 times greater in grassland than forest (Wilson 1993). Further, additional factors 
may lower SM temporal variability in the forest including, reduced evaporation 
due to lower temperature, reduced wind speed, and larger water holding 
capacity of clayey soils characteristics of forested sites. 

Similar to grassland, the most intense fires (FRP > 1000 MW) over evergreen 
broadleaf forests are found to occur when SW < 0.5 (figure not presented for 
brevity). These forested trees can hold water equivalent to its dry weight, even 
during periods conducive to fires. This is evident from the frequency distribution 
of LFMC where a large proportion of fires occur when LFMC is around 100% 
(Figure 4d). The LFMC at these sites seldom falls below 50% in the event of a fire 
occurring (Figure 4d). The evergreen trees are found to have high wood density 
and hence can store a substantial amount of water in the stem (Kenzo et al., 
2017). Also, the development of deep roots and subsequent water uptake from 
deeper soil layers are found to be an important strategy enabling evergreen 
species to overcome seasonal water limitations (Hasselquist et al., 2010). The 
average root depth in evergreen forests is estimated to be about 3.1 m (Yang et 
al., 2016). The low correlations observed over forested sites (Figure 3a) is possibly 
a result of these drought-resistant strategies adopted by the particular 
vegetation types. 
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LMFC PREDICTIVE MODEL 

The study aims to construct a simple model for predicting LFMC using the gridded 
JASMIN SM product. The strength and lag of the LFMC and SM relationship are 
found to vary spatially. The LFMC, in general, is influenced by a variety of factors 
other than soil moisture availability, including plant physiology and 
evapotranspiration (Qi et al. 2012). This possibly explains the somewhat different 
annual cycles exhibited by LFMC to SMC0-35cm (Figure 5). Hence, it is important to 
address some of these factors implicitly to derive a skilful model for LFMC based 
on SM. We adopt a modelling strategy similar to that discussed in Fovell et al. 
(2015), where the LFMC is predicted using a linear combination of an annual 
cycle model and a model to predict daily deviations from the annual cycle. The 
annual cycle for both LFMC and SM is constructed separately as a function of 
time. We select the 0-35 cm profile from JASMIN to model LFMC. The daily 
deviations in LFMC are predicted using that in SMC0-35cm, where the daily 
departures are calculated by removing the respective annual cycles from each 
dataset. 

The LFMC data is about 10 times finer than the JASMIN data. To develop the 
predictive model, the LFMC data is upscaled to 5 km resolution by taking an 
average of the LFMC values that are encompassed within each JASMIN pixel. 
The annual model for both LFMC and SMC0-35cm is based on a Fourier cosine series 
approximated to the 12th harmonics, where day-of-the-year is used as the 
predictor variable. This simple function is capable of estimating fairly odd-shaped 
annual cycles in both datasets, an example of which is shown in Figure 5. For a 
sufficiently long time series, the annual cycle can be computed by just taking the 
climatological mean for each day. This is not possible here due to the shorter 
time series. This is even more problematic for LFMC, given the infrequent temporal 
sampling due to satellite over-pass interval and cloud cover. 

The annual cycle of both LFMC and SMC0-35cm varies from location to location 
and hence each station has a unique function. When the reference AFMS LFMC 
time series is compared to the annual model for the period extending from 
January 2010 through December 2019, a sizable 49% of the reference series' 
variance is captured by the annual model, where the value represents the 
average for the 60 stations examined. Similarly, for the SMC0-35cm, the average 
variance that can be explained by the annual model is found to be 37%. 

The SM departures are generally found to have good agreement with the LFMC 
departures. This is illustrated in Figure 6, where a direct comparison is facilitated 
by superimposing the two residual time series over Baldry in New South Wales. 
However, it is readily apparent that there is a systematic phase difference 
between the two residual time series. A lag-correlation analysis for the residuals 
returned the highest correlation of 0.72 for a lag of 22 days over Baldry. This result 
further suggests that LFMC is responding directly and strongly to SMC0-35cm 
changes and the lag signifies the combined time taken for the rainfall received 
at the surface to percolate through the 0-35 cm layer and the subsequent water 
uptake process by the plant to occur. The lag between the two residual time 
series is found to vary from location to location, with a minimum of 0 and a 
maximum of 29 days. 
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To keep the predictive model simple, we identified a lag of 14 days as a good 
compromise to obtain a reasonable linear relationship between the two residual 
time series at all locations. An ordinary least square regression model with the 
residual SMC0-35cm as the independent variable to predict daily changes in LFMC 
is developed for each grid point. The final predictive model is thus constructed 
using a linear combination of the time function model to predict the annual 
cycle and the ordinary least square regression model to estimate the daily 
variations. The predictive model returned an average R2 of 0.64 over the 60 sites 
for the training period (2010-2019). The skill varies with location and is found to be 
lower over locations which have larger temporal variability in either LFMC or 
SMC0-35cm series. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 5. OBSERVED (GREY LINE) AND MODELLED (ORANGE LINE) ANNUAL CYCLES OVER TUMBARUMBA, NSW FOR A) LMFC AND B) SMC0-35CM. 

 

 

 

 

 

 

 
FIGURE 6. RESIDUAL TIME SERIES OF SMC0-35CM (RED LINE) AND LFMC (BLACK BROKEN LINE). THE GREY SOLID LINE CORRESPONDING TO THE LFMC 
SHIFTED BACKWARD FOR 22 DAYS.  
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The model is applied to the whole of Australia. The time function model to 
estimate the annual cycle and the ordinary least squares regression model to 
estimate the daily variations are computed for each grid point. These two sub-
models are then combined linearly to estimate the LFMC value at each JASMIN 
grid point. To check the adequacy of the predictive model, correlation, bias and 
normalized root mean squared difference (NRMSD) are computed against the 
original AFMS dataset for the training period (2010 – 2019). The NRMSD score is 
computed by normalizing the RMSD using the range of the measured LFMC. The 
spatial distribution of the resultant correlation and NRMSD scores are presented 
in Figure 7. A strong correlation is observed over the tropical, northern savannas 
and southern grasslands and croplands (Figure 7a). The model is found to be 
generally unbiased (not shown). The random error in the model is usually less than 
25% of the dynamic range as indicated by the NRMSD score (Figure 7b). 

 

 

 

 

 

 

 

 

 

FIGURE 7. VALIDATION OF THE LFMC PREDICTIVE MODEL: A) PEARSON’S PRODUCT-MOMENT CORRELATION, AND B) NORMALISED RMSE 

The evaluation of the model is extended by comparing the original LFMC and 
modelled LFMC against the MODIS FRP data are presented in Figure 8. A log10 
transformation is applied to the FRP data. The plots correspond to four land-cover 
types: grassland (Figure validation 8a), woody savanna (Figure 8b), cropland 
(Figure 8c), and evergreen broadleaf forest (Figure 8d). For the original AFMS 
dataset, the mean and standard deviation of LFMC over grassland, cropland, 
woody savannas, and evergreen broadleaf forests when a fire is detected (using 
MODIS FRP data) are 40.7±30.2, 78.4±36.1, 53.9±14.1, and 101.5±20.3, respectively. 
The corresponding scores from the predictive model are 46.2±28.9, 82.4±30.9, 
58.5±13.3, and 102.3±17.6, respectively. The model is found to capture the 
distribution of the original (AFMS) LFMC product in general. The skill of the model 
over woody savannas (Figure 8b) and evergreen broadleaf forests (Figure 8d) 
are found to be particularly good. 

The model predictions are verified over 6 months from January – June 2020, 
which falls outside the training data period. Figure 9 depicts the temporal 
correlation and NRMD obtained from this verification. Only locations where 
correlations with p-values<0.05 are shown. The predicted LFMC shows a strong 
correlation in general and especially over the eastern and northern Australia. 
There are, however, regions that display weaker correlation. This is quite 
noticeable over the evergreen forest over the south-eastern Australia where the 
model is found to have low skill. Weaker correlations are also observed over 
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regions classified as open shrubland typical of central and north-western 
Australia. However, these results should be understood with a degree of caution 
as the verification presented here is based on limited sample size. The number of 
temporal data points varies with location and the maximum sample size 
available is 38. We acknowledge that this is rather a small sample size to derive 
spatially consistent skill score. The trade-off is to reduce the training period from 
9 years which may lead to a less optimal model fit and hence undesirable. 
However, this leaves us with a limited sample size for verification. One approach 
to overcome the limited sample size is to apply a bootstrapping or cross-
validation approach. However, this is outside the scope of the present study and 
will be addressed in future studies. 

 

 

 

 

 

 

 

 

 

 
FIGURE 8. Scatter plot of original AFMS LFMC and predicted LFMC against the MODIS FRP. The colours depict the probability density estimated using 
Gaussian kernel density estimation method. The light blue colours indicate least dense locations on the plot and the dark red indicate the densest 
locations. 
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CONCLUDING REMARKS 
In the present study, we explore the relationship between live fuel moisture 
content and soil moisture content on a national scale. Both variables are widely 
used in fire management practices - the LFMC is used often directly and the SM 
as a proxy for fuel moisture/availability. The two variables represent landscape 
dryness at different strata and the latter can be a good indicator of the former. 
Remote sensing techniques now allow sampling LFMC at a continental scale 
more regularly, which is impractical using the traditional, manual methods. 
However, temporal and spatial gaps in remote sensing data exist, mainly due to 
satellite return time and cloud cover. Our study is a first step towards addressing 
the limitations of remote sensing techniques in estimating LFMC and developing 
a predictive model for operational applications. 

The study makes use of readily available gridded LFMC and SM products from 
the AFMS and JASMIN systems to identify the functional relationship between SM 
and LFMC. The results indicate that SM is a leading indicator of LFMC. This has 
significant operational implications as daily variations in LFMC can be predicted 
using SM information from JASMIN on a national scale. JASMIN is currently run as 
a prototype, research system with SM analysis done only near-real-time. 
However, JASMIN can be extended to produce both real-time analysis and 
forecasts. The prognostic mode can provide SM forecasts for up to 10 days. The 
model developed here considers a lag of 14 days between SM and LFMC. This 
implies a lead time of 14 days for predicting the LFMC estimates and a maximum 
lead time of 24 days for a 10-day SM forecast product. 

 

 

 

 

 

 

 

 

 
FIGURE 9. PEARSON'S PRODUCT-MOMENT CORRELATION BETWEEN THE ORIGINAL AFMS LFMC AND THE PREDICTED LFMC DATASETS. SCORES ARE 
PRESENTED ONLY FOR LOCATIONS WHERE P-VALUE<0.05. 

This preliminary research work was undertaken to understand the relationship 
that exists between the AFMS LFMC and JASMIN SM products. In that respect, we 
kept the modelling strategy fairly simple. For example, the model considers only 
a single soil profile and lag value at all locations across the country. The 
correlation analysis indicates that the dependence of LFMC to SM can vary with 
vegetation type. For a plant with complex, deeper root systems, the relationship 
may exist at multiple soil layers. Also, the lag between the two variables is an 
attribute of the location determined by a range of factors including soil and 
vegetation characteristics. Therefore, the future modelling strategy may consider 
a spatially varying lag as well as a combination of soil layers.   
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We did not consider any noise filtering as a pre-conditioning step to the 
construction of the predictive model or in the subsequent estimation. It is 
observed that high-frequency spikes in SM do not match up well with the LFMC 
data. A temporal average filter applied to the SM time series helps to improve 
the correlations between the dataset marginally (not presented here). The 
temporal filter applied to a soil profile is equivalent to expanding the soil horizon 
downward. At locations where the hydrological coupling between the surface 
and deeper layers are weak in the model, a temporal filter may help to capture 
the temporal dynamics of deep layer SM better. However, the time 
window/parameter(s) for a temporal filter is location specific and should be 
carefully chosen. The time parameter, in effect, represents all the processes 
affecting the temporal dynamics of SM, such as the thickness of the soil layer, soil 
hydraulic properties, evaporation, run-off and vertical gradient of soil properties 
(texture, density). SM studies have successfully applied an exponential time filter 
to derive deep layer SM from the near-surface layer SM estimates. Future 
research may investigate similar methods to address some of the issues arising 
with the data noise or representative soil depth. 

There are other avenues to be explored in the context of using soil moisture 
information for mapping and predicting fuel conditions. For example, grassland 
fires are a major threat in the Australian landscape and grass curing is a well-
known indicator of fire potential in grassland ecosystems. Studies have shown 
that LFMC exhibit, in general, exhibits a strong relationship with grass curing 
(Xuang, 2019). Therefore, the approach discussed in the present study can be 
extended to identify the relationship between grassland curing and soil moisture. 
Also, new remote sensing-based techniques are emerging which can 
characterize the moisture in above-ground biomass. The vegetation optical 
depth (VOD) information retrieved using microwave radiometry measurements 
is such a product and is found to be a useful indicator of vegetation water 
content (Konings et al., 2016). A recent study has assimilated VOD from Soil 
Moisture Active Passive Mission (SMAP) into a coupled dynamic vegetation - land 
surface model to assess the impact of 2019 Australian fires on regional water 
budget (Kumar et al., 2020). This study used NASA's Land Information System (LIS) 
framework to assimilate the SMAP VOD retrievals. Given that there is a proposal 
to implement JASMIN within NASA's LIS framework, there is an opportunity to 
further explore the use of VOD information in JASMIN to map and predict 
parameters relevant to fire danger in the future. These new products could 
potentially replace the existing, outdated, fuel availability estimates in fire 
behaviour models. 
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