

RESILIENCE & MITIGATION THROUGH HARDENING THE BUILT ENVIRONMENT (BUILDINGS & INFRASTRUCTURE) A9: Cost-effective mitigation strategy for Earthquake Risk

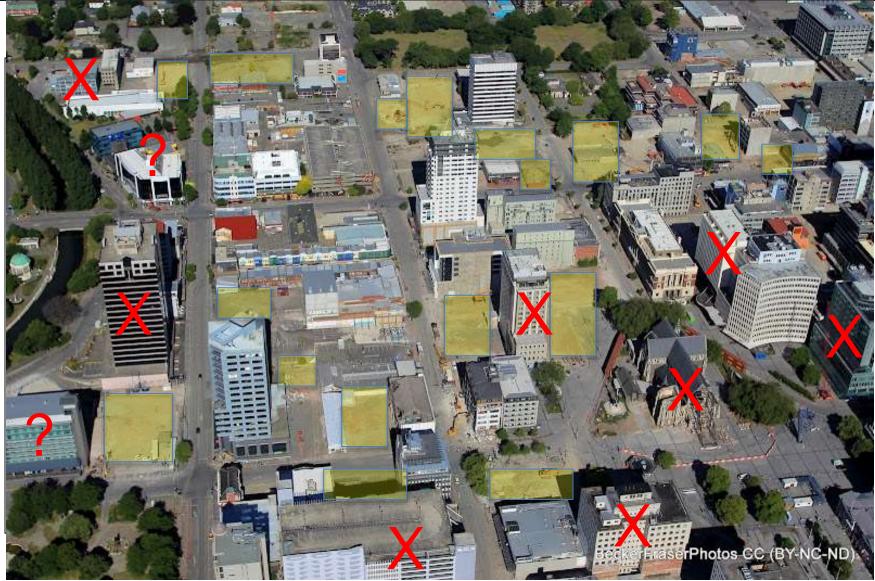
Professor Michael Griffith School of Civil, Environmental & Mining Engineering, The University of Adelaide

A9: COST EFFECTIVE MITIGATION STRATEGY FOR BUILDING-RELATED EARTHQUAKE RISK

Project Participants

<u>Univ of Adelaide</u>: MC Griffith, M Jaksa, AH Sheikh, C Wu, MMS Ali, T Ozbakkaloglu, A Ng & P Visintin <u>Univ of Melbourne</u>: NTK Lam, H Goldsworthy <u>Swinburne University</u>: JL Wilson, E Gad <u>Geoscience Australia</u>: M Edwards, H Ryu, M Wehner

AERIAL VIEW OF CHRISTCHURCH SECONDS AFTER THE 22 FEBRUARY 2011 EARTHQUAKE (only M6.3 but ~ 10km from CBD)


Summary

1) Design magnitude earthquakes (1 in 500 yr) will affect large area (~ 30km radius)

2) While the earthquake Hazard is low, the Risk (= probability x exposure) is high - a M6 earthquake in Sydney is ranked in the top 10 of financial risks for the world's reinsurance industry!

3) Damage will be widespread and take many years to repair – Christchurch damage ~ 20% GDP and at least 10 years to repair

CHRISTCHURCH – 2012 (> 80% BLDGS DEMOLISHED AS OF JULY 2014)

Ross Becker

Aim: to develop evidence base to inform decision making for earthquake risk mitigation

- Establish seismic vulnerability classes for representative building types in Australia
- Survey existing retrofit techniques for known performance in recent earthquakes
- Develop new cost-effective Australia-specific retrofit techniques
- Develop decision-support and earthquake risk forecasting tools to support infrastructure managers
- Develop economic loss models for business interruption and casualty costs

Expected Outputs:

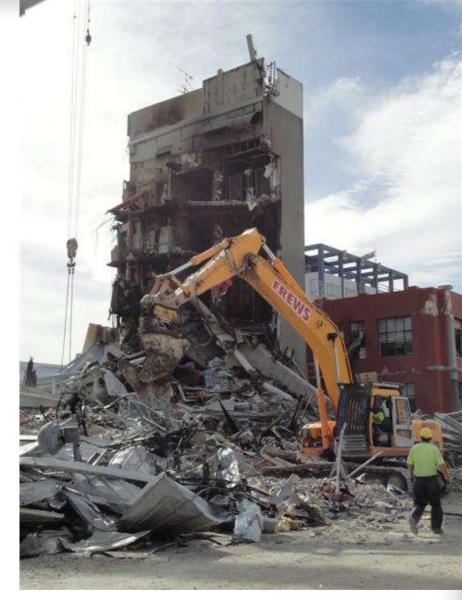
- A cost-benefit analysis methodology for key retrofit options at both the building and regional levels
- Information and models to enable planning authorities to develop policies and legislation, backed up by substantiated economic benefits

Lessons from Christchurch

Christchurch corner shops

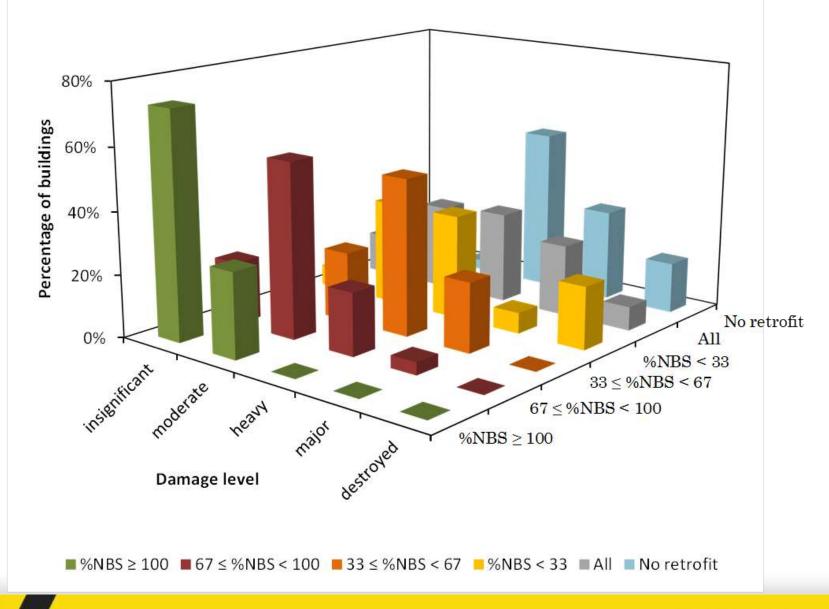
Adelaide corner shops

Christchurch theatre


Adelaide arcade

bnhcrc.com.au

Out-of-plane wall bending failures in Christchurch (42 fatalities in URM buildings)


PGC – 18 fatalities

CTV – 115 fatalities

DAMAGE LEVELS FOR DIFFERENT LEVELS OF RETROFIT

bnhcrc.com.au

KEY ACTIVITIES FOR THE PERIOD

Post-docs (1.2 FTE) appointed:

Dr Wade Lucas at Adelaide and

Dr Elisa Lumantarna at Melbourne/Swinburne

Five PhD students (1 CRC supported) working on topics directly related to CRC:

- 2 students on seismic vulnerability of reinforced concrete structures;
- 1 student on seismic performance of transfer structures;
- 1 student on improved seismic assessment for URM buildings; and
- 1 student on quantifying soil site amplification characteristics.

Seismic Vulnerability of Australian Buildings:

Geoscience Australia researchers have produced first cut of ratings for the seismic vulnerability classifications for Australian buildings.

Damage & Economic Loss Modelling

- 1. Rank Vulnerability of Common Construction Types
- 2. Estimate Structural Drift for Various Magnitude Events
- **3**. Develop Damage-Drift Relationships to Estimate Building Damage
- 4. Develop Cost-Damage Relationships to Estimate Economic Impact* of Natural Hazard

 costs to include fatalities & injuries, business interruption at a precinct level

New/Improved Retrofit Options

- 1. Rank Vulnerability of Common Construction Types
- 2. Identify Failure Modes of High Risk Construction Types under Seismic Loading
- **3.** Identify Available Retrofit Techniques for High Risk Construction Types
- 4. Use Christchurch Data to Identify Successful Retrofitting Techniques
- 5. Use Christchurch Data to Identify Unsuccessful Retrofitting Techniques and Investigate Possible Improvements

Experimental Planning

1. Unreinforced Masonry Subjected to Out-of-Plane Bending

2. Non-Ductile Reinforced Concrete Frames

Closing Remarks

- Have met all deliverables to date
- Most of the project team researchers attended the 2014 Australian Earthquake Engineering Conference in late November during which time we held informal project meetings in parallel with that conference.
- The Draft plans for further CRC project work were further fleshed out at that time. We now need feedback from end users.

bnhcrc.com.au