Published works

Published works

Efficiency of Individual Tree Detection Approaches Based on Light-Weight and Low-Cost UAS Imagery in Australian Savannas

TitleEfficiency of Individual Tree Detection Approaches Based on Light-Weight and Low-Cost UAS Imagery in Australian Savannas
Publication TypeJournal Article
Year of Publication2018
AuthorsGoldbergs, G, Maier, S, Levick, SR, Edwards, AC
JournalRemote Sensing
Volume10
Issue2
Date Published01/2018
Keywordsbiomass, canopy height, low-cost UAS, segmentation, single tree detection, structure from motion
Abstract
The reliability of airborne light detection and ranging (LiDAR) for delineating individual trees and estimating aboveground biomass (AGB) has been proven in a diverse range of ecosystems, but can be difficult and costly to commission. Point clouds derived from structure from motion (SfM) matching techniques obtained from unmanned aerial systems (UAS) could be a feasible low-cost alternative to airborne LiDAR scanning for canopy parameter retrieval. This study assesses the extent to which SfM three-dimensional (3D) point clouds—obtained from a light-weight mini-UAS quadcopter with an inexpensive consumer action GoPro camera—can efficiently and effectively detect individual trees, measure tree heights, and provide AGB estimates in Australian tropical savannas. Two well-established canopy maxima and watershed segmentation tree detection algorithms were tested on canopy height models (CHM) derived from SfM imagery. The influence of CHM spatial resolution on tree detection accuracy was analysed, and the results were validated against existing high-resolution airborne LiDAR data. We found that the canopy maxima and watershed segmentation routines produced similar tree detection rates (~70%) for dominant and co-dominant trees, but yielded low detection rates (<35%) for suppressed and small trees due to poor representativeness in point clouds and overstory occlusion. Although airborne LiDAR provides higher tree detection rates and more accurate estimates of tree heights, we found SfM image matching to be an adequate low-cost alternative for the detection of dominant and co-dominant tree stands.
URLhttp://www.mdpi.com/2072-4292/10/2/161/htm
DOI10.3390/rs10020161
Refereed DesignationRefereed
Full Text
AFAC17 logo

AFAC17 logo

All the resources from our 2017 conference

National research priorities for natural hazards

National research priorities for natural hazards

National priorities for research

The Sir Ivan fire. Photo: Nick Moir, Fairfax Media

The Sir Ivan fire. Photo: Nick Moir, Fairfax Media

Research findings from 2017 NSW fires

Four years of highlights

Bushfire planning with kids ebook