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ABSTRACT 

Fire intensity, spread rate, and ignition are very sensitive to fuel dryness which in turn is 

strongly linked to soil moisture deficit. Though the value of soil moisture deficit in 

predicting fire danger has been long established, very few fire danger rating systems 

employ a comprehensive methodology to estimate it. Most such fire danger rating 

systems use very simple empirical water balance models which are found to have 

errors. The Bureau of Meteorology has recently developed a prototype, high-

resolution, land surface modelling based, state-of-the-art soil moisture analysis for 

Australia. The product, called Joint United Kingdom Land Environment Simulator 

(JULES) based Australian Soil Moisture Information (JASMIN), has a spatial resolution of 

5 km at hourly timesteps. However, applications like fire danger mapping may require 

soil moisture information at higher spatial resolution due to the large spatial variability 

of soil moisture in the landscape. We focus on some of the research carried out to 

downscale the JASMIN product from 5 km to 1 km spatial resolution. We discuss the 

application of three downscaling algorithms: two regression-based methods and one 

with a theoretical basis. The three methods applied are based on the well-known 

surface temperature – vegetation index space. We present an overview of the 

application of each method, along with an evaluation and comparison against each 

other and against ground-based soil moisture observations. Results from comparison 

with ground-based soil moisture measurements indicate that there is no significant 

degradation of the bias in the three methods, when going into higher spatial 

resolutions. However, the regression methods, in general, fail to capture the observed 

temporal variability. The theoretical based method, on the other hand, provides a 

temporal correlation of 0.81 and captures the skill of the parent JASMIN product.  

 

 

 

 

 

 

 

 

 



DISAGGREGATION OF JASMIN SOIL MOISTURE PRODUCT TO 1KM RESOLUTION | REPORT NO. 521.2019 

4 

1. INTRODUCTION 

Accurate and fine-scale soil moisture estimation is critical for the management and 

timely warning of natural hazards like landscape fires, floods, heatwaves, landslips. It 

has application to environmental management and to agricultural activities as 

diverse as livestock farming and silviculture. In a fire danger context, soil moisture 

status, usually provided in the form of moisture deficits, is a key parameter to assess 

the fuel availability. In Australia, there is evidence that the methods used to estimate 

soil moisture in operational fire prediction perform poorly (Vinodkumar and Dharssi, 

2017). A prototype, high resolution, land surface modelling system has been 

developed by the Bureau of Meteorology (Dharssi and Vinodkumar, 2017) to provide 

soil moisture estimates with high accuracy and precision. This prototype system is 

based on the Joint UK Land Environment Simulator (JULES; Best et al. 2011) land surface 

model and is forced mainly by observation based meteorological analyses. The new 

system is called the JULES based Australian Soil Moisture Information (JASMIN) and 

estimates soil moisture at a spatial resolution of 5 km. Though JASMIN provides 

accurate soil moisture information at high spatial resolution, it is at a coarser scale than 

is ideal for fire and other environmental applications. A common practice to 

overcome such a problem is to employ downscaling methods to increase the spatial 

scale of the product. 

Downscaling methods establish a functional relationship between soil moisture and 

associated feature variables (e.g., topography, land-use, land surface temperature), 

whose spatial distribution can more readily be measured. The downscaling methods 

generally differ in the type of auxiliary input data (e.g., optical/thermal data, 

elevation/slope, soil attributes) and the characteristics of the disaggregation method 

(i.e., physics-based or statistical). One of the most common and early frameworks 

used in soil moisture downscaling is the use of landscape indices, especially terrain 

indices, to downscale the coarser resolution soil moisture data. However, the 

downscaling methods using terrain attributes often establish the relationships by using 

extensive in-situ observations. Such methods are found to be catchment-specific, 

restricting their applicability to smaller spatial scales (Busch et al., 2012; Werbylo and 

Niemann, 2014). 

Recent advances in optical remote sensing have allowed researchers to use different 

remote sensing products that reflect soil moisture variability as ancillary information. A 

method based on “universal triangle” concept is used in several studies where a 

relationship between soil moisture, vegetation index (VI) and surface radiant 

temperature (Ts) from optical remote sensing sensors is established. The universal 

triangle concept arises from the emergence of a triangular or trapezoidal shape when 

VI and Ts measures taken from heterogeneous areas are plotted in two-dimensional 

feature space – forming a Ts/VI scatterplot (Figure 1). Of the different land surface 
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parameters, NDVI and LST are the most widely used. Theoretical and experimental 

studies have demonstrated the relationship between surface soil moisture, NDVI and 

LST for a given region under specific climatic conditions and land surface types. This 

method is used by several studies to downscale microwave remote sensing retrievals 

of soil moisture (Peng et al., 2017). 

 

Figure 1. The Ts-VI feature space 

Based on the triangular feature space, an empirical, polynomial fitting downscaling 

method was proposed by Zhan et al. [2002] and Chauhan et al. [2003]. Piles et al. 

(2011) employed a similar method over south-eastern Australia to retrieve soil moisture 

at 1 km resolution from Soil Moisture and Ocean Salinity (SMOS) mission using NDVI and 

LST data from Moderate Resolution Imaging Spectro-radiometer (MODIS). Piles et al. 

(2011) found that the downscaled soil moisture captures the spatial variability 

effectively without a significant degradation of the root mean square error. The 

polynomial fitting approaches are relatively simple to implement and use satellite 

measurements as input. However, one of the caveats with the regression approaches 

is that they do not necessarily conserve mass, implying that the aggregated 

downscaled soil moisture is not necessarily equal to the coarse resolution product. 

Merlin et al. (2012) explored the relationship between fractional vegetation cover and 

soil evaporative efficiency over a catchment in south-eastern Australia using MODIS 

data. Prior to this study, Merlin et al. (2008) had developed a simple method to 

downscale soil moisture by using two soil moisture indices (SMIs): Evaporative Fraction 

(EF; the ratio of evapotranspiration (ET) to the total energy available at the surface) 

and Soil Evaporative Efficiency (SEE; the ratio of actual to potential evaporation). In 
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addition to the direct relationship existing between soil moisture and EF/SEE, these SMIs 

are chosen because they have a constant diurnal characteristic, being less 

dependent on incoming radiation than ET (Nishida et al., 2003). The SEE-based 

disaggregation method was further improved leading to the emergence of the 

"Disaggregation based on Physical And Theoretical scale Change (DisPATCh)" model 

(Merlin et al., 2012). The DisPATCh method was found to yield a temporal correlation 

of 0.7 when compared to ground-based observations over the semi-arid 

Murrumbidgee catchment. 

The present study explores the applicability of some of these methods based on the 

universal triangle concept to downscale JASMIN soil moisture from 5 km to 1 km spatial 

resolution. Specifically, the multiple linear regression method discussed in Piles et al. 

(2011) and the DisPATCh method discussed in Molero et al. (2016) are implemented 

and evaluated. The main reason for selecting these methods is that they have been 

tested and documented to derive soil moisture information at 1 km spatial resolution 

over Australian regions. Further, the input data used in these methods are readily 

available. To investigate whether the skill of the multiple linear regression method can 

be improved further by regularization, we implemented the Least Absolute Shrinkage 

and Selection Operator (LASSO) regression using the same feature variables used in 

the multiple linear regression method. 

2. DATA SETS 

2.1 JASMIN 

The JASMIN system runs at 5 km resolution with an hourly time interval (Dharssi and 

Vinodkumar, 2017). The soil column extends from the surface to 3 m and is divided into 

four layers of thickness 100 mm, 250 mm, 650 mm and 2 m. JASMIN uses the van 

Genuchten soil hydraulic model (van Genuchten, 1980) to define the relationship 

between soil moisture and soil hydraulic conductivity. Except for tree heights, JASMIN 

use the default ancillary information provided along with JULES to account for spatial 

variability in soil and vegetation properties horizontally. The tree height information 

used in JASMIN is based on a global dataset of canopy height derived from a space-

borne light detection and ranging instrument (Simard et al., 2011). 

The BoM’s Mesoscale Surface Analysis System (MSAS; Glowacki et al., 2012) data 

available near-real-time at 4 km resolution is converted and re-gridded to provide the 

JULES driving data for air temperature, specific humidity, wind speed and surface 

pressure. The downward surface solar radiation data is from a near-real-time BoM 

product derived from the Himawari Geostationary Meteorological Satellites and is 

available at about 5 km resolution. The downward surface longwave radiation data 

is obtained from BoM’s regional NWP model at 12 km resolution (Puri et al., 2013). 
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Rainfall data is from AWAP (Jones et al., 2009) and available as daily accumulations. 

Tropical Rainfall Measuring Mission (TRMM; Huffman et al. 2007) data is used to 

disaggregate AWAP rainfall to 3-hourly values. The TRMM data is also used to fill spatial 

gaps in AWAP data. 

2.2 IN-SITU SOIL MOISTURE OBSERVATIONS 

2.2.1 OzNet 

OzNet is a dedicated soil moisture observation network primarily located in the 

Murrumbidgee catchment (Smith et al., 2012). The OzNet–Murrumbidgee dataset 

consists of 46 sites, all of which are located on either grassland or cropland. Data from 

2010 onwards are used in this study. The soil profiles in OzNet are generally mapped 

at 0 – 80 mm, 0 – 300 mm, 300 – 600 mm and 600 – 900 mm depths. For the present 

study, we choose 0 – 80 mm and 0 – 900 mm profiles for comparisons. 

2.2.2 CosmOz 

CosmOz is a soil moisture network consisting of 16 sites established at various locations 

around Australia (Fig. 1; Hawdon et al., 2014). The network uses cosmic-ray probes to 

measure soil moisture. The cosmic-ray probes provide a horizontal foot print of about 

240 m in diameter at sea level (Köhli et al, 2015). Franz et al. (2012) estimated the 

accuracy of cosmic-ray probes as 0.02 m3 m-3. The present study uses level 4 data, 

which has undergone corrections, calibrations and quality control. The 

comprehensive methodology applied for data processing and probe calibration for 

the CosmOz network are given in Hawdon et al. (2014). For the present study, 14 sites 

out of the total 16 are selected. The two sites discarded are Griffith in New South Wales 

and Gnangara in Western Australia. The Griffith site is in an irrigation area. Such 

anthropogenic modifications are not represented in the models. Gnangara is 

discarded because the calibration function does not perform well here, a result of 

high sand fraction in the soil over this region (Hawdon et al., 2014). 

2.2.3 OzFlux 

OzFlux is a network established to study regional ecosystems ranging from forests to 

grasslands (Beringer et al., 2016). OzFlux consists of 37 sites located around Australia, 

measuring soil moisture and micro-meteorological fields. Soil moisture is given in 

volumetric units and is based on measurements from the Time Domain Reflectometry 

sensors set up at each site. The present study uses the quality-controlled level 3 data 

freely available from the OzFlux data portal (data.ozflux.org.au/portal). Data from the 

21 non-embargoed, free, publicly available OzFlux sites are used in this study. All these 

sites contain soil moisture observations for a shallow layer of depth <150 mm, which 

varies from site to site. 
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2.3 MODIS 

The Moderate Resolution Imaging Spectroradiometer (MODIS) is an instrument 

onboard both the Terra and Aqua satellites operated by the National Aeronautics 

and Space Administration (NASA). Terra's orbit around the Earth with equator crossing 

times of 10:30 AM/10:30 PM local time, while Aqua passes over the equator 3 hours 

after Terra, at 1:30 PM/1:30 AM local time. Terra MODIS and Aqua MODIS cover the 

entire Earth's surface in 1 to 2 days, collecting data in 36 spectral bands. 

The MODIS data used in the present study are the MODIS/Terra and 

MODIS/Aqua 1 km resolution daily daytime LST (MOD11A1, version 5), MODIS/Terra 1 

km resolution 16-day NDVI product (MOD13A2, version 5), and MODIS/Terra+Aqua 1 

km resolution 16-day surface albedo product (MCD43A3, version 5). The surface 

albedo data set is only used in DisPATCh method, where it is used to estimate 

vegetation temperature at maximum water stress (Merlin et al., 2012). The MCD43A3 

product provides both directional hemispherical reflectance (black-sky albedo) and 

bi-hemispherical reflectance (white-sky albedo). In this study, surface albedo refers to 

the MODIS shortwave white sky albedo, following Merlin et al. (2012). 

The MODIS products used here were obtained from the TERN-AusCover data 

portal (http://www.auscover.org.au/, as of July 2018). The AusCover MODIS dataset is 

produced and managed by the Commonwealth Scientific and Industrial Research 

Organization (Paget and King, 2008). The original MODIS data are created and 

maintained by the Land Processes Distributed Active Archive Centre (LPDAAC), which 

is a as a partnership between the U.S. Geological Survey (USGS) and NASA. To 

facilitate the utilization of these datasets by the Australian environmental research 

community, CSIRO collate all available tiles for selected products covering the 

Australian continent. These collated tiles are then mosaiced and remapped into the 

same Geographic (rectilinear latitude/longitude) projection (Paget and King, 2008). 

3. METHODOLOGY 

3.1 Multiple linear regression method 

The triangle concept has been used to develop a linking model that relates JASMIN 

soil moisture data to MODIS derived NDVI and LST datasets. The linking model in this 

case is a multiple linear regression method which uses NDVI and LST data as the 

feature variables. The relationship can generally be expressed through a regression 

formula such as: 

𝑆𝑀1𝑘𝑚 = ∑ ∑ 𝑎𝑖𝑗𝑁𝐷𝑉𝐼
𝑖𝐿𝑆𝑇𝑗𝑛

𝑗=0
𝑛
𝑖=0      (1) 

http://www.auscover.org.au/
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Piles et al. (2010) effectively used a second order polynomial function to define the 

linking model between the LANDSAT surface radiant temperature/NDVI features and 

airborne soil moisture estimates. The surface radiant temperature and NDVI were 

normalized to reduce the dependence of each parameter on ambient conditions. A 

similar approach is adopted in the present study. However, the quadratic function 

was selected after experimenting with linking models of various order, ranging from 

first to ninth order. The experiments were conducted over a test domain in south-

eastern Australia, comprising the Murrumbidgee catchment, for the year 2010. The 

results were then compared against OzNet observations. It is found that the quadratic 

function provided the best estimate among all functions examined. The linking model 

used in the present study can be written as: 

𝑆𝑀ℎ𝑟𝑒𝑠 =  𝑎00 + 𝑎01𝑇𝑛 + 𝑎10𝑓𝑣 + 𝑎11𝑇𝑛𝑓𝑣 + 𝑎02𝑇𝑛
2 + 𝑎20𝑓𝑣

2 (2) 

Here, Tn stands for normalized LST (3) and fv is the fractional vegetation cover defined 

as (4). Tn and fv are calculated after masking cloud affected and land water pixels 

from respective datasets.  

𝑇𝑛 = [
𝑇𝑠−𝑇𝑠

𝑚𝑖𝑛

𝑇𝑠
𝑚𝑎𝑥−𝑇𝑠

𝑚𝑖𝑛]
ℎ𝑟𝑒𝑠

       (3) 

𝑓𝑣 =  
𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑖𝑛−𝑁𝐷𝑉𝐼𝑚𝑎𝑥
       (4) 

Ts
max and Ts

min are the maximum and minimum LST values for a day and region under 

study. Similarly, NDVImax and NDVImin are the maximum and minimum NDVI values for 

a day and region after masking the cloud and water pixels. 

3.2 Least Absolute Shrinkage and Selection Operator (LASSO) 

regression 

The LASSO (Tibshirani, 1996) is an extension to linear regression technique, where the 

regression coefficients are optimally reduced (shrinkage). In some cases, the 

regression coefficients are even reduced to zero, thereby ignoring a feature 

(selection). LASSO minimizes the residual sum of squares as in classical linear 

regression, but the determination of regression coefficients is constrained by the sum 

of the absolute values of the coefficients being as small as possible. This is achieved 

by defining a regularization parameter (λ) in the cost function (Equation 5) that 

determines the influence of the classical least square contribution (first term in the 

right-hand side of Equation 5) relative to the sum of modulus of the coefficients 

(second term on the right-hand side of Equation 5). 
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𝐽(𝛽𝑘) =
1

𝑁
∑ (𝑌𝑛 − ∑ 𝛽𝑘𝑋𝑘,𝑛𝑘 )2 + 𝜆∑ |𝛽𝑘|𝑘
𝑁
𝑛=1     (5) 

The LASSO technique applied in the present study also uses normalized LST and NDVI 

features to derive the linking model. In order to estimate the optimal regularization 

parameter (λ), experiments were conducted on a training dataset covering south-

east Australia, spanning the whole year of 2010. Based on the subjective evaluation 

and on the objective verification against in-situ observations from OzNet network, a 

value of 80 was selected for λ. 

3.3 Disaggregation based on Physical And Theoretical scale 

Change (DisPATCh) 

The DisPATCh method is categorized as physics based as it links the land surface 

temperature data with surface soil moisture through soil evaporation process. The 

theoretical basis of the method is highlighted by the reliance on mathematical tools 

such as partial derivatives, Taylor series expansions, and projection techniques (Merlin 

et al., 2005). The development of the DisPATCh method can be found in Merlin et al. 

(2006) and Merlin et al. (2008). 

The DisPATCh method in this study uses the soil evaporative efficiency (SEE) concept, 

defined as the ratio of actual to potential evaporation, to model the sub-pixel spatial 

variability of surface soil moisture. The advantage of using SEE is that it is much more 

directly linked to remote sensing and a SEE model can be readily developed in 

conjunction with land surface temperature and surface soil moisture. The 

disaggregation method in DisPATCh can be written as: 

𝑆𝑀ℎ𝑟𝑒𝑠 = 𝑆𝑀𝑙𝑟𝑒𝑠 + [
𝜕𝑆𝑀

𝜕𝑆𝐸𝐸
]
𝑙𝑟𝑒𝑠

. (𝑆𝐸𝐸ℎ𝑟𝑒𝑠 − ⟨𝑆𝐸𝐸ℎ𝑟𝑒𝑠⟩𝑙𝑟𝑒𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)   (6) 

SMhres is the 1km downscaled soil moisture, and SMlres is the coarse scale JASMIN soil 

moisture. Here, we upscale the JASMIN soil moisture to 50 km resolution by averaging. 

This is in order to construct an accurate Ts-VI space, which is otherwise impossible in a 

5 km resolution JASMIN grid, which encompasses only 25 MODIS LST pixels. From now 

on, coarse-scale JASMIN grid in DisPATCh refers to the 50 km resolution grid. SEEhres is 

the MODIS-derived soil evaporative efficiency and ⟨𝑆𝐸𝐸ℎ𝑟𝑒𝑠⟩𝑙𝑟𝑒𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ its average within a 

JASMIN grid. ∂SM/∂SEE is the partial derivative of soil moisture with respect to soil 

evaporative efficiency evaluated at the coarse scale. Here, a linear model is used to 

define the sensitivity of soil moisture to SEE, as this is found to be a good approximation 

at kilometre scales (Merlin et al., 2013). 

MODIS derived soil evaporative efficiency is expressed as a linear function of MODIS-

derived soil temperature (Ts) and is given as: 
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𝑆𝐸𝐸ℎ𝑟𝑒𝑠 = [
𝑇𝑠𝑜𝑖𝑙
𝑚𝑎𝑥−𝑇𝑠𝑜𝑖𝑙

𝑇𝑠𝑜𝑖𝑙
𝑚𝑎𝑥−𝑇𝑠𝑜𝑖𝑙

𝑚𝑖𝑛]
ℎ𝑟𝑒𝑠

       (7) 

𝑇𝑠𝑜𝑖𝑙
𝑚𝑎𝑥 and 𝑇𝑠𝑜𝑖𝑙

𝑚𝑖𝑛 are the soil skin temperature at SEE=0 and SEE=1 respectively. The 

MODIS land surface temperature is linearly decomposed into soil temperature and 

vegetation temperature based on the Ts-VI feature space. The soil temperature is 

expressed as: 

𝑇𝑠𝑜𝑖𝑙 = [
𝑇𝐿𝑆−𝑓𝑣.𝑇𝑣

1−𝑓𝑣
]
ℎ𝑟𝑒𝑠

         (8) 

TLS is the MODIS land surface temperature, fv is the fractional vegetation and Tv is the 

vegetation temperature. The fractional vegetation cover is given as: 

𝑓𝑣 =  
𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑠𝑜𝑖𝑙

𝑁𝐷𝑉𝐼𝑣𝑒𝑔−𝑁𝐷𝑉𝐼𝑠𝑜𝑖𝑙
         (9) 

NDVIsoil is the NDVI corresponding to bare soil, and NDVIveg is the NDVI corresponding 

to full-cover vegetation. For the present study, NDVIsoil and NDVIveg values are set to 

0.10 and 0.80, respectively. 

 

Figure 2: Estimation of vegetation temperature using the "hourglass" approach. 

The vegetation temperature is estimated using the "hourglass" approach described in 

Moran et al. (1994) and Merlin et al. (2012). By plotting the diagonals of the Ts-VI 

quadrilateral for each coarse-scale grid, four areas are distinguished in the feature 

space defined by surface temperature and fractional vegetation cover (Figure 2). In 

zone A, LST is mainly controlled by soil evaporation leading to optimal sensitivity of LST 
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to surface soil moisture. In zone D, LST is mainly controlled by vegetation transpiration 

with no sensitivity to surface soil moisture. In zones B and C, LST is controlled by both 

soil evaporation and vegetation transpiration with intermediate sensitivity to surface 

soil moisture. Based on this understanding, vegetation temperature is estimated for 

each zone as: 

𝑍𝑜𝑛𝑒 𝐴:  𝑇𝑣 =
𝑇𝑣
𝑚𝑖𝑛+𝑇𝑣

𝑚𝑎𝑥

2
        (10) 

𝑍𝑜𝑛𝑒 𝐵:  𝑇𝑣 =
[𝑇𝑣

𝑚𝑖𝑛]
𝑆𝐸𝐸=0

+𝑇𝑣
𝑚𝑎𝑥

2
       (11) 

𝑍𝑜𝑛𝑒 𝐶:  𝑇𝑣 =
𝑇𝑣
𝑚𝑖𝑛+[𝑇𝑣

𝑚𝑎𝑥]𝑆𝐸𝐸=1

2
       (12) 

𝑍𝑜𝑛𝑒 𝐷:  𝑇𝑣 =
[𝑇𝑣

𝑚𝑖𝑛]
𝑆𝐸𝐸=0

+[𝑇𝑣
𝑚𝑎𝑥]𝑆𝐸𝐸=1

2
      (13) 

 

Figure 3: Estimation of end members 

𝑇𝑣
𝑚𝑖𝑛 and 𝑇𝑣

𝑚𝑎𝑥 being the vegetation temperature at minimum and maximum water 

stress respectively. End-members 𝑇𝑠𝑜𝑖𝑙
𝑚𝑎𝑥, 𝑇𝑠𝑜𝑖𝑙

𝑚𝑖𝑛, 𝑇𝑣
𝑚𝑖𝑛 and 𝑇𝑣

𝑚𝑎𝑥 are estimated at 1 km 

resolution by combining the spatial information provided by the LST-fv and the LST-

albedo feature space developed using the MODIS data within each coarser JASMIN 

grid point (Figure 3). Here, 𝑇𝑣
𝑚𝑖𝑛 is set to the minimum MODIS LST within each coarse-

scale JASMIN grid. 𝑇𝑣
𝑚𝑎𝑥 is set to the LST of the MODIS pixel with the maximum albedo 

value (Figure 3). If fv < 0.5 for the corresponding MODIS pixel, the vegetation 𝑇𝑣
𝑚𝑎𝑥 is 

set to 𝑇𝑣
𝑚𝑖𝑛. The above condition is set to increase the robustness of the determination 

approach, particularly for the JASMIN grids where all surface conditions are not met. 
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𝑇𝑠𝑜𝑖𝑙
𝑚𝑖𝑛 is calculated by extrapolating along the wet soil edge at fv=0. The wet soil edge 

is defined as the line passing through (SEE=1, 𝑇𝑣
𝑚𝑖𝑛) and through the data point such 

that all the data points with fv < 0.5 are located above the wet soil edge (Figure 3). 

𝑇𝑠𝑜𝑖𝑙
𝑚𝑎𝑥 is estimated by extrapolating along the dry soil edge at fv = 0. The dry soil edge 

is defined as the line passing through (SEE=1, 𝑇𝑣
𝑚𝑎𝑥) and through the data point such 

that all the data points with fv < 0.5 are located below the dry soil edge. 

 

 

Figure 4. Calibration of DisPATCh soil parameter. The upper panel shows the 

comparison of in-situ soil moisture (black line) against downscaled soil moisture 

obtained by applying the mean soil parameter value (brown line). The lower panel 

depicts the same, except that downscaled soil moisture is obtained by applying the 

minimum soil parameter value.  

A key factor in the performance of the DisPATCh algorithm is the correct calibration 

of the model depicting the relationship between soil moisture and SEE. Here, a linear 

assumption is made. The model is calibrated from daily SEE and SM estimates at low 

resolution. In studies applying DisPATCh to disaggregate microwave soil moisture 

retrievals, calibrated values of the soil moisture parameter were obtained by 

averaging estimates over multiple images collated over a few days (e.g.: Merlin et al., 

2010). In the present study, calibration is done using the MODIS and JASMIN datasets 

spanning the whole year of 2010. However, during the calibration phase, it was found 
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that averaging led to large parameter values which introduced random errors in the 

downscaled soil moisture, thereby reducing the temporal skill of the product (Figure 

4a). This is demonstrated through the comparison against ground observations from 

OzNet-Yanco site 9. Choosing the minimum parameter value rather than the mean is 

found to reduce these random errors (Figure 4b). Hence, in the present study, the 

calibrated parameter values are set to the minimum of SMp values at each grid point 

from the 2010 timeseries. 

4. RESULTS AND DISCISSIONS 

4.1 Seasonal means 

 

Figure 5. Seasonal average volumetric soil moisture for southern-hemisphere autumn 

(March – April) from (a) JASMIN at 5 km resolution, (b) multiple linear regression 

method at 1 km, (c) LASSO regression method at 1 km resolution, and (d) DisPATCh at 

1 km resolution. 

The daily gridded volumetric soil moisture fields from each of the three downscaled 

products, spanning from 2011 to 2016, are used to calculate seasonal mean 

climatologies. Figure 5 depicts the seasonal mean of each downscaling product for 

the southern-hemisphere autumn, extending from March to April. The seasonal 

climatology from the 5 km JASMIN product is also provided for comparison (Figure 5a). 

The spatial plots reveal some interesting aspects of each downscaling method. All the 

downscaling methods generally preserve the wet and dry regions in the coarse scale 
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product, thereby providing similar spatial patterns. However, each downscaling 

product differs in the magnitude of spatial variability. Thus, the regression-based 

approaches have a higher spatial variability than DisPATCh. Further, the LASSO 

method tends to produce drier soil over arid-inland areas compared to the other two 

downscaling methods. DisPATCh is found to have smaller spatial variability than the 

two regression methods. This is especially pronounced over the arid inland regions. It 

is found that the soil parameter (SMp) values in DisPATCh are quite low over these arid 

regions. Further, the spatial variability of SEE over arid regions is smaller, leading to 

DisPATCh adding smaller perturbations to the coarse scale soil moisture product. The 

nine-point-smoothing applied to eliminate the "chequered" patterns obtained in 

DisPATCh (Merlin et al., 2013) further smooths out these small spatial variabilities over 

the arid inland regions. 

4.2 Comparison against observations 

This section discusses the temporal skill of each downscaling product against ground-

based observations. Good temporal skill is critical for soil moisture products used in fire 

prediction, as cumulative measures of soil moisture status are often considered in fire 

management and prediction. The verification period selected for the present study is 

1st January 2010 to 1st March 2017. Completeness of in-situ temporal records vary from 

site to site and only sites with a complete seasonal cycle are selected for statistical 

analysis. This results in a total of 60 sites for the present analysis. Pearson’s product-

moment correlation (R), unbiased root-mean-square difference (ubRMSD) and bias 

metrics are used here to evaluate the skill of each product against in-situ observations. 

Bias is defined as the mean in-situ value minus model value. Several studies have used 

the above metrics to compare different soil moisture products (e.g., Vinodkumar et 

al., 2017; Brocca et al., 2014). The scores are computed for all stations and for the 

whole period where data overlaps. Only scores for correlations with p-values<0.001 

are presented. 

An evaluation of each model's skill over different land use / land cover (LULC) is 

presented in Figure 6. The LULC classification is made based on the types over which 

the observation sites are located. CosmOz and OzFlux provide this information via the 

site description and images given in the web portal. The LULC information for OzNet is 

provided in Young et al. (2008). We broadly classify the land cover types into forests, 

woodlands, grasslands and croplands. The northern Australian savannahs are 

classified as woodlands. All pasture and grazing paddocks are included under 

grasslands. Of the 60 sites in total across three networks, 12 are classified as croplands, 

12 as forests, 9 under woodlands, and the remaining 27 under grasslands. 
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Figure 6. Skill of soil moisture products over various land cover types: a) Pearson’s 

correlation, b) unbiased RMSD, c) bias, and d) anomaly correlation. The grouping is 

done based on the land cover type of the observing site. The outliers are marked as 

diamonds. The orange boxes represent multiple linear regression method, light khaki 

colour represents LASSO method, the green boxes represent DisPATCh and the 

magenta coloured boxes represent the original JASMIN product at 5 km resolution. 

JASMIN performs consistently over all land cover types considered here. In terms of 

correlations, JASMIN exhibits noticeably higher skill over grasslands and croplands. The 

correlation over forested sites ranges from 0.43 to 0.78. The ubRMSD for forested sites 

ranges between 0.46 and 0.08 and is the lowest among the four land use types. The 

median bias for forest sites is -0.05. The range of the anomaly correlation for forest sites 

is 0.40 to 0.76. JASMIN has good skill in simulating moisture regimes over woodlands 

and the median values as indicated by the box plot for correlation, ubRMSD, bias and 

anomaly correlation are 0.81, 0.07, -0.05 and 0.75 respectively. 

Interestingly, the temporal skill is reduced when JASMIN is downscaled using the two 

regression-based methods. For example, the median values obtained by the LASSO 

method over woodlands for correlation, ubRMSD, bias and anomaly correlation are 

0.41, 0.08, -0.08, and 0.26 respectively. For the multiple linear regression method, the 

above scores are 0.37, 0.11, -0.1 and 0.32 respectively. The LASSO method is found to 
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have similar bias and random errors to the original dataset. The LASSO method 

produces a higher skill than the multiple linear regression, highlighting the fact that 

there was some overfitting in the multiple linear regression method which is reduced 

in the LASSO method. Because of the safeguarding against high sensitivity to noise, 

LASSO has a higher correlation and lower ubRMSD than the multiple linear regression 

method. This is demonstrated through the timeseries plot over the Weany Creek site in 

the northern Queensland, which is part of the CosmOz network (Figure 7). This site is in 

a grazed open woodland with grassy and shrubby understory. The multiple linear 

regression method is found to have larger temporal variability than the LASSO method 

and the other two products (JASMIN and DisPATCh). This is particularly noticeable 

during the dry seasons where the multiple linear regression method shows large 

variability compared to the observations. A possible reason for this is the large 

sensitivity of estimated soil moisture in multiple linear regression to noise in the LST data. 

The uncertainties involved in the thermal infrared based LST retrievals are found to be 

about 2 K (Li et al., 2014). By applying regularization through LASSO, this sensitivity is 

reduced to some extent, but not to a point where the LASSO estimates match the 

temporal skill of the JASMIN product at 5km (Figure 7c). 

In the case of DisPATCh, the temporal skill is similar to the JASMIN 5 km product and 

better than the other two downscaling methods. The average correlation of DisPATCh 

over the three networks is 0.81, identical to JASMIN. In the woodland, cropland and 

grassland cases, disaggregation either marginally improves or retains the mean R, bias 

and ubRMSD. The similar skill of DisPATCh and JASMIN can be appreciated from the 

box and whiskers provided in Figure 6. Specifically, DisPATCh shows an increase in R 

and reduction in bias over the woodland sites. The good performance of the DisPATCh 

over woodlands is re-affirmed by the timeseries plot at the Weany Creek, which is an 

open woodland site (Figure 7d). The DisPATCh shows similar temporal variability to the 

observations and does not produce the large variability observed in the other two 

downscaling methods. 

However, it is observed that DisPATCh has lower skill than the JASMIN product over 

forested sites, possibly due to the increase of random uncertainties attributable to the 

models and data used by DisPATCh. Studies have shown that DisPATCh performs 

better over low-density vegetated areas in semi-arid environments (Merlin et al., 2012). 

A possible reason for this behaviour is the weaker coupling between evaporation and 

surface soil-moisture in temperate (where most forested sites are located) than in 

semi-arid climates. Further, the presence of dense vegetation poses a challenge in 

the retrieval of the soil temperature from thermal infrared data. The vegetation water 

stress may increase the remotely sensed land surface temperature independent of 

near-surface soil moisture. 



DISAGGREGATION OF JASMIN SOIL MOISTURE PRODUCT TO 1KM RESOLUTION | REPORT NO. 521.2019 

18 

 

Figure 7. Soil wetness time-series at the Weany Creek site in Queensland, part of the 

CosmOz network. The brown lines show JASMIN analyses at 5 km resolution, orange 

line represent multiple linear regression method, light khaki depict LASSO method and 

the green line represent DisPATCh. The black dotted lines show the in-situ observations. 

5. SUMMARY AND CONCLUSIONS 

Three algorithms to improve the spatial resolution of the JASMIN product from 5 km to 

1 km are investigated. The selected algorithms are based on the well-known surface 

temperature-vegetation index feature space and are applied using the thermal and 

optical infrared data from the MODIS instrument. The rationale for choosing these 

algorithms is: (a) they can be applied at a continental scale, (b) input data is readily 

available, and (c) they have been tested and documented over Australian regions. 

The present study applies a step-by-step approach, where the algorithm identified as 

the simplest is implemented, tested and evaluated first, before moving to the next 

algorithm to explore any added skill that can be potentially gained. In that respect, 

we started off with the multiple linear regression method discussed in Piles et al (2010). 

To investigate whether the skill of the multiple linear regression method can be 

improved further by regularization, we implemented LASSO regression using the same 

feature variables used in the multiple linear regression method. Further, a more 
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theoretical based method, in the form of DisPATCh, was tested to identify any 

potential gain in skill that could be achieved. 

Results from the application indicate that it is feasible to improve the spatial resolution 

of JASMIN using all three disaggregating algorithms and preserve the general large-

scale spatial structure seen in JASMIN soil moisture estimates. However, the seasonal 

means obtained at 1 km shows that each product displays characteristic soil moisture 

spatial variability at fine scales. Results from comparison with ground-based soil 

moisture measurements indicate that there is no significant degradation of the bias in 

the three methods when moving to higher spatial resolution. However, the regression 

methods degrade the temporal correlations and the ubRMSD scores. The DisPATCh 

method produces the best skill among the three algorithms tested here, and the skill 

scores from DisPATCh are comparable to those of the original JASMIN timeseries. 

The low skill observed in regression methods possibly resulted from the large random 

errors attributable to the methods or uncertainties in the feature variables. It is worth 

noting that even the minimum and maximum limits applied to calculate the 

normalized LST and NDVI datasets (feature variables in the regression method) can 

introduce uncertainties in the downscaled soil moisture output. Further research is 

required to identify and minimize some of the uncertainties associated with both 

MODIS LST and NDVI datasets and to provide robust quality control. 

Uncertainties in the MODIS input datasets have an important influence on the 

DisPATCh results as well, in addition to the uncertainties arising from the model 

assumptions and calibrations. It is found that calibration has a significant influence on 

the DisPATCh model behaviour. Further research is needed to calibrate the model so 

that the spatial variability in soil moisture is accurately captured. One aspect of 

DisPATCh that needs to be revisited is the modelling of soil moisture sensitivity to the 

soil evaporative efficiency. The model in the present study was chosen for its simplicity 

and its ability to represent the general behaviour of soil evaporative efficiency over 

the full range of soil moisture. However, studies have shown that the soil moisture 

sensitivity to soil evaporative efficiency can be non-linear and influenced by various 

factors including atmospheric demand, soil texture etc. It is important to note that the 

DisPATCh algorithm is evolving and will continue to do so. Further work is required to 

test and evaluate the new ideas that will be developed in relation to DisPATCh and 

will be a focus of future research.   
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