

# OPTIMISATION OF FUEL REDUCTION BURNING REGIMES FOR FUEL REDUCTION, CARBON, WATER AND VEGETATION OUTCOMES

Malcolm Possell Faculty of Agriculture and Environment, University of Sydney, NSW



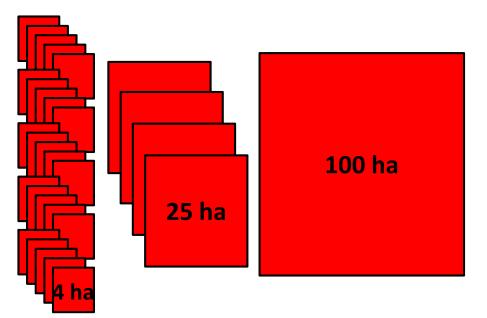


Business Cooperative Research Centres Programme

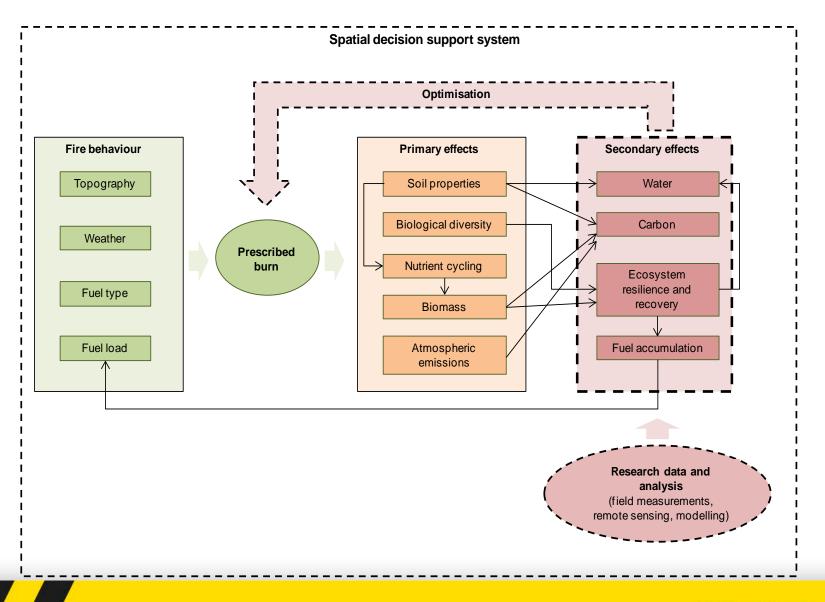


# **CURRENT TEAM MEMBERS**

#### University of Sydney Researchers:


- Mana Gharun Postdoctoral Research Associate in Spatial Modelling Biogeochemistry and Fire (since November 2014, BNH CRC funded)
- Ariana Iaconis Forester/Research Assistant (since October 2014, BNH CRC funded)
- Maggie Norton Research Assistant (since March 2015, BNH CRC funded)
- A number of in-kind researchers and support staff

#### End Users include:


- Naomi Stephens, Office of Environment and Heritage, New South Wales
- Max Beuker, National Parks and Wildlife Service, NSW.
- Mike Wouters, Department of Environment, Water and Natural Resources, South Australia
- Liam Fogarty, Department of Environment and Primary Industries, Victoria
- Neil Cooper and Adam Leavesley, ACT Parks and Conservation Services
- Lachlan McCaw, Department of Parks and Wildlife, Western Australia

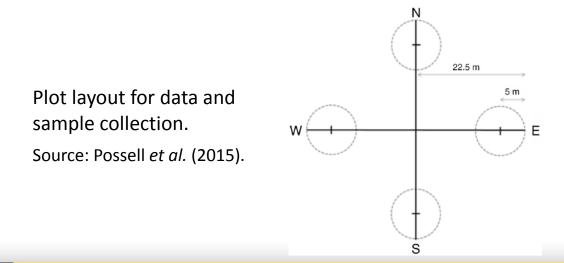
## LAND MANAGERS WANT TO KNOW

- 1) What does it cost to implement fuel reduction burns and how effective are they?
- 2) What is the cost to environmental values for the size of each burn?
  - Carbon outcomes
  - Water outcomes
  - Vegetation outcomes



#### **OPTIMISATION OF HAZARD-REDUCTION BURNING**




# **OBJECTIVES**

- 1) Development of a sampling protocol to quantify key variables at fuel reduction fires
- 2) Design and test a statistical robust sampling scheme for use at range of spatial scales
- 3) Application of sampling schemes and field techniques at fuel reduction fires
- 4) Laboratory analysis of soil and plant samples
- 5) Data analysis and synthesis to assess the effects of size of fuel reduction fires
- 6) Developing routine and reliable measures of effects of fire intensity on soil carbon
- 7) Developing spatially accurate measures of soil water storage and dynamics based on soil moisture content



# **DEVELOPMENT OF SAMPLE SCHEMA**

- 1) Burn units have been developed to measure spatial variability in fires. A burn unit equals a burned area and its control.
- 2) The schema was circulated to participants prior to field work and protocols were demonstrated while in the field.
- Our field sampling protocol ("Sampling Schema") was used as a training tool for staff from ACT PCS, NPWS NSW and staff and students from the University of Sydney.
- The data collected has been analysed and found to be of very high quality.



# LANDSCAPE VARIABILITY

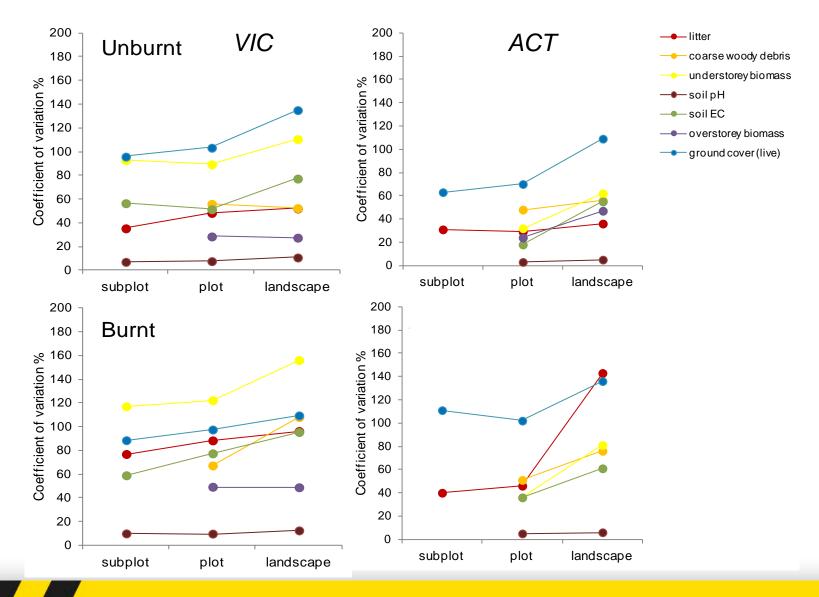
- General assumption: variability increases from small (~1 m) to large spatial scales (~1 km)
- 2) Fire characteristics change with fire size (e.g. intensity, patchiness)





How much variability is captured in environmental measurements collected at different spatial scales? What is the optimal number of samples required for burnt and unburnt areas? How does fire size affect the accuracy of the measurements?



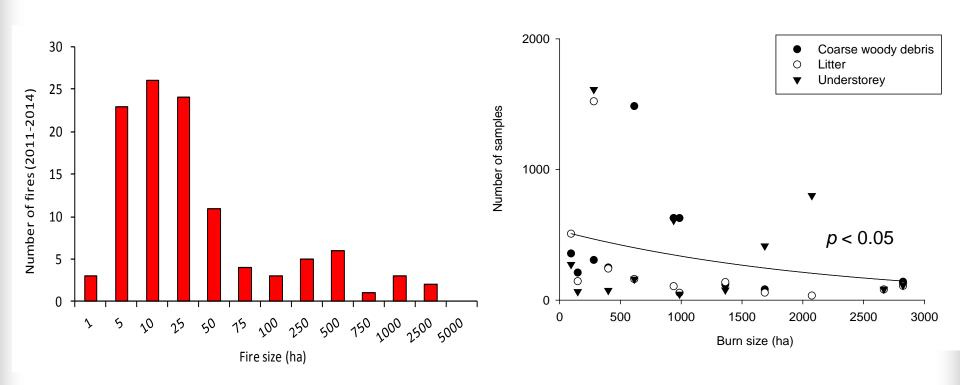

technical report no. 14

Sampling, Measurement and Analytical Protocols for Carbon Estimation in Soil, Litter and Coarse Woody Debris

Neil McKenzie Philip Ryan Peter Fogarty and Jeff Wood



## **VARIATION WITH SCALE OF MEASUREMENT**




## **OPTIMAL SAMPLING DENSITY AT THE LANDSCAPE SCALE**

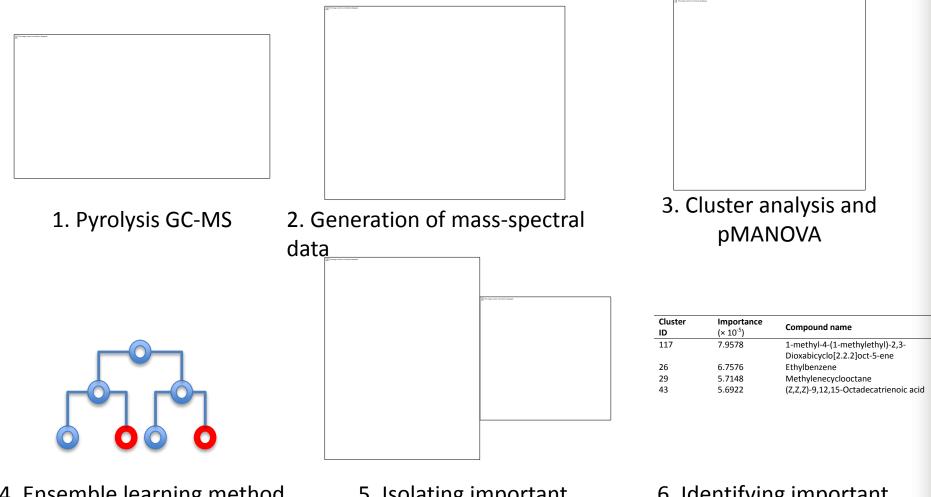
| Measurement                                      | Before |       |                   |                   | After             |       |       |                   |                   |                   |
|--------------------------------------------------|--------|-------|-------------------|-------------------|-------------------|-------|-------|-------------------|-------------------|-------------------|
|                                                  | mean   | SD    | n <sub>0.05</sub> | n <sub>0.10</sub> | n <sub>0.15</sub> | mean  | SD    | n <sub>0.05</sub> | n <sub>0.10</sub> | n <sub>0.15</sub> |
| Litter (t ha <sup>-1</sup> )                     | 13.6   | 7.4   | 474               | 118               | 53                | 3.6   | 3.8   | 2306              | 576               | 256               |
| Ground cover biomass (live, t ha <sup>-1</sup> ) | 1.0    | 1.4   | 4075              | 1019              | 453               | 0.04  | 0.1   | 13696             | 3492              | 1552              |
| Understorey biomass (t ha-1)                     | 17.9   | 20.1  | 1792              | 448               | 199               | 12.7  | 20.9  | 3867              | 967               | 430               |
| Overstorey biomass (t ha-1)                      | 296.6  | 122.2 | 297               | 74                | 33                | 335.2 | 269.8 | 1326              | 331               | 147               |
| Overstorey leaf area index                       | 0.9    | 0.2   | 69                | 17                | 8                 | 0.8   | 0.2   | 146               | 36                | 16                |
| Coarse woody debris (t ha <sup>-1</sup> )        | 46.5   | 26.3  | 641               | 160               | 71                | 27.8  | 26.8  | 1637              | 409               | 182               |
| Soil pH                                          | 5.6    | 0.5   | 15                | 4                 | 1                 | 5.6   | 0.5   | 14                | 4                 | 1                 |
| Soil EC (µs cm <sup>-1</sup> )                   | 39.5   | 57.7  | 3389              | 847               | 376               | 44.3  | 43.6  | 1468              | 367               | 163               |

(Following Mollitor et al. 1980)

## **BURN SIZE AND SAMPLING FREQUENCY**



## DEVELOPING AN EMPIRICAL METHOD FOR DETERMINING BURN SEVERITY BASED ON SOIL CARBON


| AN EXAMPLE OF A VISUAL | BURN SEVERITY INDEX FOR SOIL (Jain et al. 2008). |
|------------------------|--------------------------------------------------|
|------------------------|--------------------------------------------------|

| Level of soil burn<br>severity | Indicator<br>characteristic 1 | Indicator<br>characteristic 2           | Indicator<br>characteristic 3                                    |
|--------------------------------|-------------------------------|-----------------------------------------|------------------------------------------------------------------|
| 0                              | Unburned                      | No evidence of recent fire              | -                                                                |
| 1                              | >40% litter cover             | Charred and unburnt litter<br>present   | Mineral soil with black char; litter fall since fire             |
| 2                              | 2 – 39% litter cover          | Mineral soil with black char            | Grey char from burnt logs; litter fall since fire                |
| 3                              |                               | Mineral soil with black or grey<br>char | Lines of orange under logs; litter fall since fire               |
| 4                              | <1% litter cover              | Mineral soil with black char            | Grey and orange-coloured soil under logs; litter fall since fire |
| 5                              |                               | Mineral soil with black or grey<br>char | Orange-coloured soil under logs; litter fall since fire          |
| 6                              |                               | Mineral soil with orange char           | Black ash line present below<br>soil surface                     |

- 1) Fire severity assessments can be subjective and time consuming
- 2) Aim is to link unique chemical signatures of soil carbon with measurements of soil temperature and indices of fire intensity and severity to calibrate a quantitative algorithm of intensity or severity.

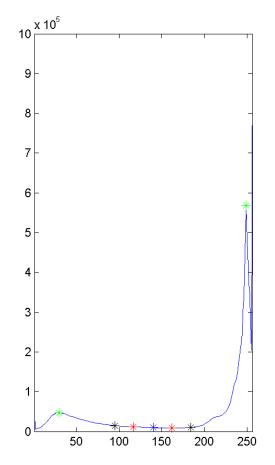


## DEVELOPING AN EMPIRICAL METHOD FOR DETERMINING BURN SEVERITY BASED ON SOIL CARBON



4. Ensemble learning method

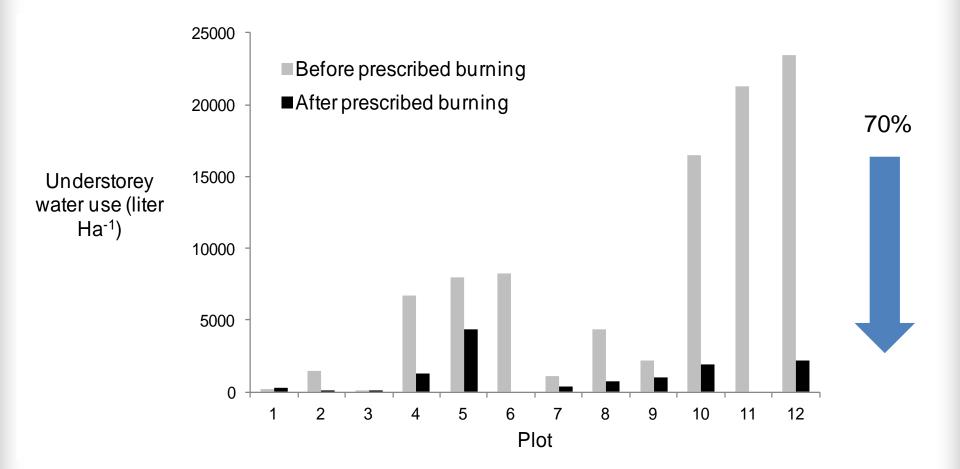
5. Isolating important classifiers


6. Identifying important compounds

## DEVELOPING AN EMPIRICAL METHOD FOR DETERMINING BURN SEVERITY BASED ON SOIL CARBON

- Still a work in progress:
- Need to compare potential marker compounds identified from ACT prescribed burn soil with other sites and soil from bushfires.
- 2. If common set of compounds identified these need to be related to fire intensity and severity parameters to make a predictive algorithm
- 3. Number of samples needed can be related to spatial variability research

## PRESCRIBED BURNING IMPACT ON WATER YIELD


#### Foliage cover estimation



#### Tree water use



# PRESCRIBED BURNING IMPACT ON WATER YIELD



## TEACHING AND TRAINING ASSOCIATED WITH BNH CRC IN 2015

- 1) Houzhi Wang Initiation of biomass smouldering combustion (PhD candidate University of Adelaide; BNHCRC funded)
- Mengran (Clare) Yu Modelling the effect of fire on the hydrological cycle (PhD candidate – USyd; BNHCRC funded)
- 3) Bonnie Cannings (BEnvSys Honours Project)
- 4) Erika Sedlacek de Almeida (University of Sydney Internship Program)
- 5) Amanda Josefsson (University of Gothenberg Internship)
- 6) Katharina Leser (University of Bielefeld DAAD internship)
- 7) University of Sydney students at RFS HQ

(http://www.bnhcrc.com.au/news/blogpost/tina-bell/2015/next-generation-education)



## PROGRESS AND END USER ENGAGEMENT: NEXT 6– 12 MONTHS

- 1. Already met sampling targets for 2016 (54 burn units).
- 2. Calibration and testing of fuel, vegetation, water and

carbon models.

- 3. Continued development of method to estimate burn severity
- 4. Fieldwork in places such as south QLD, SA, TAS and northern NSW to validate model development