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Abstract

Lightning-caused wildfire is a significant concern for fire management agen-

cies worldwide. Unlike other ignition sources, lightning fires often occur in

remote and inaccessible locations making detection and suppression particu-

larly challenging. Furthermore, individual lightning storms result in a large

number of fires clustered in space and time which can overwhelm suppression

efforts. Victoria, Australia, is one of the most fire prone environments in the

world and the increased frequency of large-scale landscape fires over the last

decade is of particular concern to local wildfire management authorities.

This thesis is concerned with modeling lightning-caused wildfire ignition

locations in Victoria. Such models could be used for predicting daily lightning-

caused ignition likelihood as well as simulating realistic point patterns for use

in fire spread models for risk analyses.

The first half of this thesis looks at regression models. We review methods

for the model selection, validation, approximation and interpretation of gen-

eralised additive models. A review of performance metrics, such as the AUC,

shows the difficulties and subtleties involved in evaluating the predictive per-

formance of models.

We apply this theory to construct a non-linear logistic regression model

for lightning-caused wildfires in Victoria. The model operates on a daily time

scale, with a spatial resolution of 20 km and uses covariate data including fuel

moisture indices, vegetation type, a lightning potential index and weather.

We develop a simple method to deconstruct model output into contributions

from each of the individual covariates, allowing predictions to be explained in

terms of the weather conditions driving them. Using these ideas, we discuss

ranking the relative ‘importance’ of covariates in the model, leading to an

approximating model with similar performance to the full model.

The second half of this thesis looks at point process models for lightning-

caused ignitions. We introduce general theory for point processes, focusing
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on the inhomogeneous Poisson process, cluster processes and replicated point

patterns. The K-function is a useful summary function for describing the

spatial correlation point patterns and for fitting models. We present a method

for pooling multiple estimates of the K-function, such as those that arise when

using replicated point patterns, intended to reduce bias.

We fit an inhomogeneous Poisson process model as well as a Thomas and

Cauchy cluster process model to the Victorian lightning-caused ignition data

set. The cluster process models prove to have significantly better fit than the

Poisson process model, but still struggle to reproduce the complex behaviour

of the physical process.
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Chapter 1

Introduction

Lightning-caused wildfire. General approaches to modelling wildfire

ignition locations. An outline of the thesis.

1.1 Lightning-caused wildfire ignition

Lightning-caused wildfire, which we call lightning fire, is a significant concern

for fire management agencies worldwide. Lightning is an important source of

wildfire ignitions, with some studies attributing upwards of 40% of recorded

ignitions to lightning (K. Anderson, 2002; Hall and Brown, 2006). Unlike

other ignition sources, lightning fires often occur in remote and inaccessible

locations making detection and suppression particularly challenging (Flanni-

gan and Wotton, 1991; Todd and Kourtz, 1992). Furthermore, individual

lightning storms result in a large number of fires clustered in space and time

which can easily overwhelm suppression efforts (Podur, Martell, and Csil-

lag, 2003). Due to these factors, lightning fires burn disproportionately large

amounts of land. For example, in Ontario, Canada, roughly 40% of wildfires

are lightning-caused yet they go on to burn 70% (Flannigan et al., 1991) to

81% of the total area (Wotton and Martell, 2005).

In Victoria, Australia, lightning fire was responsible for 70% of land burnt

during the period from 1973 to 2014. The 2003 Alpine Fires saw a cold front

creating lightning storms that started 87 fires in Victoria, which went on to

1
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burn approximately 1.1 million ha (Stephenson, 2010). The same thunder-

storms caused further fires in New South Wales and the Australian Capital

Territory, which burnt a further 760,000 ha. Similarly, the 2006–07 Great

Divide Fires saw 70 fires caused by a single thunderstorm, burning a cumu-

lative 1.1 million ha. These large-scale landscape fires pose serious risks to

life, property, agriculture and infrastructure. They also disrupt ecosystem ser-

vices (Gill, Stephens, and Cary, 2013) such as water supply and water quality

(Feikema, Sherwin, and Lane, 2013).

Lightning ignition can be understood as the product of three processes:

(i) lightning strike occurrence, (ii) fire ignition given a lightning strike, and

(iii) ignition survival until detection (K. Anderson, 2002). These processes are

complex, involving vegetation, fuel moisture and weather conditions conducive

to both fire growth and the occurrence of lightning. While there are strong

correlations between ‘fire weather’ and lightning-caused wildfire ignition there

is still much unknown about the likelihood of ignition on a given day. Dry

lightning, defined as a lightning strike with less than 2.54 mm of accompany-

ing precipitation (Rorig and Ferguson, 1999), is of particular interest to land

managers. Dry lightning occurrence has been linked with the 850–500 hPa

temperature lapse and 850 hPa dewpoint depression (Dowdy, 2015; Dowdy

and Mills, 2009; Rorig et al., 1999). There is also a link to the Convective

Available Potential Energy (CAPE) index, which is related to lightning occur-

rence more broadly. Work has looked at the relationship between elevation,

vegetation and lightning strike density (Dissing and Verbyla, 2003; Kilinc and

Beringer, 2007). Elevation can cause forced convection, resulting in lightning

strikes, and topographic effects play an important role in defining vegetation

type.

Given the occurrence of a lightning strike, fuel characteristics and fuel

moisture determine if an ignition will occur and survive until detection; fuel

must be present, it must be in a condition where it can ignite and there must
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be a suitable degree of connectivity between flammable fuels to sustain a fire

(Duff, Keane, et al., 2017). The ability of the fuel to combust is the most

dynamic since it is strongly defined by the fuel moisture, which in turn is

strongly defined by the moisture in the environment (Matthews, 2014). The

Keetch–Byram Drought Index (KBDI) represents the moisture deficit in the

top 200 mm soil layer and is calculated using the maximum air tempera-

ture, total rainfall over the past 24 hours and yesterday’s KBDI (Keetch and

Byram, 1968). As such, it reflects both daily- and long-term conditions. The

drought factor (DF) represents the proportion of fine fuel available to burn

in the event of a fire and is calculated from the KBDI and the precipitation

(Griffiths, 1999). Both the KBDI and the DF play an important role in calcu-

lating the McArthur Forest Fire Danger Index (FFDI), which is the primary

numerical tool used to communicate bushfire risk to the Australian public. It

was originally developed to describe fire behaviour such as the rate of forward

spread, flame height and spotting distance (McArthur, 1967), but it has been

shown to be related to wildfire ignition (Bradstock et al., 2009).

Finally, aspects of the weather such as temperature, relative humidity,

wind speed and precipitation affect the lightning ignition process. Beyond

their direct involvement in calculating fuel moisture indices, they are related

to lightning formation, and ignition survival and detection. For example,

previous studies have found a negative relationship between wind speed and

lightning ignition, postulating that this could be due to the wind dispersing

smoke plumes and reducing detection likelihood (Wotton and Martell, 2005).

1.2 Models for lightning-caused wildfire ignitions

From the outset, lightning fire occurrence poses several challenges to the mod-

eller. It is a rare event, influenced by large numbers of environmental factors,

with a high degree of stochasticity caused by the “highly variable numbers of

cloud-to-ground lightning strikes accompanied by very spotty rainfall” which
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in turn results in a highly variable number of ignitions (Wotton and Martell,

2005).

Modelling work has been motivated by the need to forecast ignitions to

assist fire managers in resource allocation and suppression efforts (Martell,

Bevilacqua, and Stocks, 1989; Martell, Otukol, and Stocks, 1987; Plucinski et

al., 2014; Preisler, Brillinger, et al., 2004; Preisler, Chen, et al., 2008; Preisler

and Westerling, 2007; Wotton and Martell, 2005) as well as to understand the

influence of fire indices on wildfire ignition (Peng, Schoenberg, and Woods,

2005; Schoenberg, Pompa, and Chang, 2008; Xu and Schoenberg, 2011), or

how the length of time between burning can affect ignition likelihood (Pen-

man, Bradstock, and Price, 2013), or the effects of climate change on ignition

likelihood (Liu et al., 2012; Woolford, Cao, et al., 2010; Woolford, Dean, et al.,

2014; Wotton, Martell, and Logan, 2003).

Models have often focused on either human- or lightning-caused ignition

but the approaches are very similar. Early work looked at the probability of a

day with one or more fires, known as a fire day (Haines et al., 1983; Martell,

Otukol, et al., 1987; Plucinski et al., 2014). Others divided a large study region

into smaller subregions and modelled the number of fires per day in each of

the subregions (Plucinski et al., 2014). Explicitly spatial models have been

developed, producing gridded maps of estimated daily ignition likelihood (Guo

et al., 2016; Magnussen and Taylor, 2012; Preisler, Brillinger, et al., 2004;

Woolford, Bellhouse, et al., 2011). Alternatively, some have modelled the

probability of fire given a lightning strike has occurred, isolating the conditions

suitable for ignition survival and detection and ignoring those conducive to

lightning occurrence (Wotton and Martell, 2005).

A diverse range of models have been used for wildfire ignitions. The bulk of

the literature is made up of regression models (Chapter 3), which use gridded

or regional data to estimate the likelihood of the presence of ignition or the

numbers of ignitions. These are well understood and relatively transparent
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models with a wealth of supporting theory. Alternative models include point

process models (Chapter 6), which use point data for ignitions and either grid-

ded or continuous covariate data to fit a model. These models are usually used

to estimate maps of the mean intensity of ignitions, although they can also

be used to estimate probabilities of the number of points in arbitrary regions.

Similarly to regression models, the theory is well developed and transpar-

ent, although it is less familiar to most researchers which probably explains

the dominance of regression models in the literature. Finally, some work has

been done using machine learning models (Oliveira et al., 2012; Ouyang, Han,

and Tong, 2016; Vasconcelos et al., 2001; Vasilakos, Kalabokidis, Hatzopou-

los, Kallos, et al., 2007; Vasilakos, Kalabokidis, Hatzopoulos, and Matsinos,

2008). Ouyang et al. (2016) and Vasconcelos et al. (2001) both found machine

learning algorithms to have better predictive power than regression models

for modelling wildfire ignitions, however both use crude, non-linear regression

models making this an unfair comparison.

There are some important practical considerations when modelling wild-

fire ignitions, irrespective of the choice of model. As discussed in Section 1.1,

wildfire ignition is a complex physical process and there are a large number of

covariates that could be influential. This makes model selection, and in par-

ticular, the problem of which covariates to include in a model, an important

component of modelling wildfire ignition location. Along with issues of parsi-

mony, the need to obtain data for a large number of covariates before making

predictions can make models unwieldy for operational use. Another practical

consideration, which came to our attention during personal communication

with firefighting authorities, is the need to explain model output in terms of

the environmental conditions driving it. This was seen as important because

it allows authorities to integrate the model output with their intuitive under-

standing of lightning ignition likelihood and gives them the ability to ‘sanity

check’ the model forecasts.
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1.3 Thesis outline

This thesis is interested in modelling lightning-caused wildfire igntions and is

split in two halves; the first half explores the use of regression models and

the second half explores the use of point process models. Each half is broken

into chapters explaining relevant theory and finishing with a chapter that

applies the theory to model lightning ignition locations. We are interested in

understanding the practical outcomes these models can provide and spend a

lot of time validating models in order to understand the differences between

them.

Chapter 2 introduces the data and gives a preliminary analysis of the ig-

nition location data set. In Chapter 3 we give an introduction to regression

models with a focus on model selection, validation and interpretation. Perfor-

mance classifiers are often used to measure the accuracy of regression models

and in Chapter 4 we discuss surrounding theory and give some critiques and

recommendations. In Chapter 5 we apply the regression theory to model

lightning ignitions, using a logistic regression model. The second half of the

thesis begins with Chapters 6 and 7, which introduce the theory of point pro-

cesses including inference and validation. This theory is then applied to model

lightning ignitions in Chapter 8.



Chapter 2

Data and preliminary analysis

Introducing the data. A preliminary analysis of the wildfire igni-

tions data set.

2.1 Data

Victoria is a state in southeastern Australia with an area of 227,000 km2 and

a Mediterranean type climate (Duff, Chong, et al., 2014) with dry summers

and wet winters. Figure 2.1 shows a simple map of Victoria, with the capital

city, Melbourne, on the southern coast. Victoria shares its northern border

with the state of New South Wales and its western border with the state of

South Australia.

We used the combined Victorian Department of Environment, Land, Wa-

ter and Planning (DELWP) / Country Fire Authority (CFA) Bushfire Igni-

tions data set for ignition point locations and their associated causes. This

data set is the combination of four different fire records, maintained by the

two firefighting agencies in Victoria:

1. DELWP bushfire ignitions point database (1972–2014);

2. DELWP planned burn ignitions point database (2001–2014);

3. DELWP bushfire perimeters polygon databse (1903–2014); and,

7
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Figure 2.1: A map of Victoria (VIC), New South Wales (NSW), South Australia
(SA) and the Australian Capital Territory (ACT), Australia. Produced using ggmap
(Kahle and Wickham, 2013).

4. CFA Fire Incident Reporting System (1997–2014).

The CFA is responsible for recording ignitions across a significant proportion of

Victoria and so the combined DELWP/CFA bushfire ignitions data set should

be considered reasonably complete only for the years following 1997. The data

set has recently been quality checked under the DELWP project Bushfire

Spatial Data Models and Ignition Data (Kilinc, 2017) and we restricted our

study to ignition points that were considered ‘good quality’ by this analysis.

Ignition data on lightning-caused wildfire may be prone to errors from

sleeper ignitions, those that remain undetected for days before escalating when

conditions become more favourable for fire spread (K. Anderson, 2002; Otway

et al., 2008). Although we restricted our study to ‘good quality’ records

where there is a high degree of certainty of their cause, these records may

still underestimate the true occurrence of lightning ignitions as sleeper fires

could be misattributed to other causes. Furthermore, it may cause errors in

the recorded time of ignition. In Australian systems, there has been limited

investigation into the occurrence of sleeper fires. Evidence suggests that while

such fires occur, the majority become apparent soon after ignition (Dowdy and
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Mills, 2009). Australian sclerophyllous systems typically have shallow soils

and rarely develop the deep duff layers (Costermans, 2009) where smouldering

ignitions are usually sustained (K. Anderson, 2002). The lack of these fuels

may limit the occurrence of sleeper fires relative to other localities, although

there is no empirical evidence to support this.

To characterise the vegetation we used the Victorian Fuel Layer, provided

to us by DELWP in June 2015, which is used operationally for fire simulation

modelling (Paterson and Chong, 2011). This data set has 37 categories of

vegetation type but, to avoid overfitting, we combined these into broader

categories (wet forest, dry forest, grassland, Mallee spinifex, heath, plantation

and residential) that we expect to have similar fire behaviour (Read et al.,

2018). Information on the combined fuel layers can be found in Table 2.1 and

they are plotted in Figure 2.2.

We sourced the maximum temperature, 3 pm vapour pressure and the daily

precipitation totals from the Australian Water Availability Project (Raupach,

Briggs, et al., 2009; Raupach, Haverd, et al., 2015). The 3 pm relative humid-

ity was calculated from the 3 pm vapour pressure as

RH = 100

(
V P

V Ps

)
,

where V P is the 3 pm vapour pressure and V Ps is the saturated vapour

pressure, both in hPa. The saturated vapour pressure was calculated as

V Ps = 6.11 exp

(
17.27T

T + 237.3

)
,

where T is the maximum daily temperature in degrees Celsius (Abtew and

Melesse, 2013, equation 5.1).

The DF, KBDI, wind speed and FFDI were sourced from the Fire Weather

Climatology for Victoria data set (Brown et al., 2016). The version we were

provided with included data for the years 1972 to 2012 inclusive. Both the

wind speed and FFDI were hourly measurements; we calculated the daily av-

erage wind speed and the daily maximum FFDI. Preliminary analysis showed
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that the average FFDI was a poor indicator of wildfire ignitions due to large

variations between day and night values.

We acquired the 500 hPa and 850 hPa temperature, 850 hPa relative hu-

midity and the CAPE index from the from the European Centre for Medium-

Range Weather Forecasts (ECMWF) ERA-Interim archive (Dee et al., 2011).

The temperature and relative humidity data are 12 pm analyses (observed)

values. The CAPE index data are 12 h forecast values using 0 am analyses

values and so they represent the conditions at 12 pm. We manually calculated

the 850–500 hPa temperature lapse, which is simply the difference between

the temperatures at the the two atmospheric levels. The 850 hPa dewpoint

depression was calculated using the R package weathermetrics 1.2.2 (G. B.

Anderson, Bell, and Peng, 2013) and is the difference between the temper-

ature, and the temperature at which water vapour condenses, both at the

atmospheric level of 850 hPa.

The elevation was taken from the Vicmap Elevation DTM 20 m (Depart-

ment of Environment, Land, Water & Planning, 2008).

Information on all the covariate data sets considered in this thesis, such

as the spatial resolution, can be found in Table 2.2.
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Figure 2.2: The Victorian Fuel Layer after being reduced to 9 categories.

2.2 Preliminary analysis of wildfire ignition data

The availability of data limited the modelling period to the years 1997–2012.

Figure 2.3 shows the total number of ignitions by month and the total final

area burnt by ignitions per month, stratified by ignition cause. Unsurprisingly,

there is significant seasonal behaviour in the number and severity of ignitions.

All models used in this thesis are stationary, depending on time only through

the values of the covariates. Motivated by this as well as a desire to reduce

the volume of data, we restricted our model to the summer months of October

through April, which we denote as the fire season.

Figure 2.3 shows that the fire season captures the ignition process of inter-

est to land managers; 82.1% of all ignitions and 98.6% of lightning ignitions

occurred during a fire season. Ignitions that occurred during a fire season

were responsible for 98.6% of the total area burnt, which jumps to 99.9% if

restricted to lightning ignitions. The few ignitions that fell outside a fire sea-

son were relatively inconsequential in terms of risk management. Very little

is lost by restricting our study to the fire season period of October–April.
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Figure 2.3: Calculated using all ignitions between 1997 and 2012. The total area
burnt by month is the total area burnt by all fires whose ignition occurred during said
month.

Most wildfire ignitions are a result of human activity: humans were respon-

sible for 89.2% of all ignitions, lightning was responsible for 8.56% and 2.29%

were recorded as having unkown cause. However, lightning fires were generally

much more severe: human-caused fires were responsible for only 25.4% of the

total area burnt by wildfires in the study period, whilst lightning-caused fires

were responsible for 71.3% and fires with unknown cause were responsible for

3.28%.

As visualised in Figure 2.4, the total number of ignitions, and particularly

lightning ignitions, varied significantly between fire seasons. The 2010–2011

fire season had anomalously few ignitions. This fire season corresponded with

one of the strongest La Niña events on record, with very high rainfall and

low temperatures across Australia. The effect was predicted to be so strong

that in October 2010 the Bureau of Meteorology briefed firefighting agencies

that there would be a decreased bushfire potential for the 2010–2011 bushfire

season (Meteorology, 2012).

Focusing on lightning ignitions, Figure 2.5(a) shows high variability in the
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Figure 2.4

number of lightning ignitions per fire season, with a maximum of 924 lightning

ignitions, attained by the 2006–2007 fire season, and a minimum of 52 lightning

ignitions, attained by the 2010–2011 fire season. Even ignoring the La Niña

affected 2010–2011 fire season, the minimum number of lightning-ignitions was

145, occurring during the 1999–2000 fire season.

Large scale convective storm events can result in a large number of ignitions

on a single day and these events were responsible for a significant proportion

of the variability in the total number of lightning ignitions between fire season.

Figure 2.5(b) shows the maximum number of lightning ignitions on a single

day by fire season, which which reflects the worst single day fire event from

each fire season. These events were responsible for a significant proportion of

the total number of ignitions in a fire season. For example, the 1997–1998 fire

season saw 130 lightning fires in a single day which were responsible for 21%

of the total lightning ignitions for that fire season. The scale of these single

day events suggests a significant clustering effect between lightning ignitions.
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Figure 2.5(c) shows the number of lightning-fire days, defined as days with

one or more lightning ignitions. Unsurprisingly, we see that fire seasons with

a large number of lightning ignitions also had a large number of lightning-fire

days. However the variability in the number of lightning-fire days between the

fire seasons is less stark than the variablility in the total number of lightning

ignitions. The extremely inactive fire season of 2010–2011 saw only 52 light-

ning ignitions yet still had 33 lightning-fire days, whilst the extremely active

fire season of 2006–2007 saw 924 lightning-ignitions across 80 lightning-fire

days. Again, this reflects the clustering behaviour of lightning ignitions.

Figure 2.6 shows a histogram of the number of lightning ignitions on a

day given that there is at least one lightning ignition. This shows that whilst

most lightning-fire days see very few ignitions, extreme observations of over a

hundred ignitions play a significant role.

Preliminary analysis of the lightning ignition point data showed that most

the lightning ignition activity occurs during the fire season, supporting the

focus on these periods. The analysis showed that the lightning ignition process

is highly stochastic, with large variability in the number of ignitions between

fire seasons. This variability often came down to single day events, where

landscape scale convective storms produced large numbers of ignitions.
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(a)

(b)

(c)

Figure 2.5: The lightning ignition data stratified by fire season (October–April in-
clusive)
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Figure 2.6: A frequency histogram for the number of lightning ignitions given there
is at least one lightning ignition. The distribution appears heavy tailed, with the bulk
of the distribution clustered close to 0.



Chapter 3

Regression models

Regression models, in particular Generalised Linear Models and

Generalised Additive Models. Model selection using Purposeful Se-

lection. Reducing model complexity by approximating models. Val-

idation techniques for logistic regression. Interpreting fitted models

in terms of the influence of covariates. Deconstructing model out-

put in terms of contributions from the individual covariates.

3.1 Basic theory

In this section we introduce the basic structure of regression models, discussing

generalised linear models as well as their non-linear generalisation. We pay

particular attention to logistic and Poisson regression models and their spatio-

temporal constructions since these form the backbone of the wildfire ignition

modelling literature. We follow Harrell (2015) and Wood (2017) for general

regression theory and Hosmer, Lemeshow, and Sturdivant (2013) for specifics

of logistic regression.

3.1.1 Generalised linear models

Generalised linear models (GLMs) are flexible mechanisms for modelling rela-

tionships between variables. The variable of interest, Y, known as the response

variable, is understood through its relationship to a collection of covariates

19
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(or predictor or independent variables), denoted Z1, Z2, . . . , Zd. The response

and predictor variables can be either continuous or discrete or a mixture of

both. Harrell (2015) defines a GLM by two objects:

1. C(Y | Z), a property of the distribution of Y conditioned on the value

of the covariates, Z = (Z1, Z2, . . . , Zd); and,

2. the link function, g(·), which relates the covariates to the response vari-

able by the relationship

g
(
C(Y | Z)

)
= β0 +

d∑
j=1

βjZj , (3.1)

where β0, β1, . . . , βd are real-valued coefficients, known as the regression

coefficients. We refer to the right-hand side of (3.1) as the predictor

term.

The predictor term is a linear sum of the covariates, hence the name GLM.

Simple linear regression is an example of a GLM, where C(Y | Z) = E(Y | Z)

and the link function is the identity function, giving the well known relation-

ship E(Y | Z) = β0 +
∑d

j=1 βjZj .

A standard setup for a regression model is to have repeated observations

of the response and predictor variables, perhaps corresponding to different

experimental units or different individuals in a population. We denote Yi as

the ith observation of the response variable and Z(i) = (Z1(i), Z2(i), . . . , Zd(i))

as the ith observation of the vector of covariates.

Regression models can also used for modelling spatial processes if the val-

ues of the response and predictor variables are available on a regular grid ,

which is an equally spaced grid, so that each cell is a square. In this setting

the ith observations, Yi and Z(i), correspond to the ith grid cell in the regular

grid. For convenience, denote i = 1 for the first grid cell and i = ncells for

the final grid cell. The regularity of the grid ensures a meaningful comparison

between the observations, since these are often tied to the area of the cells.
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This can be extended to spatio-temporal processes, where we have re-

peated observations of a spatial process. The first ncells values of the index

i correspond to the grid cells from the first time unit. The next ncells values

of the index i correspond to the grid cells from the second time unit and so

on. For simplicity we refer to the time dimension in terms of days and denote

ndays as the total number of time units. The spatio-temporal process results

in ncellsndays observations of the response and predictor variables.

Regression models are used to predict the outcome of the response variable

for new observations of the covariates, and for hypothesis testing in a variety

of settings (Harrell, 2015), but we focus on regression models for binary and

count response variables. In particular, we look at logistic regression for binary

response variables and Poisson regression for count response variables.

Logistic regression

Many problems give rise to binary response data, where Y takes value 0 or

1; for example, the presence or absence of a species (Elith and Leathwick,

2009), bank credit scoring (Hand, 2005) or wildfire. Logistic regression is the

most commonly used regression model for binary response data (Hosmer et

al., 2013).

A binary response variable is modelled by a Bernoulli distribution, which

is governed by a single parameter, the probability of Y = 1. This is also equal

to the mean of Y . Because of this, regression models for binary data explore

the relationship between the conditional probability π(z) := P(Y = 1 | Z = z)

and the covariates. In the previous notation, C(Y | Z) = π(z).

Logistic regression is defined by the link function

g(x) = log

(
x

1− x

)
,

known as the logit function. A simple rearrangement of (3.1) for logistic
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regression yields

π(z) =
exp

(
β0 +

∑d
j=1 βjzj

)
1 + exp

(
β0 +

∑d
j=1 βjzj

) =
1

1 + exp
(
−β0 −

∑d
j=1 βjzj

) (3.2)

From (3.2) we see that covariates taking any real value will result in π(z) ∈

(0, 1), allowing π(z) to be interpreted as a probability. Alternative link func-

tions exist for binary response variables, such as the inverse Normal distribu-

tion function used in Probit regression.

Inference for logistic regression is straightforward using maximum likeli-

hood estimation. If we denote πi,θ := π(z(i)) then the contribution to the

likelihood function from the ith observation is simply πi,θ if yi = 1 and 1−πi,θ
if yi = 0, leading to the likelihood function

L(θ) =

n∏
i=1

πyii,θ
(
1− πi,θ

)1−yi ,
where θ = (β0, β1, β2, . . . , βd) is a vector of real coefficients and n is the total

number of observations. The log-likelihood is given by

l(θ) =

n∑
i=1

yi log(πi,θ) + (1− yi) log(1− πi,θ), (3.3)

which can easily be numerically maximised.

Poisson regression

Poisson regression is a common method for modelling count data. Conditional

on the value of the covariates, the response variable has a Poisson distribution

with mean parameter

λ(z) = exp

(
β0 +

d∑
j=1

βjzj

)
,

where β0, β1, . . . , βd are real-valued coefficients. This corresponds to C(Y |

Z) = E(Y | Z) and link function g(x) = log(x). The likelihood function for

Poisson regression is

L(θ) =
n∏
i=1

e−λθ(z(i))(λθ(z(i)))yi

yi!
,
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which yields the log-likelihood function

l(θ) ∝
ncells∑
i=1

yi log(λθ(zi))− λθ(zi). (3.4)

Similarly to logistic regression, this is easily numerically maximised.

3.1.2 Generalised additive models

Generalised Additive models (GAMs) are a generalisation of GLMs that allow

for non-linear relationships between the quantity C(Y | Z) and the predictor

variables. They follow the same setup as GLMs except that the predictor term

is replaced by a sum of functions of the covariates. Hence (3.1) becomes

g
(
C(Y | Z)

)
= β0 +

d∑
j=1

fj(Zj), (3.5)

where β0 is a real-valued constant and the fj(·) are scaling functions. The

constant β0 is not necessary, since it can be incorporated into the scaling func-

tions, but it can simplify the expression of many GAMs. There are countless

ways of constructing the scaling functions and we discuss two of the more

popular methods, fractional polynomials and splines. Later we use fractional

polynomials to scale covariate effects in our application to wildfire ignition

modelling.

Fractional polynomials

Early attempts to deal with non-linearity in regression models were ad hoc

and used polynomials, usually quadratics, to reflect the non-linearity. Royston

and Altman (1994) introduced fractional polynomials as a unified framework

for scaling covariates using polynomials. A fractional polynomial of degree m

is a function

f(z) = β0 +
m∑
r=1

βrz
(pr),
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where β0, β1, . . . , βm ∈ R and p1, p2, . . . , pm ∈ R with p1 < p2 < · · · < pm.

The round bracket notation for the powers denotes the Box–Tidwell transfor-

mation:

z(pr) =


zpr if pr 6= 0,

log(z) if pr = 0.

The definition of a fractional polynomial was extended to the case where one

or more of the powers coincide. When m = 2 and p1 = p2 the fractional

polynomial is defined as

f(z) = β0 + β1z
(p1) + β2z

(p1) log(z),

where log(z) is the natural logarithm. Details for when m > 2 can be found

in Royston and Altman (1994).

Royston and Altman (1994) proposed to search for the best fitting frac-

tional polynomial from a restricted set of possible powers. They found that

fractional polynomials with m = 2 and powers drawn from the set

P = {−2,−2,−0.5, 0, 0.5, 1, 2, . . . ,max(3,m)} (3.6)

were “sufficiently rich to cover many practical cases adequately”.

In the case of multivariable regression, where there is more than a single

covariate, the individual fractional polynomial terms are reparameterised by

pooling the constants. That is, each fractional polynomial becomes

f(z) =

m∑
r=1

βrz
(pr)

and there is a single shared constant coefficient β0. This prevents identifiability

issues.

Royston and Sauerbrei (2008) has a wealth of information on regression

modelling with fractional polynomials.
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Splines

Splines offer an alternative method of scaling the effect of the covariates on

C(Y | Z). The overarching idea is to use piecewise polynomials to model

non-linearity. The simplest spline is a piecewise linear spline (Harrell, 2015).

For a set of knots, {k1, k2, . . . , km}, a piecewise linear spline is a function

f(z) = β0 + β1z +

m∑
r=2

βr(z − kr)+,

where β0, β1, . . . , βm are real-valued coefficients and

(z)+ =


z if z ≥ 0,

0 if z < 0.

This is a continuous function and can approximate many non-linear relation-

ships, but it struggles to reproduce relationships that have a high degree of

curvature. To overcome this problem, polynomials of a higher degree can be

used in the spline. Cubic splines are perhaps the most popular splines and

use piecewise cubic polynomials. They are often constructed to be smooth

functions by forcing the derivatives of the piecewise polynomials to agree at

the knot locations. See Harrell (2015, Section 2.4.6) for details on choosing

the number and location of knots.

Both splines and fractional polynomials can be used to scale the effect

of covariates on C(Y | Z) and comparisons have found negligible difference

between their predictive performance (Binder, Sauerbrei, and Royston, 2013).

Fractional polynomials produce simpler models in the sense that the final

predictor term is a linear sum of ‘nice’ functions, whilst the final predictor term

for spline models involves m knots and m+ 1 polynomials. This simplicity of

fractional polynomials can be useful in operational contexts where it can be

important for models to be easily transported and deployed.
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3.1.3 Equivalence of logistic and Poisson regression for low

probability events

We have discussed how logistic and Poisson regression can be used to model

binary and count response data respectively. An observation that becomes

important when modelling wildfire ignitions is that, for low probability events,

logistic and Poisson regression are approximately equivalent. Intuitively, this

happens because the probability of Y > 1 in the Poisson regression model

becomes so small that Y is essentially a binary response variable. However

it is interesting to note that the relationship is very strong; not only do the

probabilities approximate each other, but so too do the predictor terms. This

relationship has been noted in the context of approximating point processes

in Baddeley, Rubak, and Turner (2015, Section 9.9.3).

The relationship can be seen by equating the probabilies P(Y = 0) under

both the Poisson and logistic regression models. Suppose we have a fitted

logistic regression GAM with predictor term Fl(z) and a fitted Poisson re-

gression GAM with predictor term Fp(z). Then the probability of Y = 0

is

P(Y = 0 | Z = z) =
1

1 + exp
(
Fl(z)

)
for the logistic regression model and

P(Y = 0 | Z = z) = exp
(
− exp

(
Fp(z)

))
for the Poisson regression model. Equating these two expressions and rear-

ranging yields

Fp(z) = log

(
log
(

1 + exp
(
Fl(z)

)))
. (3.7)

Using the approximation log(1+x) ≈ x for small x it follows that Fp(z) ≈ Fl(z)

for small values of exp(Fl(z)). This corresponds to small values of P(Y = 1 |

Z = z) under both the logistic and Poisson regression models.
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Figure 3.1: The solid line shows the relationship (3.7) and the red dashed line
corresponds with the identity function. The approximation Fl(z) ≈ Fp(z) is very good
when the predictor terms take values less than -2.

As shown in Figure 3.1, this approximation is very good for values of

Fl(z) less than −2. A predictor term with a value of −2 corresponds to

P(Y > 0) = 0.119 and 0.123 for logistic and Poisson regression respectively.

We also need to consider the relationship between logistic and Poisson

regression for Y > 0. For Poisson regression with a predictor term taking

value 0.123, the probability P(Y > 1) is negligible at 0.007 and so P(Y > 0 |

Z = z) ≈ 1−P(Y = 0 | Z = z) for Poisson regression with equality for logistic

regression. This is the same situation as above.

This relationship implies that for low probability events, the logistic and

Poisson regression models should approximately coincide: both the model

probabilities and the actual form of the predictor term, such as coefficients

and scaling functions, should be similar. In many modelling contexts, the

probability of a non-zero response is well below 0.1 and this relationship arises.
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3.2 Model selection

In Section 3.1 we discussed the structure of regression models as though the

choice and scaling of covariates was given. In this section we discuss issues of

model selection: how to choose covariates to include in the model and when

and how to scale them. These two issues are closely connected and some

methods of model selection deal with both issues simultaneously.

The guiding principle behind all model selection methods is that of par-

simony: choose the simplest model that is an adequate representation of the

data (Burnham and Anderson, 2002). Simple models guard against over fit-

ting and can also be valuable in practical settings where more complex models

can be difficult to interpret or where it is impractical to collect data for a large

number of covariates.

A modeller usually has some prior understanding of which covariates may

affect the response variable. This understanding might come from expert

opinion or previous studies, but should not come from inspecting data that

is being used in the study. We call this collection of covariates the candi-

date covariates and a key component of model selection is choosing which of

these covariates to include in the final model. In Section 3.2.1 we discuss an

approach to model selection known as purposeful selection, which we employ

when developing our model for lightning ignitions in Chapter 5.

3.2.1 Model selection: purposeful selection

Hosmer et al. (2013, Section 4.2) advocated purposeful selection as a model

selection process for logistic regression, although the basic principles of the

approach apply more generally. Indeed, others recommend similar approaches

to model selection for more general regression models (Harrell, 2015, Section

4.12 for example). Purposeful selection requires the modeller to inspect and

judge the model at various stages of development. We begin with the like-
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lihood ratio test and Wald statistics, which are the building blocks of the

purposeful selection approach.

Likelihood ratio tests

Likelihood ratio tests are powerful tools in statistics and can be used for

hypothesis tests involving nested regression models. We introduce the gen-

eral likelihood ratio test before discussing its implications. Suppose that

x1, x2, . . . , xn are observations from the probability density (or mass) func-

tion f(x | θ) (satisfying regularity conditions, Casella and Berger, 2002, Mis-

cellanea 10.6.2), where θ is a vector of parameters. Suppose that R(·) is a

vector-valued function such that R(θ) = 0 imposes r restrictions on the pa-

rameter vector θ. Then consider the composite hypothesis H0: R(θ) = 0

against H1: R(θ) 6= 0. The likelihood ratio test statistic is given by

LR = −2 log

(
L(θ̂H0)

L(θ̂H1)

)
,

where L is the likelihood function, θ̂H1 is the MLE and θ̂H0 is the value

satisfying R(θ̂H0) = 0 that maximises the likelihood function (the restricted

MLE). Then as n→∞,

LR→ χ2
r ,

the chi-squared distribution with r degrees of freedom (Wood, 2017, Appendix

A.5).

Now suppose we have two GLMs with d1 and d2 covariates respectively

such that the covariates included in model 2 are a subset of the covariates in-

cluded in model 1. Model 2 is nested in model 1 since model 2 can be recovered

from model 1 by choosing coefficients equal to 0 for all the covariates in model

1 that are not in model 2. For nested regression models a likelihood ratio test

can be performed to test H0: the data comes from model 2 (the smaller model)

against H1: the data comes from model 1 (the larger model). The numerator

and denominator of the likelihood ratio test statistic are calculated using the
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coefficients from model 2 and model 1 respectively; finding evidence against

the null hypothesis that model 2 is adequate if the LR is sufficiently large (as

determined by a suitable quantile of the chi-squared distribution with d1− d2

degrees of freedom).

Wald statistics

When regression models are fitted using maximum likelihood, asymptotic

properties can be used to find the approximate distribution of the regression

coefficients (Wood, 2017, Section 3.1.3). For β̂, the MLE vector of regression

coefficients, the large sample approximate distribution is

β̂ ∼ N(β, (XT V̂ X)−1),

where X is the design matrix , the n× (d + 1) matrix with rows (1, z(i)), i =

1, 2, . . . , n; and V̂ is the n×n diagonal matrix with diagonal entries π̂i(1− π̂i),

where π̂i is the ith predicted probability (Hosmer et al., 2013, Section 2.3).

The univariate Wald statistics are defined as

Wj =
β̂j

ŜE(β̂j)
,

where β̂j is the MLE of the jth regression coefficient and ŜE(β̂j) is the esti-

mated standard error, given by the square root of the jth diagonal entry of

(XT V̂ X)−1. If the true value of βj is 0 then the univariate Wald statistic is

approximately distributed according to a standard Normal distribution. This

can be used to perform an approximate hypothesis test H0: βj = 0 against

H1: βj 6= 0, rejecting H0 if the value of |Wj | exceeds a suitably chosen quantile

of the standard Normal distribution.

Method

Here we give the steps of purposeful selection as outlined in Hosmer et al.

(2013, Section 4.2). All significance levels are assumed to be 0.05 unless oth-

erwise specified. We also assume that all covariates are continuous, since this
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is the case for our intended application. See Hosmer et al. (2013) for details

on how to deal with discrete or categorical covariates.

1. A univariate analysis of every covariate: fit a univariate regression model

to each of the covariates. Compare the univariate and null model (model

with no covariates) using a likelihood ratio test with significance level

of 0.25. The generous significance level is recommended to capture vari-

ables which may show univariate insignificance, but have a confounding

effect when included in a multivariate model.

2. Multivariate analysis: fit a multivariable model with all the covariates

selected by the univariate analysis. Fit a second, smaller, multivariable

model by removing any covariates with insignificant Wald statistics in

the first multivariate model. Use a likelihood ratio test to compare the

smaller model with the full model.

3. Multivariate analysis: compare values of the fitted coefficients between

the full and reduced multivariable model. If any of the coefficients change

by more than 20% it suggests that one or more of the removed covariates

has an important interaction with the other covariates in the model.

These covariates should be reintroduced to the model. Repeat steps 2

and 3 until all important covariates seem to be in the model. In this

situation, it is recommended that only a few covariates be deleted each

iteration.

4. Multivariate analysis: one at a time, add each covariate removed in

step 1 to the model. Keep them in the model if their Wald statistic is

significant. This is done to ensure that we don’t miss any covariates that

have important interaction effects, despite not being significant on their

own. The model at the end of this step determines which covariates are

included in the final model and is known as the preliminary main effects

model.
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5. Scaling: we assess the assumption that the logit-likelihood is linearly

related to the covariates and choose scaling functions where appropriate.

We discuss how to do this below. The model at the end of this step is

known as the main effects model.

6. Interaction effects: there may be significant pairwise interactions be-

tween covariates in the model. This means that the effect of changes

in a covariate is not constant over varying values of another covariate.

Whether or not to include interaction terms “should be based on statis-

tical as well as practical considerations” (Hosmer et al., 2013). Begin by

compiling a list of pairs of covariates that could have a possible inter-

action effect from a practical perspective. Interaction terms are created

by taking the arithmetic product of the covariates. Analyse each inter-

action term by constructing a model that includes all the covariates in

the main effects model along with the selected interaction term. Check

the significance of these models using a likelihood ratio test. Following

this, create a model which includes all of the interaction terms deemed

significant by the univariate analysis along with the covariates in the

main effects model. Follow step 2 to produce a reduced model, but only

allow the removal of interaction terms.

7. Validation: perform model validation and goodness-of-fit test, as dis-

cussed in Section 3.4 below.

We now provide extra detail on Step 5: scaling covariates. Scaling co-

variates typically increases the number of parameters in the model and so

unnecessary scaling should be avoided. To begin, Nadaraya–Watson smooths

can be inspected to determine if the relationship between the covariate and

C(Y | Z) departs from linearity in a meaningful way. A Nadaraya–Watson

smooth of a function f is a non-parametric estimate formed by kernel smooth-

ing the (x, f(x)) observations (Hastie, Tibshirani, and Friedman, 2009, Sec-
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tion 2.8.2). In the case of logistic regression, a Nadaraya–Watson smooth can

be calculated for each covariate–response pair and plotted on the logit scale.

Any covariate whose plot shows a notable departure from linearity should be

a candidate for scaling.

Hosmer et al. (2013) recommended several simple ad hoc approaches to

scaling covariates along with a more methodological framework using frac-

tional polynomials. They find that fractional polynomials of degree m = 2

and with powers drawn from the list (3.6) are sufficient for most practical

applications. Let S be the set of covariates that are selected for scaling. The

process of scaling is iterative, cycling through the covariates in S one by one

and choosing suitable scaling functions. At each step, the model includes all

covariates in the preliminary main effects model with those not in S remaining

with a linear term.

To begin, the first covariate in S, say zj , is scaled. First, fit all possible

models that include a degree 1 fractional polynomial term for zj . This results

in 8 models, one for each of the powers in P. From this choose the best model,

determined as the model that maximises the value of the likelihood function.

Next, fit all possible models which include a degree 2 fractional polynomial

term for zj – resulting in 36 models – and choose the model that maximises

the likelihood function. Finally, determine whether the scaled models offer a

statistically significant improvement to the previous model. This can be done

using a series of approximate likelihood ratio tests. First compare the best

degree 2 model with the linear model; if the degree 2 model is not significant

select the linear model, else compare the degree 2 model to the best degree 1

model; if the degree 2 model is still significant, reject the degree 1 model; else

use the degree 1 model.

We repeat this process for the second covariate in S except we fix the

fractional polynomial term for zj chosen in the first cycle of the process. This

process is repeated, cycling through each covariate in S until a full cycle is
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made without any of the fractional polynomial terms changing. The resulting

model is called the main effects model.

Royston and Altman (1994) argued that each term in a fractional poly-

nomial contributes approximately 2 degrees of freedom to the likelihood ratio

test. This means that the likelihood ratio that compares the best degree 2 frac-

tional polynomial with the best degree 1 fractional polynomial is distributed

approximately chi-squared with 2 degrees of freedom and the likelihood ratio

that compares the best degree 1 fractional polynomial model with the un-

scaled (linear) model is distributed approximately chi-squared with 1 degree

of freedom.

3.3 Model approximation

In some sense, traditional model selection techniques select covariates that

have a detectable influence on the quantity being modelled. For data sets

with a large number of observations it becomes possible for very subtle ef-

fects to be detected, often resulting in models that include a large number

of covariates. Large models can be cumbersome to use; collecting and main-

taining large databases of covariates may be too costly for operational use.

In these situations it may be desirable to approximate the full model with a

simpler model with fewer covariates. The full model will usually be the most

accurate, but it may be possible to produce a reduced model with comparable

performance by removing the relatively uninfluential covariates.

Harrell (2015) discussed a simple way to do this for linear regression models

by using the weighted average of the predictions, as follows. Suppose we

need to remove a particular covariate from the model. If the covariate is

categorical then calculate the predicted value for every possible value of the

missing covariate and take the average weighted by the prior probabilities of

the category as our final prediction. In theory we could repeat this process

until we had a sufficiently simple model, but this approach becomes unwieldy
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as more covariates are removed.

An alternative approach that can deal with more complex models is to

build a new, simpler model by regressing on the predictor terms from the full

model. That is, rather than modelling the quantity of interest, C(Y | Z),

build a model for the predictor term from the full model,
∑

j fj(zj), regress-

ing on the original covariates z. Harrell (2015) suggested that this can be

done using regression trees (Breiman et al., 1984) or linear regression. The

modeller can adjust the depth of the regression tree to find a simpler model

which still has an acceptable degree of accuracy. Interestingly, these methods

have been used to try and decode “black boxes” such as neural networks by

constructing approximating models that yield more readily to interpretation

(Harrell, 2015).

Measuring the accuracy of an approximating model can be difficult. Har-

rell (2015) recommended measuring the agreement between the predictor

terms of the full and reduced models using the R2 value. This approach

is simple and easily understood, but it does not directly connect the approxi-

mating model to the quantity of interest, C(Y | Z). An alternative approach

is to measure the predictive performance of the full model and compare it with

the predictive performance of the reduced model. Chapter 4 discusses perfor-

mance measures for binary models such as logistic regression. This second

approach allows the performance of the approximating model to be evaluated

in reference to the quantity of interest, however measuring predictive perfor-

mance is somewhat fraught (Section 4.5 below).

In general one expects the full model to be more accurate than the ap-

proximating model. A particularly important situation to consider is when

a covariate mostly has little effect on the predictor term, but occasionally

is highly influential. This covariate is relatively likely to be removed during

model approximation since it has little effect on the bulk of observations. The

approximating model may perform well on the bulk of the data, but can be
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inaccurate for those few observations where the covariate is highly influential.

The user should be aware that although an approximating model may seem to

have good accuracy, it can perform poorly on particular subsets of the data.

In the next section we propose a very simple ad hoc method for identifying

and removing relatively uninfluential covariates from a GAM model. The

technique is not dissimilar to the approach to linear regression models (Harrell,

2015), but allows us to deal with more complex non-linear models.

3.3.1 Covariate contributions

We present an approach for finding covariates that are relatively uninfluential

in the model. We do this by working on the scale of the predictor term, looking

for covariates whose effect on the predictor term is relatively close to constant.

Given a regression model, denote the contribution of the jth covariate to the

predictor term as the jth covariate contribution

CCj = fj(Zj), (3.8)

where fj is the scaling function corresponding to the jth covariate. Note that

CCj incorporates effects from the regression coefficients, scaling functions and

the inherent randomness of the covariate. The predictor term is the sum of

the covariate contributions and the regression constant, if there is one.

We are interested in thinking of the covariate contributions as random

variables themselves and considering their influence on the predictor term.

If the link function is monotonic (which is true for all common regression

models, such as Normal, exponential, gamma, Poisson, negative binomial and

binomial), the predictor term is directly related to the quantity of interest,

C(Y | Z), in the sense that an increase (or decrease) in the predictor term

will result in an increase (or decrease) in C(Y | Z).

To identify relatively uninfluential covariates we might consider the vari-

ance of each CCj . If CCj′ has small variance relative to the other CCj then
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CCj′ behaves more like a constant and can be factored into the regression con-

stant. We propose approximating the full model by replacing these relatively

uninfluential CCjs with their mean. A series of approximating models can be

built by replacing the CCjs with their means in increasing order of variance.

The modeller can then choose the smallest model that still provides suitable

performance.

3.4 Model validation for logistic regression

Model selection and fitting procedures will always produce a model, so the

next step in a modeller’s journey should be to assess how faithfully the model

reflects the data. This is not a judgement of the predictive power of a model.

It is possible to have a well-fitting model with no predictive power, a Bernoulli

random variable for a coin toss for example. Goodness-of-fit tests are formal

hypothesis tests for assessing whether the data could reasonably be believed

to come from the fitted model. These give some indication of model fit, but

if a model fails a test it does not show why it failed. For this purpose, diag-

nostics are investigated. These give an indication of which observations are

responsible for poor model fit and allow the modeller to understand where

and why the model is failing.

The specifics of goodness-of-fit tests and diagnostics differ for different

regression models and we focus solely on logistic regression.

3.4.1 The Hosmer–Lemeshow goodness-of-fit test

The Hosmer–Lemeshow test is a modified chi-squared test for logistic regres-

sion models, where the groups in the test are based on the estimated probabil-

ities. After sorting the estimated probabilities into increasing order, there are

two methods for creating the groups. The first splits the ordered estimated

probabilities such that the observations are split equally across all the groups.
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The second method uses fixed cut points; if there are g groups the cut points

would be defined by k/g, k = 1, 2, . . . , g−1. Then the Hosmer–Lemeshow test

statistic is given by

Ĉ =

g∑
k=1

[
(o1k − ê1k)

2

ê1k
+

(o0k − ê0k)
2

ê0k

]
where

o1k =

ck∑
i=1

yi, o0k = ck −
ck∑
i=1

yi,

ê1k =

ck∑
i=1

π̂i, ê0k = ck −
ck∑
i=1

π̂i

and ck is the number of observations in the kth group.

Through a simulation study, the distribution of Ĉ was found to be approx-

imately chi-squared with g− 2 degrees of freedom, and that the first grouping

method, using percentiles, is preferable to fixed cut points (Hosmer et al.,

2013, Section 5.2.2). They recommend that g = 10 groups is sufficient in most

cases.

In the case of large data sets, goodness-of-fit tests such as the Hosmer–

Lemeshow test can be overly sensitive, recognising a lack of fit from very

slight deviations from the model. As Johnson and Wichern (2007, page 187)

noted, “very large samples invariably produce statistically significant lack of

fit. Yet the departure from the specified distribution may be very small and

technically unimportant to the inferential conclusions”.

3.4.2 Diagnostics for logistic regression

Diagnostics for logistic regression mirror those for linear regression. The Pear-

son residual for logistic regression is given by

ri =
yi − π̂i√
π̂i(1− π̂i)

;

assuming that the model is correctly specified and that there is no error in

the estimate π̂i, ri is the observed value yi, standardised to have zero mean
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and unit variance. The Pearson chi-squared statistic is X2 =
∑n

i=1 r
2
i . The

deviance residual is

d(yi, π̂i) =


−
√

2|log(1− π̂i)| if yi = 0√
2|log(π̂i)| if yi = 1

and the deviance is D =
∑n

i=1 d(yi, π̂i)
2 (Hosmer et al., 2013, Section 5.3).

Where the Pearson chi-squared statistic represents the distance between the

observed data and the model predictions, the deviance statistic represents the

agreement between the log-likelihood functions of the fitted model and the

saturated model.

In linear regression, the hat matrix is the matrixH satisfying ŷ = Hy. The

diagonal entries of H, denoted hi, are known as the leverage values and they

reflect the influence of the ith observation on the ith prediction ŷi. That is, the

influence of the ith observation on its own prediction. If the ith leverage value

is large relative to other leverage values, it indicates that the ith observation

is having a large impact on model fit.

Pregibon (1981) used linear approximation methods to find a matrix for

logistic regression that is equivalent to the hat matrix from linear regression:

H = V̂ 1/2X(X ′V̂ X)−1X ′V̂ 1/2,

where X is the design matrix, V̂ is an n × n diagonal matrix with diagonal

entries

v̂i = π̂i (1− π̂i) .

The leverage values are of interest themselves and also play a key role in

constructing other diagnostics. Another consequence of this approximation is

a further standardisation of the Pearson residual (Hosmer et al., 2013, Section

5.3), namely the standardised Pearson residuals,

rs,i =
ri√

1− hi
.
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Many diagnostics explore model fit by comparing the model to a reduced

model constructed by deleting the ith observation and refitting the model.

Large differences between the full and reduced model would suggest that model

fits poorly to the ith point, or that the ith point has a large influence on general

model fit. Pregibon (1981) found linear approximations for the change in the

Pearson chi-squared statistic,

∆X2
i = r2

s,i,

the change in the deviance statistic,

∆Di =
d2
i

1− hi
,

and Cook’s distance

∆β̂i =
r2
s,ihi

1− hi
.

Cook’s distance represents the standardised difference between the regression

coefficients of the full and reduced models (Cook, 1977; Hosmer et al., 2013;

Pregibon, 1981).

Note that these linear approximations are necessary because otherwise it

would be computationally infeasible to calculate these residuals. For example,

we could calculate the change in the Pearson chi-squared statistic by calculat-

ing X2−X2
(−i) for each i, where X2

(−i) is the Pearson chi-squared statistic for

the model with the ith observation removed. However, this would require us

to fit one model for each observation, which would be infeasible for moderate

or large sample sizes.

Interpretation of residuals for logistic regression can be difficult. Hosmer et

al. (2013) recommended looking for observations whose “diagnostic statistics

fall well away from the rest of the values” for two or more of the diagnostics

of interest. Generally, large value of ∆X2
i or ∆Di reflects a large discrepancy

between the model and the ith observation, whilst a large value of ∆β̂i or hi

reflects a disproportionate influence of the ith observation on model fit. Hos-



3.5. INTERPRETING THE MODEL 41

mer et al. (2013) recommended inspecting plots of (i) hi against π̂i, (ii) ∆X2
i

against π̂i, (iii) ∆Di against π̂i, and (iv) ∆β̂i against π̂i.

3.5 Interpreting the model

Meaningful interpretation of a fitted model is important when the model is

intended for operational use. To have trust in a model, users need to under-

stand how it will behave in various scenarios. This allows users to compare

the model to their intuitive understanding of the physical process and allows

them to ‘sanity check’ the model. They are more likely to trust a model if the

general underlying principles are consistent with their understanding of the

process.

Interpreting regression models is easiest with the assumption that the link

function is monotonic, which we assume is true since it holds for all common

regression models. For GLMs, if the link function is monotonically increas-

ing (decreasing) then a positive value of a regression coefficient indicates that

the corresponding covariate is positively (negatively) related to the quantity

of interest, C(Y | Z). For linear regression, when the link function is the

identity function, regression coefficients are equal to the increase in C(Y | Z)

corresponding to a unit increase in the covariate, given that all the other co-

variates are fixed (or more generally, the contribution to the predictor term

from the other covariates remains constant). Interpreting regression coeffi-

cients for other models is much more difficult. For example, Hosmer et al.

(2013, Chapter 3) explain how to interpret the regression coefficients in a lo-

gistic regression GLM in terms of increases in the log-odds. In Harrell (2015,

Section 2.3) the author discusses this interpretation more generally, in terms

of changes in the quantity g(C(Y | Z)).

The interpretation of GAMs is even more difficult since we have functions

of the covariates and they are non-linearly related to the quantity of interest.

Under the assumption that the link function is monotonic, it is easiest to anal-



42 CHAPTER 3. REGRESSION MODELS

yse the effect of the covariates on the predictor term g(C(Y | Z)) rather than

C(Y | Z). Plots of the scaling function fj give some insight into the influence

of zj in the model, however they fail to show the effect of any interaction

terms, if present. We recommend including vertical lines at the 0.025 and

0.975 quantiles of the covariate to highlight the section of the scaling function

that sees most use. Plots of each of the covariates zj against the predictor

term holding all other covariates constant are known as ‘partial effects plots’

and also reflect interaction terms (Harrell, 2015, Section 5.1.1). In the pres-

ence of interaction terms the partial effects plot can be repeated for different

levels of interacting covariates.

We propose another approach to interpreting a fitted GAM model using

covariate contributions (Section 3.3.1), which we defined as CCj = fj(Zj) and

view as a random variables. Following the logic outlined in Section 3.3.1, we

can consider the variance of each of the CCj as a rough guide to the relative

influence of each of the covariates on the model. Further insight can be gained

by looking at estimates of the probability densities of the CCj . The strength

of analysing the CCj over other techniques such as partial effects plots is

that it incorporates the randomness of the covariate itself. In the presence of

interaction, multiple CCj density plots can be made by conditioning on the

value of interacting covariates.

3.6 Forecasts

Producing forecasts from regression models is simple enough: calculate the

predicted value of C(Y | Z) using new observations of the covariates. How-

ever in many practical settings, for example those involving weather, we have

forecast rather than observed values of the covariates. The discrepancy be-

tween the predicted and observed values of the covariates introduces another

source of error into the model forecasts. In this situation the best practice

is to use historic forecast data to fit and evaluate the model, however it is
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often difficult to acquire such data. Data repositories tend to keep only the

observed data.

In Section 3.5 we discussed how it is important for models to be explainable

if users are to build trust in them. In that section we discussed how to under-

stand the general behaviour of a model. However, it can also be important to

understand a particular forecast. In Sections 3.6.1 and 3.6.2 we discuss how

individual forecasts can be deconstructed into contributions from each of the

covariates, allowing users to relate model output to their own understanding.

3.6.1 Deconstructing forecasts - GLM

It is often recommended that the covariates be centered, by deducting their

mean, prior to modelling. This gives the regression constant β0 the interpreta-

tion of being the value of the predictor term when all the covariates are equal

to their means. The quantity g−1(β0) is the predicted outcome if all covariates

are equal to their means and has the somewhat fraught interpretation as being

the forecast outcome in ‘normal’ conditions. Of course, all covariates being

equal to their respective means is not ‘normal’ – it ignores any dependence

between the covariates and the mean need not be an observed value of the

covariate – but in many practical settings this can be a useful interpretation.

If we assume the link function is monotonic then a consequence of model

building with centered covariates is that we can deconstruct a given forecast

into contributions from each of the covariates. Suppose that z∗(i) is an ob-

servation of the centered covariates and we have used our ‘centered’ model to

forecast C(Y | Z∗ = z∗(i)). If we think of all covariates being equal to their

mean as ‘normal’ conditions, then for a given forecast the value of βjz
∗
j (i) in-

dicates the influence of the jth covariate. A large positive (negative) value of

βjz
∗
j (i) suggests that the jth covariate has a large positive (negative) influence

on the predicted value of C(Y | Z∗ = z∗(i)) when compared with ‘normal’

conditions. What constitutes a large or small value of βjz
∗
j (i) is determined
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by the relative values of the other covariates. Those with the largest (small-

est) value of βjz
∗
j (i) have the largest (smallest) influence on the given forecast

when compared with ‘normal’ conditions.

In the presence of interaction terms it is not possible to make statements

about the influence of one covariate without discussing the others. Instead the

relative influence of the interactive covariates can understood by considering

the combined term such as β1z
∗
1(i) + β2z

∗
2(i) + β1,2z

∗
1(i)z∗2(i), which captures

the influence of two covariates simultaneously.

3.6.2 Deconstructing forecasts - GAM

We propose a method for deconstructing model forecasts from GAMs into

contributions from each of the covariates by considering the value of centered

covariate contributions (Section 3.3.1). We call the departure from the mean

the covariate contribution anomaly,

CCAj(i) = CCj(i)− ECCj ,

where CCj(i) = fj(zj(i)) is the jth covariate contribution evaluated for the

ith observation. The predictor term can be expressed in terms of the CCA as

β0 +
∑
j

fj(zj(i)) = β∗0 +

d∑
j=1

CCAj(i),

where β∗0 = β0 −
∑d

j=1ECCj . The coefficient β∗0 has a similar interpretation

to the regression coefficient from GLMs with centralised covariates.

The CCA has a similar interpretation to βjz
∗
j (i) from the GLM case: a

large positive (negative) value of CCAj(i) suggests that the jth covariate has a

large positive (negative) influence on the predicted value of C(Y | Z∗ = z∗(i))

when compared with ‘normal’ conditions. Here, ‘normal’ conditions are with

respect to the value of the CC not the covariate itself. In the presence of

interaction terms we must again consider the joint contributions.
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It’s worth noting that although we have discussed using the mean to cen-

tralise the CC, any suitable constant will work. Possible alternatives are using

the median or mode of the CC, or using the value of the scaling function fj

evaluated at the mean, median or mode of the jth covariate. The best choice of

centralisation quantity will be determined by the setting and the distribution

of the covariate.





Chapter 4

Performance measures for

binary response models

Classifiers and their link to logistic regression. The AUC, H mea-

sure, Kolmogorov–Smirnov statistic and Hedges’ g. Issues with

interpreting performance measures. Recommendations for mea-

suring model performance.

4.1 Classifiers

For models that are intended to be used for prediction it is important to be

able to judge the predictive accuracy of the model. Unless there is a very

specific application where there exists a clearly defined performance metric,

it can be difficult to assess ‘general’ performance. In this chapter we discuss

approaches to measuring the performance of binary response models, such

as logistic regression (Section 3.1.1). As we show, interpretations of these

measures do not always link back to a meaningful quantity in terms of the

underlying probabilities. Despite this, many continue to use them uncritically

to draw conclusions about the value of models.

Many performance measures used for evaluating binary response models

were initially designed to assess binary classifiers. A classifier is a function

of the covariates that returns either a 0 (negative response) or a 1 (positive

47
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response). More generally, a classifier is a pair (s(z), t) where s(z) is the

score function, which is monotonically related to the probability of a y = 1

response, and t ∈ R is the threshold. An observation of the covariates z is

classified (predicted) as a positive response if s(z) ≥ t and a negative response

if s(z) < t. In logistic regression, for example, the score function could be

either the forecast probability π(z) or the predictor term β0 +
∑p

j=1 fj(zj) =

logit(π(z)). Logistic regression is a classifier when paired with a threshold.

Binary response models return the probability of a positive response, whereas

binary classifiers are decision rules, converting the output of the response

model into a positive or negative response.

A classifier performance measure returns a numerical value that reflects

the ability of a classifier to discriminate meaningfully between positive and

negative responses. There are numerous performance measures with different

interpretations and properties and we cover some of these in the following

sections. However they all share a common property: they are summary

statistics endeavoring to describe a complex object by a single number. A

single performance measure cannot reflect all aspects of the accuracy of a

classifier. For this reason it is important to understand the specific behaviour

of any performance measures used in a study.

Performance measures are not a substitute for model validation and they

do not reflect how well the model fits the data. For example, the coin toss

classifier (randomly predict a positive response, with probability 0.5) will fit

data from a coin toss very well and yet offers abysmal predictive performance.

Hosmer et al. (2013) noted that the “abililty of the fitted model to discrimi-

nate between the two outcomes is more a function of the difference between

the groups... we can have well fitting models that discriminate poorly, just

as we could have models with poor fit that discriminate well”. After we have

performed model validation and are satisfied with the fit of the model, per-

formance measures indicate the ability of the model to discriminate between
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the classes.

The sensitivity (or true positive rate) of a classifier at threshold value t

is the proportion of y = 1 cases that are correctly identified as y = 1 cases.

That is, the proportion of y = 1 cases where s(z) > t. Similarly, the specificity

(or true negative rate) at threshold value t is the proportion of y = 0 cases

that are correctly identified as y = 0 cases. That is, the proportion of y = 0

cases where s(z) ≤ t. If G0(t) is the distribution function of the score of a

y = 0 observation and G1(t) is the distribution function of the score of a y = 1

observation then for a threshold with value t the sensitivity is 1 − G1(t) and

the specificity is G0(t).

Generally, the sensitivity and specificity are inversely related. For any

classifier and as t → ∞, every observation will eventually be classified as

a y = 0 observation. This results in the sensitivity approaching 1 and the

specificity approaching 0. Likewise if the threshold t→ −∞, every observation

will eventually be classified as a y = 1 observation and the sensitivity will

approach 0 and the specificity will approach 1. The choice of threshold value

is often informed by an acceptable level of sensitivity and specificity.

In many practical settings there is a need to assess the quality of a classifier

without knowing the value of the threshold. For example, a bank might be

interested in using a classifier to identify customers that are likely to default on

their loan. Suppose that the model is developed centrally, but the thresholds

are chosen to be specific to each of the branches of the bank to satisfy their

individual constraints. The modeller needs to choose the ‘best’ model prior

to knowing the threshold. Another reason to avoid prespecified thresholds

is that they are usually highly subjective, chosen based on the problem at

hand. These subjective decisions can make it impossible to compare models

meaningfully. Performance measures attempt to measure the ‘general’ ability

of a classifier to discriminate between positive and negative responses, without

specifying a choice of threshold. In this chapter we discuss several popular
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performance measures, highlighting some issues with them, before giving some

recommendations for their use.

4.2 The AUC

The integral of the Receiver Operating Characteristic (ROC) curve, known as

the area under the curve (AUC or AUROC), is the most popular measure of

discrimination for binary classification models. Indeed, Hand and Anagnos-

topoulos (2013) found that the AUC was used in over 6000 papers in 2012

alone and noted the largely unrecorded prevalence of the AUC in commercial

applications.

The ROC curve is a plot of the sensitivity against 1− specificity, which is

the curve defined by

{(1−G1(t), 1−G0(t)) | t ∈ R}. (4.1)

Since it is defined in terms of distribution functions, the ROC curve inhabits

the space [0, 1]× [0, 1]. A perfect classifier that correctly classifies every case

for all threshold values will have an ROC curve equal to 1 everywhere in the

[0, 1] interval. A classifier that is equivalent to tossing a coin will have an

ROC curve coresponding to the diagonal {(x, x) | x ∈ [0, 1]}. An example of

a typical ROC curve can be found in figure 4.1.

Although it is possible for the ROC curve to go below the diagonal, this

case is generally ignored since the corresponding classifier can easily be im-

proved. The values of t where the ROC curve is below the diagonal correspond

with the classifier reliably misidentifying the y = 0 observations as y = 1 obser-

vations. A simple transformation of the classifier will correct this and produce

a new classifier whose ROC curve is above the diagonal. Due to this, we can

think of the ROC curve as being bounded by 1 from above and the diagonal

{(x, x) | x ∈ [0, 1]} from below.
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Figure 4.1: An example of the reciever operating characteristic curve

The area under the ROC curve is the integral of the ROC curve. Following

from the above discussion, it takes values between 0.5, corresponding to the

coin toss classifier, and 1, corresponding to the perfect classifier. The AUC is

given by the integral of (4.1):

AUC =

∫ 1

0

[
1−G1(G−1

0 (1− s))
]

ds

= 1−
∫ ∞
−∞

G1(u)g0(u) du (4.2)

=

∫ ∞
−∞

(1−G1(u))g0(u) du, (4.3)

where g1(u) is the density of G1(u), assuming it exists. Equation (4.2) follows

from the change of variable u = G−1
1 (s). An intuitive interpretation of the

AUC is suggested by (4.3): it is the probability that a y = 0 observation

selected uniformly at random will have a lower score than a y = 1 observation

selected uniformly at random. An alternative interpretation is that the AUC
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is the weighted average of the sensitivity, taking each value of the specificity

as equally likely.

The AUC has drawn increased criticism in the past decade (Hand, 2009;

Hand and Anagnostopoulos, 2013; Lobo, Jiménez-Valverde, and Real, 2008).

In particular, the AUC has been criticised for: (i) treating false positives and

false negatives equally, and (ii) summarising classifier performance over regions

of ROC space that are not of practical interest. In most practical settings it

is unreasonable to assume that false positive and false negatives have equal

consequence. Hand (2009) discussed this in detail and proposed an alternative

performance measure that considers different misclassification costs (the H

measure, see below). The second criticism, that the AUC summarises classifier

performance over irrelevant regions of ROC space, is addressed by the partial

AUC (Dodd and Pepe, 2003), which is the integral of the ROC curve over a

restricted domain,

pROC =

∫ s1

s0

[
1−G1(G−1

0 (1− s))
]

ds,

where (s0, s1) is the range of values of the specificity that are deemed ‘reason-

able’. The choice of (s0, s1) is arbitrary and problem specific, removing some

of the appeal of the AUC as an objective measure. Despite these problems,

the AUC remains the most popular measure of classifier performance.

4.3 The H measure

The H measure, first proposed by Hand (2009), was born out of a criticism

of the AUC that arises in the context of misclassification costs. The ar-

guments against the AUC were streamlined in Hand and Anagnostopoulos

(2013), which showed that the AUC is related to the weighted average of the

proportion of correctly classified cases. That is, they showed that the propor-

tion of correctly classified cases, p0(1−G0(t))+p1G1(t) where p0 = P(Y = 0),
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p1 = P(Y = 1), is related to the AUC by the weighted expectation∫ ∞
−∞

[
p0(1−G0(t)) + p1G1(t)

]
m(t) dt = p2

0/2 + p2
1/2 + 2p1p0AUC, (4.4)

where m(t) = p0g0(t) + p1g1(t). They claimed that this makes the AUC

“incoherent” in the sense that the weighting used to calculate the proportion

of correctly classified cases depends on the score densities g0, g1 which are a

property of the classifier. Hand and Anagnostopoulos (2013) wrote that “using

the area under the ROC curve is equivalent to evaluating different classifiers

using different metrics” which exposes a possibly fatal flaw in the AUC.

They sought to fix this problem with the H measure, essentially by chang-

ing the weighting function m(t) to be independent of the score densities. Fol-

lowing from the arguments in Hand (2009), the definition is given in terms of

minimum misclassification costs. Suppose that c = c0/c1 is the cost ratio of

misclassifying a y = 0 response to misclassifying a y = 1 response and assume

c ∈ (0, 1). Then the loss function for threshold value t is proportional to

L(c; t) = cp0(1−G0(t)) + (1− c)p1G1(t). (4.5)

For a given cost ratio, there is a unique threshold t that minimises the loss,

Tc = argmin
t

L(c; t).

Instead of using a fixed cost ratio, a weighting function w(c) is used to integrate

over a range of possible cost ratios and we arrive at the weighted expected

minimum loss, ∫ 1

0
L(c;Tc)w(c) dc. (4.6)

The AUC can be recovered from (4.6) by taking the weighting function (9)

given in Hand (2009), which depends on the score distributions and is therefore

incoherent. The H measure was constructed to avoid this incoherency by

taking the weighting function w(c) to be the density of a Beta distribution,

which will be independent of the classifier score distributions. In Hand (2009)
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the author proposed that a Beta(2, 2) distribution be used, but this was revised

in Hand and Anagnostopoulos (2012) to be Beta(p1 + 1, p0 + 1) to better deal

with highly imbalanced data (p0 << p1 or p1 >> p0).

It is important to note, as Flach, Hernandez-Orallo, and Ferro (2011)

noted, that the original interpretations of the AUC in terms of the probability

of a uniformly chosen 0, 1 pair being correctly ranked, remains coherent. Fur-

ther, Hand and Anagnostopoulos (2013) showed that the AUC can be coherent

when external constraints inform the choice of threshold (or equivalently, the

cost ratio). An example of this is when the threshold is chosen such that a

certain number of cases are flagged as y = 1 responses. This might be the

case in resource limited settings where the user can only afford to inspect 100

cases and wants to use the model to nominate the 100 most likely objects.

A key feature of the H measure that separates it from the AUC, or indeed

many other performance measures, is that it depends on the class probabil-

ities p0 and p1. This property is linked with the issues Hand has with the

AUC since both the average proportion of misclassified cases (4.4) and the

average minimum misclassification cost (4.5) involve the class probabilities.

Intuitively, this makes sense. As p1 → 0 there will be so few positive re-

sponses that the net cost of misclassifying these cases will be negligible and

focus will shift entirely to correctly classifying the negative responses. The

(potentially appealing) interpretation of the AUC as the probability that a

uniformly randomly chosen 0, 1 pair will be correctly ranked is impossible to

keep if we demand that it also depend on the class probabilities.

The H measure is clearly designed to be used for assessing the performance

of classifiers in conjunction with a threshold. In this context, Hand and coau-

thors have written numerous papers showing the incoherence of the AUC and

have proposed a coherent alternative. However, if a binary response model is

used to calculate probabilities and these are not converted to decisions using a

threshold, the AUC can still offer a valid measure of discrimination (although
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it comes with its own problems, discussed in section 4.2).

4.4 Measures of separation of the score

distributions

An alternative approach to assessing the ability of a binary response model to

discriminate between positive and negative responses is to look at the score

distributions themselves. A good classifier will have score distributions that

are in some sense well separated. On one extreme, a perfect classifier will have

score distributions that are completely separate in the sense that the support

of the two score distributions will not overlap. On the other extreme, the

score distributions for a coin toss classifier would be equal. Of course, there

are many ways to measure separation between distributions.

The Kolmogorov–Smirnov (KS) statistic between the two score distribu-

tions, KS = maxt|G1(t)−G0(t)|, is a measurement of the separation between

the distribution functions. The KS statistic is equivalent to the minimum

proportion of cases misclassified if the cost ratio is fixed to be c = p1 (Hand,

2012). The overlap coefficient, OV L =
∫

min{g0(t), g1(t)} dt (Royston and

Altman, 2010), is the area of the overlap of the two score densities and is

equivalent to the KS statistic through the transformation KS = 1 − OV L

(Hand, 2012).

The Tjur coefficient of discrimination, defined as DTjur = π1 − π0, where

πi is the mean model probability of observations with y = i. Assuming that

y = 1 observations are generally scored higher than y = 0 observations, 0 ≤

DTjur ≤ 1. Tjur (2009) proves an asymptotic relationship between DTjur and

the coefficient of determination for linear regression. Unfortunately there is

a simple example where the Tjur coefficient of discrimination will perform

poorly. Figure 4.2 shows two classifiers where the predicted probabilities for

the y = 0 and y = 1 observations are uniform on different supports with means
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0.4 and 0.6 respectively. The classifier in Figure 4.2(a) has g0 with support

[0.35, 0.45] and g1 with support [0.55, 0.65] and is a perfect classifier, since the

supports do not overlap. The classifier in Figure 4.2(b) has g0 with support

[0.2, 0.6] and g1 with support [0.4, 0.8], showing that it is not a perfect classifier.

Clearly both classifiers have DTjur = 0.2. This demonstrates a serious flaw

in the Tjur coefficient of discrimination. In the next section we discuss an

alternative that avoids this problem.

This problem is avoided by measures of effect size. Hedges’ g is one such

measure,

g =
g1 − g0

s

where gi is the mean score of observations with y = i and s is the pooled

standard deviation of the two score distributions (s2 = ((n0 − 1)s2
0 + (n1 −

1)s2
1)/(n0 + n1 − 2)) (Royston and Altman, 2010). Another popular choice

of effect size is Cohen’s d, which is related to Hedges’ g by a scaling factor.

These measures avoid the problem with the Tjur coefficient of discrimination

we have outlined by scaling the difference between the classes by an estimate

of the variance.

In general, all of these measures look at the degree of separation between

the score distributions and it can be helpful to plot the score densities g0 and

g1 (Hosmer et al., 2013; Royston and Altman, 2010). For logistic regression

Tjur (2009) recommends inspecting plots of the conditional densities for the

probabilities, P(π(Z) ≈ x | Y = i) for i = 0, 1, however we find these difficult

to interpret when probabilties are very small. Visual assessment, along with

measurements such as those discussed in this section, can help the user gauge

the ability for the model to discriminate between the two groups.
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(a) (b)

Figure 4.2: Plots of score densities with equal DTjur values, however the left hand
side shows a perfect classifier whilst the right hand side does not.

4.5 Interpreting performance measures

Hand (1997) wrote that “classifier performance may be assessed for two basic

reasons: to compare classifiers. . . or to determine an absolute measure of qual-

ity of performance”. However both the relative and absolute interpretations

of performance measures can be misleading.

Relative performance, comparing two classifiers against each other, can be

a helpful component of model building for prediction. Different models will

almost always report different values for performance measures and confidence

intervals are needed for comparisons to be meaningful. These can usually be

computed using bootstrapping methods.

There is also an idea of absolute performance in the literature. Guidelines

are often given for what values of the AUC constitutes good performance.

Hosmer et al. (2013) wrote that a value of the AUC betwen 0.8 and 0.9 shows

excellent discrimination and a value about 0.9 shows outstanding discrimina-

tion. Harrell (2015) was more cautious and wrote that an AUC of greater than

0.8 indicates “some utility in predicting the responses of individual subjects”.

Yet as Royston and Altman (2010) noted, “judging by its presentation in the

literature, interpretation of the c-index [AUC] is problematic”. Indeed, as we
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will see in the following sections, it can be very difficult to interpret perfor-

mance measures in an absolute sense. In Sections 4.5.1 and 4.5.2 we look at

the effect of the class probabilities p0 and p1 and the effect of ‘obvious’ 0s on

the value of performance measures. This will demonstrate how the value of

performance measures are highly dependent on the underlying data.

4.5.1 Influence of the class probabilities

Many performance measures, including the AUC, KS statistic and measures

of effect size, are independent of the class probabilities p0 and p1. In the case

of the aforementioned performance measures, this is because they depend only

on the conditional score distributions G0, G1. This independence can lead to

situations where a classifier is measured to have very good performance yet is

useless in practice.

Suppose we have a classifier and have settled on a threshold t. In practice it

is often important that the true positive rate is suitably high, or equivalently,

that the P(Y = 1 | s(Z) > t) is high. However,

P(Y = 1 | s(Z) > t) =
p1(1−G1(t))

p0(1−G0(t)) + p1(1−G1(t))

decreases to 0 as p0 → 1 and p1 → 0. So in this sense a classifier becomes less

useful as p0 → 1, but performance measures such as the AUC, KS statistic

and measures of effect size do not change with p0 and hence do not reflect this

change in performance. This issue has close parallels to the issues surrounding

public screening for rare diseases, where the number of false positives can far

outnumber the true positives rendering public screening useless even for tests

with very low false positive rates.

The volume of false positives can be assessed by plotting the precision

as the threshold value t varies. The precision is the ratio TP/(TP + FP )

where TP is the true positive rate and FP is the false positive rate. The

quantity 1−precision reflects how often the boy cries wolf. A model with low
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precision may have high values of performance measures such as the AUC, KS

statistic or Hedges’ g, but forecasts from such a model will be rife with false

positives and may be unusable. In settings with highly imbalanced classes

we recommend inspecting plots of the the precision against threshold value

alongside the score densities.

As discussed previously, the H measure is dependent on the class proba-

bility and so it may avoid the problem outlined in this section. However, it is

not presently understood exactly how changes in the class probabilities affect

the H measure. As such, using the H measure does not avoid the problem

discussed in this section.

4.5.2 Influence of ‘obvious’ cases

In many practical situations, decisions are made about the extent of the data

which is included in the modelling problem. For example, models for wildfire

ignition may or may not include data from winter months or a species distri-

bution model may or may not include spatial areas where the species is almost

surely absent. There are good modelling reasons for choosing specific extents

of the data included in a model, however these choices impact the value of

performance measures. We illustrate this with an example.

Suppose a bank wishes to give credit scores to customers. In their world it

turns out to be difficult to discriminate amongst employed people those who

will default on their loans and those who will not. However unemployed people

always default on their loan. The bank tasks their analyst with building a

model for discriminating between credit worthy and unworthy customers. The

modeller must choose whether to include or exclude the unemployed customers

from their model. If the modeller builds a model only for employed customers

then it will seem to perform poorly, but this is a result of the intrinsic difficulty

of the problem. If the modeller builds a model for both the employed and

unemployed customers then it will perform much better. As the proportion
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of customers unemployed increases, the value of performance measures will

also increase. The reason for this is that the first model tackles the ‘real’

problem, which happens to be difficult. The second model tackles a much

easier problem, which is essentially distinguishing between the employed and

unemployed customers.

We demonstrate this effect through simulations of a modified coin toss

classifier. The classifier has 100 ‘real’ observations which are difficult to dis-

criminate between and the classifier flips a coin for these observations. We

then added ‘obvious’ 0s to the data, which the classifier was able to perfectly

separate from the ‘real’ observations. Figure 4.3 shows the value of various

performance measures as the number of ‘obvious’ 0s increases. We see the

‘obvious’ 0s inflating the performance of the classifier.

This phenomenon is not a failure of the performance measures, they are

working exactly as intended. The issue is that the choice of the extent of the

data can influence the value of performance measures. We have demonstrated

this by increasing the number of easily classified observations, but the concern

applies more generally to any setting where a decision must be made about

the extent of the data.
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Figure 4.3: The AUC and H measure of the modified coin toss classifier as the
number of ‘obvious’ 0 responses increase. The classifier always correctly assigns the
‘obvious’ observations with a 0 response but then tosses a coin for the remaining
observations. Hedges’ g is not included because it is not bounded by 1, but it displays
similar behaviour.

4.6 Summary and recommendations

Binary response models have been used to calculate probabilities as well as to

construct classifiers. Because of this overlap, performance measures intended

for classifiers have been adopted to assess the ability for a binary response

model to discriminate between responses in a probabilistic sense. The litera-

ture on performance measures can be difficult to navigate because of the subtly

different objectives between classifiers and binary response models. This the-

sis is concerned with forecasting the probability of wildfire ignition and we

do not believe that the model presented in Chapter 5 would produce a useful

classifier.

For classifiers with a fixed threshold, performance is very clearly defined

in terms of error rates and performance is easy to measure. However, for

classifiers with no given threshold or for binary response models, it is difficult

to interpret performance measures in an absolute sense, as demonstrated in

Section 4.5. Performance measures such as the AUC and effect size (Section
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4.4) in some way reflect the separation between the score distributions but

give no indication of the precision TP/(TP + FP ) of the model, which is an

important practical consideration. On the other hand, performance measures

can be used to compare models using the same data set in a meaningful fash-

ion, although some understanding of the variance of the performance measure

needs to be considered.

When using performance classifiers for comparing relative performance of

binary response models we recommend that the investigator does the follow-

ing:

• calculates confidence intervals for performance measures;

• investigates multiple performance measures since they measure different

aspects of performance;

• inspects plots of the score densities. We prefer these over plots of the

probability densities since the later can be difficult to interpret for low

probabilities; and,

• inspects plots of the precision against threshold value.

Investigators must be careful when drawing conclusions from performance

measures. The correct interpretation of a performance measure must include

an understanding of the data used to calculate the performance measure along

with an understanding of what exactly is being measured.



Chapter 5

A logistic regression model

for lightning-caused wildfire

ignition

A review of regression models in the lightning ignition literature.

An application of logistic regression to lightning ignitions. Detailed

analysis of model output over several time periods. A discussion

of the utility of the model along with practical considerations.

5.1 Introduction

Regression models are the most prevalent models in the wildfire ignition mod-

elling literature. Tables 5.1, 5.2 and 5.3 detail the response variable, ignition

cause, regression type, spatial resolution and location of study of many re-

gression models found in the literature. Response variables are measured on

a daily time scale, unless specified otherwise. Response variables denoted

as ‘large fire’ are ignitions that result in fires whose final size is considered

large; what constitutes large differs from one paper to another and can be a

consequence of the local fire regime as well as the modelling objectives. In

this section we discuss the regression models found in the literature; relevant

63
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references can be found in the aforementioned tables.

In terms of spatial discrimination, models are either regional or gridded.

Regional models look at ignitions in large irregularly shaped areas, such as

states or national parks. Logistic regression is used to model the occurrence

of a fire day as well as ignition presence in subregions (the presence of one or

more ignitions on a day). It has also been used to model the occurrence of large

fire days as well as large fire presence in subregions (ignitions that go on to be

large fires). Poisson and negative-binomial regression have been used to model

ignition counts, which can be used to calculate the probability of any number

of ignitions rather than simply presence or absence of ignitions. Negative-

binomial regression models are typically useful for over-dispersed count data,

where the variance is too large for Poisson regression (Hilbe, 2011).

Regression models can also make use of spatial data on a regular grid

(Section 3.1.1). Logistic regression models have been used to model igni-

tion presence on scales varying from 1 km to 20 km. M. Rodrigues, Riva,

and Fotheringham (2014) used logistic regression to model high/low ignition

frequency, rather than ignition presence/absence. This was motivated by a

misunderstanding of how regression models handle absences; namely that ar-

eas with no recorded ignitions are deemed to have zero probability of ignition

by the model. Preisler, Chen, et al. (2008) and Preisler and Westerling (2007)

coupled output from a logistic regression model for ignition presence with a

logistic regression model for the probability of large fire given an ignition.

Preisler, Westerling, et al. (2011) extended this by using extreme value theory

to understand the distribution of large fire size. Collins, Price, and Penman

(2015) and Oliveira et al. (2012) used linear regression with Normal errors to

model the gridded annual ignition density on the log-scale.

Some studies restricted their focus to either human- or lightning-caused

wildfire ignition. Models with restricted causes can be easier to interpret,

since there is only a single physical process to consider, and may be more
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accurate, since the relationships between the covariates and ignitions may

differ between sources. Forecasts from multiple models for different ignition

sources could easily be combined to produce net ignition likelihood forecasts

if desired. Apart from the usual suspects, such as weather and fuel moisture

covariates, models often include covariates such as population density and

distance to the nearest road (Woolford, Bellhouse, et al., 2011) for human-

caused wildfire ignition and lightning ground flash density (Collins et al., 2015)

for lightning-caused wildfire ignition. Apart from the choice of covariates,

there is essentially no difference in the modelling process between the causes

for regression models.

Three more specialised techniques that have been used in the regression

wildfire ignition literature are so called ‘presence-only’ regression, geograph-

ically weighted regression and mixed models. Presence-only regression uses

the ignition points along with randomly generated ‘pseudo absences’ to esti-

mate the relative likelihood, rather than absolute likelihood. This approach

has been linked to point processes (Renner et al., 2015) and is essentially

equivalent to using the coarse quadrature approximation to fit an inhomoge-

neous Poisson process, where the pseudo absences are quadrature points (Sec-

tion 6.3.1). Geographically weighted (GW) regression has been used to allow

the relationship between the response and predictor variables to vary across

space (Mart́ınez-Fernández, Chuvieco, and Koutsias, 2013; M. Rodrigues et

al., 2014). This is done by replacing the regression coefficients by functions of

space (Brunsdon, Fotheringham, and Charlton, 1998) and can result in a very

large increase in the number of model parameters. Dı́az-Avalos, Peterson,

et al. (2001) used generalised linear mixed models (GLMM) (Wood, 2017) to

model ignition presence, generalising the regression constant to be a random

function of time and space. This can allow models to adapt to unobserved

covariates that may be influencing the response variable.

A wide variety of approaches have been used for model selection. Guo
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et al. (2016) considered 33 covariates and selected 11 for inclusion in the fi-

nal model based on the significance of the Wald statistics (Section 3.2.1) of

coefficients in intermediate models. Woolford, Bellhouse, et al. (2011) con-

sidered 16 covariates, choosing a model with 8 covariates based on an AIC

and likelihood ratio test procedure. Magnussen et al. (2012) considered 70

covariates and settled on two models containing 15 and 19 covariates using

stepwise regression (Hosmer et al., 2013).

In this chapter we apply a logistic regression model to gridded lightning

ignitions data for the state of Victoria, Australia. We aim to produce a model

that is suitable for both operational use and for improving long-term risk

forecasts. At a minimum, this requires the model to produce daily, spatially

explicit forecasts. We spend significant time interpreting the model in terms

of the covariates driving it and demonstrate the model by analysing forecast

likelihood maps for several periods, comparing them with observed ignitions.
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5.2 Data preparation

We split the data into training and validation data sets. The training data was

constructed from the fire seasons (Section 2.2) from 1997–1998 to 2004–2005.

The validation data was constructed from the fire season from 2005–2006 to

2011–2012.

The regression model in this chapter used the data described in Section

2.1, however some addition processing was required. To use a regression

model with gridded data, all data must be projected onto the same reg-

ular grid. To this end we used the Geospatial Data Abstraction Library

(GDAL) to project all covariate data (Table 2.2) onto the grid given by

GDA94 VicGrid94 (EPSG:3111) with a spatial resolution of 20 km and ex-

tents xmin = 2120000, xmax = 2940000, ymin = 2260000 and ymax = 2840000.

Choosing a finer spatial resolution would produce higher resolution forecasts,

however it would increase the amount of data making inference a challenge

and could decrease the accuracy of the model. We felt that a spatial resolution

of 20 km was a good compromise between precision and accuracy whilst still

being useful for operational decision making.

Using the wildfire ignitions data set, we produced daily grids with 1s in

grid cells with one or more lightning ignitions and 0s elsewhere. We found

82% of 1 grid cells arose from exactly one ignition and 94% of 1 grid cells

arose from two or fewer ignitions, suggesting that relatively little information

is lost by doing this. Out of all grid cells, about 0.05% had more than a single

ignition, which puts us safely in the realm of equivalence between logistic and

Poisson regression approaches (Section 3.1.3).

The fuel covariates required slightly more work. The Victoria Fuel Layer

consists of 37 layers with a spatial resolution of 30 meters, which we upscaled

to a resolution of 1 km for computational reasons. We then combined these

37 layers into the 9 reduced fuel types discussed in Section 2.1 and for each of

the nine reduced fuel types, the final 20 km resolution raster was calculated
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to be the proportion of the 20 km cell covered by the reduced fuel type.

The final fuel data sets are rasters whose cells take values between 0 and

1 that represent the proportion of the grid cell covered by the fuel type. Since

the sum of the fuel covariates is always 1, we removed the dry forest covariate

to minimise issues of collinearity. Dry forest represents the largest proportion

of ignitions by fuel type, so in some sense it can be thought of as the ‘normal’

condition and is factored into the constant term in the regression.

5.3 Method

We used a logistic regression GAM to model the presence of one or more

lightning ignitions in a grid cell for a given day. Scaling of the covariates was

done using fractional polynomials (Section 3.1.2) since they produce models

with relatively compact analytic forms and can be easily implemented in vari-

ous software environments. We didn’t include interaction terms in the model,

since we believed that not enough is understood about the lightning ignition

process to determine a plausible set of interaction terms (Read et al., 2018).

For model selection we used the purposeful selection approach outlined in

Section 3.2.1. We also built an approximating model to the final model using

the covariate contributions method outlined in Section 3.3.1.

Using the validation data set described in Section 5.2, model fit was as-

sessed with a Hosmer–Lemeshow test and by looking at diagnostic plots of fit-

ted probabilities against the leverage, change in the Pearson chi-square statis-

tic, change in deviance and Cook’s distance (Section 3.4). We used the H

measure, AUC and Hedges’ g (Chapter 4) as indicators of model accuracy

along with a plot of the precision against threshold. The aim of this study

was to build a model suitable for operational use. Diagnostics and perfor-

mance measures never fully capture the complexities of models and as such,

we included model output and discussion from four periods of lightning-fire

activity in the validation data set.
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We performed all model building in R version 3.4.0, using the stats 3.2.4

package for fitting linear logistic regression models and the mfp 1.5.2 pack-

age (Ambler and Benner, 2015) for fitting fractional polynomial models. We

performed the Hosmer and Lemeshow test using the ResourceSelection 0.3-

2 package (Lele, Keim, and Solymos, 2017) and calculated the AUC and H

measure with the hmeasure 1.0 package (Anagnostopoulos and Hand, 2012).

5.3.1 Deconstructing forecasts by covariate

To use the ideas discussed in Sections 3.6.1 and 3.6.2 for regression models

with time and space dependent data, some extra care is needed to create a

meaningful expected CCj . Since we want the expected CCj to represent the

‘normal’ conditions, it should reflect the local conditions rather than the global

average. We define the jth expected covariate contribution on the dth day of

the year at location u as

ECCj(d, u) =
1

15ny

∑
y′

d+7∑
d′=d−7

CCj(d
′, y′, u),

where CCj(d
′, y′, u) is the value of the jth covariate contribution on day d′ of

year y′ at location u, ny is the number of years data used for model fitting

and y′ sums over all those years. This is an estimate of the expected value of

the jth covariate contribution over a fifteen-day window centred on day d. If

the window is too small the ECCj can be unduly influenced by a single bad

fire day, whilst if the window is too large the ECCj starts to reflect long term

rather than local behaviour. The choice of fifteen days is arbitrary, but we

believe it produces good smoothing without losing local behaviour. By using

a local smoother, the ECCj reacts to changes in ignition likelihood caused by

geography and seasonal changes in the weather conditions.

For regression models with time and space dependent data, the covariate

contribution anomaly of the jth covariate on day d, year y at location u is

CCAj(d, y, u) = CCj(d, y, u)− EECj(d, u).
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A positive value of CCAj(d, y, u) indicates that, for this time and location, the

jth covariate has an unusually positive effect on the probability of a lightning

ignition. Likewise, a negative value of CCAj(d, y, u) signifies an unusually

negative impact on the probability of lightning ignition. Spatial maps of each

of the CCAj can be produced for a given day, showing the relative influences

of the covariates on the ignition likelihood.

5.3.2 Baseline logit-likelihood

Using a local average for ECCj suggests that we should consider a local aver-

age equivalent of the centralised regression ceofficient, β∗0 (Sections 3.6.1 and

3.6.1). We define the baseline logit-likelihood on the dth day of the year at

location u as

BLL(d, u) = β0 +
∑
j

ECCj(d, u), (5.1)

where β0 is the regression coefficient. The baseline-logit likelihood changes

with time and location, allowing it to be interpreted as the expected likeli-

hood at location u on the dth day of the year, measured on the logit scale.

If we denote the total covariate contribution anomaly by TCCA(d, y, u) :=∑
j CCj(d, y, u), then the ignition likelihood at location u on day d of year y

can be expressed on the logit scale as

logit(π(d, y, u)) = BLL(d, u) + TCCA(d, y, u).

5.4 Results

Model selection resulted in a model including all candidate covariates (Table

2.2) except for the 850–500 hPa temperature lapse and plantation variables;

these were dropped from the initial multivariate model in step 2 of purposeful

selection (Section 3.2.1). This suggests that the information in these covariates

was captured by other covariates in the model.
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We inspected Nadaraya–Watson smooths (Section 3.2.1) between the in-

dividual covariates and the response variable on the logit scale (Appendix

A). From these we chose to scale all covariates except the maximum tem-

perature, wet forest, heath and residential variables. Some of the Nadaraya–

Watson smooths corresponding with the vegetation layers are particularly

rough. This is because these covariates do not change with time, producing

a relatively small number of unique observations of the covariate. For exam-

ple, the smooth of the residential covariates drops to 0 around the value of

0.47, however this is simply due to the lack of observations of the residential

covariate at this value, rather than a real effect.

The terms in the final model are detailed in Table 5.4.
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5.4.1 Diagnostics

Analysing plots of residuals proved to be challenging for such a large data

set. Figure 5.1 contains the four plots discussed in Section 3.4.2. We looked

for points which stood apart from the pack. From visual inspection we chose

to treat points as large if they exceeded 0.004 for the leverage, 3000 for the

change in Chi-square statistic, 16 for the change in deviance statistic or if they

exceeded the curve 1.5 × 10−3/(x − 0.03) for Cook’s distance. Observations

that were large in two or more of the residuals were deemed suspicious and

were investigated further.

Table 5.5 contains information on the 50 suspicious points, including the

value of four of the most influential covariates (Section 5.4.2). There are five

points with extremely large predicted probabilities (π̂i > 0.1), however there

are 2136 predicted values with probabilities exceeding 0.1 so this does not show

a widespread poor fit for large predicted probabilities. In general there is no

obvious systemic pattern in the suspicious points (including in the covariates

not listed in Table 5.5). However, there is some clear temporal dependence

between the suspicious points, with many of them arriving within days of each

other.

The model failed a Hosmer–Lemeshow goodness-of-fit test, reporting a p-

value less than 10−7. We believe that, due to the large size of the data set, very

subtle deviations from the model assumptions are being detected (Johnson et

al., 2007, page 187) and that this is not cause for concern.
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Figure 5.1: Plots of the predicted probability against leverage, change in Pearson
chi-squared statistic, change in the deviance and Cook’s distance. Observations which
were above the red curve on two or more of the residual plots were considered suspi-
cious and investigated more closely.
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date max. temp. CAPE max. FFDI precipitation π̂i
1997-10-27 19 4 2 0 0.0002
1997-11-27 21 1 2 0 0.0003
1997-11-27 21 0 2 1 0.0002
1997-12-04 22 0 4 0 0.0003
1998-10-17 39 784 116 0 0.2646
1998-10-17 39 687 112 0 0.1452
1998-10-17 38 786 113 0 0.3229
1998-10-19 18 3 9 1 0.0002
1998-12-26 23 0 27 1 0.0003
1998-12-26 23 0 29 2 0.0003
1998-12-27 25 0 20 0 0.0002
1999-01-14 23 0 2 0 0.0001
1999-01-25 24 42 1 0 0.0003
1999-04-23 19 0 5 0 0.0003
2000-01-07 21 0 1 0 0.0001
2000-01-12 23 4 3 0 0.0002
2000-11-04 22 16 5 0 0.0002
2001-04-26 22 3 5 0 0.0003
2001-04-27 19 4 2 0 0.0002
2001-04-29 21 0 6 0 0.0002
2001-12-02 36 170 110 1 0.2001
2001-12-02 36 169 116 1 0.2039
2001-12-03 20 18 4 1 0.0003
2002-04-28 17 0 1 0 0.0000
2002-10-28 14 0 5 0 0.0000
2002-11-04 21 0 15 1 0.0002
2002-11-04 21 0 14 0 0.0001
2002-11-04 21 0 14 0 0.0001
2002-12-07 24 0 17 0 0.0003
2003-02-03 24 0 6 0 0.0002
2003-04-01 19 16 2 0 0.0002
2003-11-25 19 0 4 0 0.0002
2003-12-05 24 0 3 22 0.0003
2003-12-06 22 0 1 0 0.0002
2003-12-07 24 0 2 0 0.0003
2003-12-24 28 0 4 0 0.0003
2004-10-09 16 0 1 0 0.0000
2004-10-16 13 1 1 6 0.0001
2004-10-19 24 0 8 0 0.0003
2004-10-29 20 0 3 0 0.0003
2004-11-23 19 0 3 0 0.0002
2004-12-07 19 6 0 14 0.0002
2004-12-09 19 62 0 10 0.0003
2004-12-13 24 101 1 0 0.0003
2004-12-25 28 0 24 0 0.0003
2005-01-21 21 0 0 28 0.0001
2005-01-30 29 0 17 0 0.0002
2005-02-05 24 0 4 4 0.0001
2005-03-03 22 0 2 0 0.0002

Table 5.5: Observations that had large values for two or more residuals. The
shaded rows highlight residuals occurring on runs of days with no more than
four days without a suspicious residual. The red highlights large values of the
predicted probability.
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5.4.2 Model interpretation

We interpret the model by understanding how the most influential covari-

ates affect lightning ignition likelihood. Using the variance of the covariate

contributions (Table 5.6) to judge relative importance, we found the CAPE

index, precipitation, maximum temperature and maximum FFDI to be most

influential. Estimates of the CCj densities (Figure 5.2) for the covariate con-

tributions of the CAPE index and precipitation have sharp peaks and heavy

positive tails. This suggests that these covariates frequently exhibit little in-

fluence, but the large support of the CCj suggests that they can be highly

influential. The density estimate for the maximum temperature CCj shows

a relatively well spread distribution, suggesting that the maximum tempera-

ture is frequently highly influential. The maximum FFDI has a similar CCj

density estimate to the maximum temperature, but with longer tails. In par-

ticular, the length of the right-hand tail suggests that the maximum FFDI

can be highly influential on extreme fire days. Plots of the CCj densities for

all covariates can be found in Appendix B.

Note that the spikes in both the CAPE index and precipitation plots may

be misleading. Both the CAPE index and precipitation take value 0 with a

high frequency, suggesting they would be better modelled by a mixed type

distribution which has a discrete mass at 0 and a continuous part on the

positive real numbers. Kernel density estimates assume that the distribution

is continuous everywhere, which is incorrect, producing the spikes to the left

side of the CCj densities. However, these plots still give a good indication of

how the CCj behaves.

Plots of the scaling functions (Figure 5.3) show that the CAPE index

attains its maximum positive influence on ignition likelihood at about 1400,

whilst the precipitation, maximum temperature and maximum FFDI continue

to have increasingly positive influences as they increase in value. The scaling

functions for the CAPE index, maximum FFDI and precipitation all have
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sharp drops towards 0, showing that that the zero/nonzero state of these

covariates has a large influence on the predicted lightning ignition likelihood.

Plots of the scaling functions for all covariates can be found in Appendix C.

Wet forest 0.013 KBDI 0.122
Residential 0.015 3pm RH 0.135

Wind speed 0.025 Mallee spinifex 0.187
850 hPa dewpoint depression 0.029 Maximum FFDI 0.251

Heath 0.052 Maximum temperature 0.425
DF 0.062 Precipitation 0.440

Elevation 0.070 Cape 0.545
Grassland 0.109

Table 5.6: The variances of the CCj . Relatively small CCj suggest that the
covariate is relatively uninfluential in the model.

Figure 5.4 shows the baseline logit-likelihood, (5.1), for the 1st of January,

which is representative of the baseline logit-likelihood for other days of the

year. In some sense the baseline logit-likelihood can be interpreted as the

expected likelihood on the logit scale. The plot shows that the baseline logit-

likelihood was lower than average in the Mallee area in the northwest and was

above average in central and eastern Victoria. The baseline logit-likelihood

at a set location varied by no more than 1.29 across the year. This change

was caused by seasonal shifts in the expected values of the dynamic covariates

across the year. This contrasts with the difference in logit-likelihood across

space, which had a maximum difference of 3.55. This shows that changes

in the static covariates (elevation, wet forest, grassland, heathland, Mallee

spinifex and residential) are most influential in determining the baseline logit-

likelihood of the model.

Evaluating the model with the validation data we recorded an H measure

of 0.449 [0.436, 0.467], an AUC of 0.877 [0.871, 0.883] and Hedges’ g value of

1.785 [1.735, 1.821], where the bracketed values are bootstrapped 95% confi-

dence intervals. The value of the AUC and Hedges’ g suggests good separation

between the score distributions which is supported by Figure 5.5(a), showing
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Figure 5.2: Density estimates of the covariate contributions for the more influential
covariates. The value of the covariate contributions have been centralised.

the positive and negative score densities calculated with the validation data.

Figure 5.6(a) shows the precision as the threshold varies. If we consider only

those observations scored higher than a chosen threshold, the precision reflects

the proportion of those observations that turn out to be positive responses.

Although we have no intention of using the model as a classifier, this plot gives

an indication of the volume of highly scored negative responses. The precision

of the model is generally fairly low, which is to be expected given the general

low likelihood of lightning ignition.
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Figure 5.3: The scaling functions for the most influential covariates included in the
model. The red vertical lines show the 0.025 and 0.975 quantiles for the covariates.

5.4.3 Approximating model

We created an approximating model by removing the relatively uninfluential

covariates, as determined by the variance of the corresponding CCj (Table

5.6). On this basis we removed the wet forest, residential, wind speed and 850

hPa dewpoint depression covariates and adjusted the regression coefficient to

include the mean value of the respective CCjs. The approximating model

consisted of the remaining terms in the full model with an adjusted regression

coefficient of value 1.634. The approximating model was compared to the

full model using performance measures (Table 5.7), calculated on the training
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Figure 5.4: The baseline logit-likelihood map for the first of January. Other days of
the year have very similar baseline logit-likelihood maps.

data set, since this is the only data available during model fitting.

Model H AUC Hedges’ g

full 0.522 [0.506, 0.538] 0.897 [0.892, 0.903] 2.483 [2.421, 2.538]
approximating 0.512 0.893 2.520

Table 5.7: The value of performance measures on the training data for the full
and approximating model

The approximating model had slightly lower values of the H measure and

AUC and a slightly higher value of Hedges’ g than the full model. However,

the value of all performance measures fell within the respective 95% confidence

intervals for the full model, suggesting that the change in performance was

negligible. Furthermore, the score (logit probability) densities for the approx-

imating model (Figure 5.5(b)) were visually similar to those for the full model

(Figure 5.5(a)).

The R2 value between the scores (the logit probability) of the full and

approximating models was 0.959, showing good agreement between the two
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(a) (b)

Figure 5.5: Estimates of the score densities for the full and approximating model
calculated using the validation data. Seperation between the densities reflects a good
classifier. Here we have very similar distributions between the full and approximating
models.

(a) (b)

Figure 5.6: The precision of the model as the threshold value changes. The red
dashed lines show the 0.25, 0.5, 0.75 and 0.99 quantiles of the positive response score
distribution. Unsurprisingly, the precision is fairly low for moderate values of the
threshold.

models. However we were concerned that there could still be important dis-

agreements between the full and approximating models, prompting us to in-

spect a plot of the difference between the scores of the full and approximating

models (Figure 5.7). The score differences are the residuals of the approximat-
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ing model if we consider it as regressing on the scores of the full model. It can

be difficult to interpret residual plots with so many points, but Figure 5.7(b)

shows that most of the residuals are small. There are two interesting things

to note about the residuals. First, they are smaller for large positive values

of the full model scores. This tells us that the approximating model works

relatively well during extreme fire weather conditions. Secondly, when con-

sidering large observations of the residuals, more emphasis should be given to

the positive residuals than the negative residuals since these correspond with

the approximating model underestimating the likelihood estimated by the full

model. In the context of wildfire ignition modelling, these errors are more im-

portant than overpredicting risk (the negative residuals). With this in mind,

the residuals show that the approximating model tends to perform well even

in extreme conditions, with most of the large discrepancies occurring due to

the approximating model overpredicting risk.

The plot of the precision as threshold varies (Figure 5.6(b)) shows a dif-

ferent story. The precision of the approximating model is slightly below that

of the full model between the 0.75 and 0.99 quantiles of the positive response

score distribution. However after the 0.99 quantile the precision of the approx-

imating model drops sharply. This region represents the top 0.01% of scores

of the validation data, although this still accounts for 102 observations.

Finally we assessed the performance of the approximating model on the

validation data set, which gave an H measure of 0.446, an AUC of 0.875

and Hedges’ g of 1.811. Again, they all fell within the 95% bootstrapped

confidence intervals of the full model, indicating that the approximating model

is performing well.
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(a) (b)

Figure 5.7: The residuals show that most of the discrepancy between the full and
approximating models occurs in the bulk of the scores.

5.5 Case studies

To understand the behaviour of the model better, we analysed model output

from four periods chosen from the validation data. The four periods were

chosen to reflect circumstances of interest to fire managers.

Black Saturday - February 2009. The period surrounding Black Satur-

day, February 7th 2009, resulted in the largest loss of life of any wildfire

in Australia. Although the most devastating fires during this period were

attributed to arson, there was still significant lightning-caused wildfire

activity and the weather conditions during this period have formed the

basis for what is considered extreme fire weather in Australia (Stephen-

son, 2010).

February 2010. The six-day period of the 9th–11th February 2010 saw 152

lightning ignitions, putting it in the top 1% of six-day periods between

2005 and 2012 in terms of numbers of lightning ignitions. This period

was constructed by selecting a day uniformly at random from those

exceeding the 0.99 quantile of observed number of lightning ignitions.
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January 2006. The six-day period of the 18th–23rd January 2006 included

two days with 35 or more forecast y = 1 cells, reflecting very high forecast

probabilities. This period was contructed by selecting a day uniformly

at random from those whose predictions exceeded the 0.99 quantile of

predicted probabilities

January 2011. The six-day period of the 20th–25th January 2011 was con-

structed from a day selected uniformly at random amongst those of

moderate forecast lightning ignition risk. This was chosen to contrast

the previous three examples, which were chosen to illustrate model per-

formance under extreme conditions.

After randomly selecting a day, the surrounding six-day period was chosen

subjectively to reflect the period of most practical interest. All model output

was calculated from the full model.
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5.5.1 Black Saturday - February 2009

Figure 5.8 shows the observed lightning ignitions superimposed on the forecast

lightning ignition likelihood for the period of the 5th–9th February 2009, which

includes Black Saturday on the 7th. Below each forecast is information giving a

simulated 95% confidence interval for the number of lightning ignition presence

cells, along with the observed number of lightning ignition presence cells. The

model correctly identified this period as generally high likelihood, but failed

to correctly identify the precise spatial and temporal distribution of lightning

ignitions.

The forecast likelihood for the 7th was very high, with a 95% prediction

interval on the number of presence cells of [14, 31], which failed to match the

observed 6 ignition presence cells in either quantity or spatial position. In fact,

the forecast on the 7th would better match the observed ignitions on the 8th.

The model underpredicted ignitions on the 8th and 9th, finding 95% prediction

intervals of [0, 6] and [0, 2] ignition presence cells respectively rather than the

observed 19 and 11 ignition presence cells.
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Figure 5.8: Lightning ignition likelihood forecasts for the period surrounding Black
Saturday, February 2009. The green triangles are the observed lightning ignitions.
Note that the colour legend presents all likelihood values that exceed 0.12 as the same
colour. This was done to prevent days with lesser likelihood appearing too dark and
obscuring details.
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5.5.2 February 2010

The model performed exceptionally well for the six-day period of the 8th–13th

February 2010, which was chosen to reflect a period with a large number of

observed lightning ignitions. Figure 5.10 shows the model capturing a range

of behaviour shown by the observed ignitions. The model correctly classified

the days of the 9th through to the 11th as high likelihood and the days of the

8th, 12th and 13th as much lower likelihood. It did a good job of forecasting

the spatial distribution of ignitions, correctly producing a band of high risk

through the middle of the state.

Figure 5.9 shows the total covariate contribution anomaly for the 9th and

10th. For both days the lightning ignition likelihood was higher than usual,

with the exception of the far eastern tip of Victoria, which was slightly below

average. From the 9th to the 10th there was a general increase in likelihood

and a sharp increase in likelihood in central Victoria.

Figure 5.11 and 5.12 shows the corresponding covariate contribution anoma-

lies. Focusing on the 9th, the CAPE index was the primary driver of the high

likelihood, with its CCj well above average across the state. The maximum

temperature and precipitation were also highly influential. The Precipitation

CCj was mostly below average but with high patches in the northeast. The

other covariates were relatively less influential on the 9th; the maximum FFDI

had roughly the same influence as the sum of all the remaining dynamic co-

variates. The overlap of areas of high CCAj for the CAPE index, maximum

temperature and precipitation resulted in the region of elevated likelihood

stretching from the southwest to the northeast of the lightning ignition likeli-

hood map for the 9th seen in Figure 5.10.

The total covariate contribution anomaly increased from the 9th to the

10th and the covariate contribution anomalies for the 10th show that this was

mostly driven by shifts in the precipitation. The maximum temperature CCAj

intensified its hold on the southwest and the CAPE index CCAj continued
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to be above average in the northwest, but a significant increase formed in the

southwest. The overlapping areas of significantly above average CCAj values

for maximum temperature, CAPE index and precipitation in the south west

gave rise to the band of high likelihood seen on the 10th of Figure 5.10.

Figure 5.9: Total covariate contribution anomaly for the 9th and 10th of February
2009. This represents the influence of dynamic covariates on the ignition likelihood.
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Figure 5.10: Lightning ignition likelihood forecasts for a randomly chosen period
of elevated lightning ignition activity. The green triangles are the observed lightning
ignitions. Note that the colour legend presents all likelihood values that exceed 0.12 as
the same colour. This was done to prevent days with lesser likelihood appearing too
dark and obscuring details.
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Figure 5.11: The Covariate Contribution Anomalies (CCAj) for the 9th of Febru-
ary 2010. Positive (negative) values of the CCAj suggest an above (below) average
contribution to the lightning ignition likelihood. The relatively uninfluential dynamic
covariates (wind speed, DF, KBDI, 850 hPa dewpoint depression and 3 pm relative
humidity) have been grouped under ‘others’.
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Figure 5.12: The Covariate Contribution Anomalies (CCAj) for the 10th of Febru-
ary 2010. Positive (negative) values of the CCAj suggest an above (below) average
contribution to the lightning ignition likelihood. The relatively uninfluential dynamic
covariates (wind speed, DF, KBDI, 850 hPa dewpoint depression and 3 pm relative
humidity) have been grouped under ‘others’.
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5.5.3 January 2006

The model performed very well for the randomly chosen period of high pre-

dicted likelihood. Figure 5.13 shows the predicted lightning ignition likelihood

for the 18th–23th January 2006. The model predicted extreme likelihood for

the 20th and the 21st and both days saw a very large number of observed

lightning ignitions, however it under predicted on the surrounding days of the

19th and 22nd, which both saw a relatively large number of lightning ignitions.

The model correctly predicted low likelihood on the 18th and 23rd.

The spatial distribution of the predicted likelihood did a relatively good job

of mirroring the observed lightning ignition patterns, even on the days when

the model under predicted. On the 18th, 19th and 22nd the model correctly

identified the areas containing the observed ignitions. From the 20th to 21st

the area of extreme likelihood shifted from southwest Victoria towards central

Victoria, which was reflected in the observed lightning ignition pattern.

The total covariate contributions anomaly was significantly above zero

across the state for the 19th, 20th and 21st (Figure 5.14). The CCAj in

Figures 5.15, 5.16 and 5.17 shows that the CAPE index was again the primary

driver of the likelihood, however the maximum temperature, precipitation and

maximum FFDI were also highly influential. A band of elevated CAPE index

CCj moved from west to east across the state, whilst both the maximum

temperature and precipitation CCAj increased in west and central Victoria

over the three days from the 19th–21st.
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Figure 5.13: Lightning ignition likelihood forecasts for a randomly chosen period
with high predicted lightning ignition likelihood. The green triangles are the observed
lightning ignitions. Note that the colour legend presents all likelihood values that
exceed 0.12 as the same colour. This was done to prevent days with lesser likelihood
appearing too dark and obscuring details.
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Figure 5.14: The total covariate contribution anomaly shows the difference between
the expected the observed influence of the covariates on the predicted likelihood. The
ignition likelihood was significantly above average for this three day period, especially
in west and central Victoria.
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Figure 5.15: The Covariate Contribution Anomalies (CCAj) for the 19th of Jan-
uary 2006. Positive (negative) values of the CCAj suggest an above (below) average
contribution to the lightning ignition likelihood. The relatively uninfluential dynamic
covariates (wind speed, DF, KBDI, 850 hPa dewpoint depression and 3 pm relative
humidity) have been grouped under ‘others’.
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Figure 5.16: The Covariate Contribution Anomalies (CCAj) for the 20th of Jan-
uary 2006. Positive (negative) values of the CCAj suggest an above (below) average
contribution to the lightning ignition likelihood. We have grouped the relatively un-
influential dynamic covariates (wind speed, DF, KBDI, 850 hPa dewpoint depression
and 3 pm relative humidity) under ‘others’.
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Figure 5.17: The Covariate Contribution Anomalies (CCAj) for the 21st of Jan-
uary 2006. Positive (negative) values of the CCAj suggest an above (below) average
contribution to the lightning ignition likelihood. We have grouped the relatively un-
influential dynamic covariates (wind speed, DF, KBDI, 850 hPa dewpoint depression
and 3 pm relative humidity) under ‘others’.
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5.5.4 January 2011

Figure 5.18 shows ignition likelihood forecasts for the randomly chosen moder-

ate period. The model generally performed well, showing generally low levels

of ignition likelihood across the period. The likelihood increased for the days

of the 21st–23rd, which coincided with the observed ignitions. The model

also captured the observed spatial pattern, with the areas of elevated ignition

likelihood concentrated in the east of the state.
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Figure 5.18: Lightning ignition likelihood forecasts for a randomly chosen period with
moderate observed lightning ignition. The green triangles are the observed lightning
ignitions. Note that the colour legend presents all likelihood values that exceed 0.12
as the same colour. This was done to prevent days with lesser likelihood appearing
too dark and obscuring details.
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5.6 Discussion

In this chapter we have presented a logistic regression GAM for forecasting

lightning-caused ignitions for the purpose of decision making. The model

produces daily, spatially-explicit forecasts using covariates that reflect both

convective activity and fire behaviour. An analysis of diagnostics showed

good model fit, which was confirmed through four case studies. The model

performed well during randomly chosen periods of high observed lightning

ignition as well as periods of high predicted likelihood, identifying temporal

as well as spatial areas of elevated risk. Performance during the period of Black

Saturday was less impressive, but models cannot be expected to perform well

outside of the range of data used for model fitting — the fire weather conditions

during this period were the most extreme on record. Nevertheless, during this

period the model still demonstrated the ability to distinguish areas of high and

low lightning ignition likelihood with sufficient accuracy to benefit operational

use. The final case study showed the model performing well during a randomly

chosen period with moderate conditions.

Due to the independence assumptions of regression models we see some

systematic errors produced in the forecasts. The clustering nature of con-

vective storms is passed down to lightning ignitions, which tend to cluster

in both space and time. The model struggled to replicate this clustering be-

haviour, frequently resulting in the model failing to identify consecutive days

of elevated lightning ignition likelihood. For example, in the January 2006

case study the model recognised two days as having extremely high ignition

likelihood, yet the observed lightning ignitions were extreme for four consec-

utive days. The model provided a relative indication of ignitions; a similar

issue has been raised in another study where the point was made that fire

managers are comfortable with predictions that provide a reliable indication

of the severity of the day and do not expect models to provide exact num-

bers (Plucinski et al., 2014). From an operational perspective, these outputs
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are still valuable; the model recognises periods of extreme lightning ignition

likelihood but underestimates their length.

Being able to identify areas of elevated lightning ignition likelihood at daily

time scales can be of great assistance to fire management agencies. Identify-

ing areas of high lightning ignition likelihood could allow fire management

agencies to prepare by increasing surveillance efforts and relocating firefight-

ing resources to ensure firefighting needs are met (Chow and Regan, 2011).

Having an understanding of likely lightning patterns is also important for

long-term landscape-scale risk assessment. These assessments are usually car-

ried out with fire simulation systems that simulate the growth and spread of

sets of hypothetical fires under different weather scenarios. Output from these

models is used to identify vulnerable areas and opportunities for risk reduc-

tion. For a particular weather scenario, not all ignition locations are equally

likely and by using a daily ignition likelihood model, the impacts of simulated

fires can be weighted to provide a better indication of the true risk. Better

estimates of ignition likelihood would improve estimates of risk at both short

term scales, over the coming days (Duff, Chong, et al., 2014), and strategic

scales, over years or decades (Department of Environment, Land, Water and

Planning, 2015).

The approximating model was built using the CC method proposed in

Section 3.3.1 and had four (27%) fewer covariates than the full model. Com-

parison of performance measures between the full and approximating model

showed that the approximating model performed well, however we ultimately

believe that this is not a good application of approximating models. Fire

fighting agencies are very interested in understanding wildfire ignitions dur-

ing extreme conditions and we are concerned that removing any significant

covariates from the model may adversely affect performance during extreme

conditions. Model approximation methods generally remove covariates that

are uninfluential most of the time, but they may be highly influential in some
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cases. Indeed, the precision of the approximating model dropped off for very

high values of the predicted probability suggesting that the full model per-

formed better for extreme observations. Nevertheless, we believe that this

method of model approximation is simple and effective and could be useful

when models are intended to be used on the bulk of the data rather than

focused on the extremes.

We demonstrated a method of deconstructing model forecasts into com-

ponents from the individual environmental conditions, so that fire-fighting

agencies could more easily communicate and ‘sanity check’ the model output.

The likelihood was split, on the logit scale, into a baseline and dynamic com-

ponent. The baseline component was adjusted for each day of the year and

captured the effects of seasonal changes in mean weather conditions along with

the effect of time independent covariates. It can be understood as the expected

log-odds of lightning ignition. The dynamic components came in the form of

the covariate contribution anomaly, which captured the effects of anomalies in

the dynamic environmental variables. Ultimately, this allows a given forecast

to be understood relative to expected conditions for the time of year. This

helps practitioners relate model output back to their own understanding of

lightning ignition likelihood.

A lightning ignition likelihood model could be a powerful tool for assisting

fire-fighting planning and decision making, but there are some important con-

siderations when deploying the model. In this thesis we have used historical

observed data, but in practice forecast data would need to be used for de-

ployment, which would introduce some additional uncertainty into the model

(this was explored in Preisler, Chen, et al., 2008 and Preisler and Westerling,

2007). For example, seven-day weather forecasts could be used to produce

seven-day lightning ignition forecasts. Another consideration is the possibility

of long-term shifts in the relationships between the covariates and ignition

likelihood. This can be accounted for by periodically refitting the model, us-
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ing a moving window of data from the preceding years. This approach sees

the influence of old data on the model being removed once a certain amount

of time has passed, making way for newer observations to impact the model.

Annual refitting at the start of each fire season should be frequent enough and

would avoid needless adjustments during the bulk of the annual fire activity.

The model as presented treats weather as a dynamic variable, but fuel as

a static one. Improvements may be made by recognising that the properties

of fuel change through time and that this may affect ignition potential. For

example, after fire or timber harvest, forest structures are greatly altered,

affecting the load, structure and moisture dynamics of fuels over timescales

of years (Keane, 2015; McCaw, Neal, and Smith, 2002). This can affect the

receptiveness of the fuelbed to ignitions. Fuel properties can also vary on

shorter time scales, for example through the curing of annual grasses during

dry seasons (Plucinski, 2013). While maintaining data sets of fuel condition

would requires investment, the improvement to model predictions may warrant

this.



Chapter 6

Point processes

The Poisson process; inference and validation. A connection be-

tween regression models and the Poisson process. Integrals with

respect to point processes. Campbell’s formulas. The K-function.

The Neymann–Scott cluster process.

6.1 Introduction to point processes

The theory of point processes offers a flexible framework for studying point

data, x = {x1, x2, . . . , xn}, known as point patterns. Point processes have

been used to study rainfall, the distribution of celestial bodies in the night

sky, the spread of disease through a geographically diverse population and the

distribution of plant species through a forest.

Point processes can be used to describe point data on very general spaces,

but we restrict our conversation to planar point processes, x ⊂ R2, since

they can readily be used to model wildfire ignitions. Although point processes

usually cover the entirety of R2, observed point patterns do not. We denote W

as the bounded region of the observed point process, which can take arbitrary

shape and is informed by the availability of data. Note that the observed

region of R2 includes all observed points along with the observed empty space;

the absence of points is just as important as the presence.

There are two approaches to analysing point patterns which we will call

107
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the random measure and random set approaches. Both random measures and

random sets necessitate a discussion about which sets are amenable to analysis.

Matters are made much simpler by considering the Borel sets (Williams, 1991),

which is essentially a collection of ‘nice’ sets so that measures are well behaved

on them. Throughout this thesis we assume that all sets are Borel; almost all

sets that would arise in applications are Borel.

To understand how random measures can be used to describe point pro-

cesses we must first understand how a point pattern is equivalent to an integer-

valued measure. If we have a point pattern on R2 we can define a function,

N(·), on the subsets of R2 such that N(B) is equal to the number of points

that fall in B. This defines a measure since it is non-negative and since

N

 ∞⋃
i=1

Bi

 =

∞∑
i=1

N(Bi),

for any collection of disjoint regions B1, B2, . . . . This process ‘encodes’ a point

pattern as an integer-valued measure.

A point process can be described by a mechanism that randomly generates

integer-valued measures. Although the theory of random measures is technical

and rich, they can be understood as a generalisation of measures; where a

measure of a set B returns a non-negative number, a random measure returns

a non-negative random variable. In the context of point processes, N(B) is

the random variable describing the number of points in the region B. If ω

is an element of the outcome space then the random measure evaluated at ω

becomes the non-random measure N( · ;ω) that represents an observed point

pattern. Hence a random measure is a mechanism that maps elements of the

outcome space to point patterns. For a mathematically thorough exposition

of random measures and how they pertain to point processes, see Daley and

Vere-Jones (2003, 2008) and Kallenberg (1983).

Random set theory provides an alternative approach to describing point

processes. In this context, a point process is described by a random set of



6.1. INTRODUCTION TO POINT PROCESSES 109

unordered points, X, in the space of interest. Let n(·) denote the cardinality

function, so n(x ∩ B) is the number of points in the point pattern x which

are also in the region B. Note that n(x ∩W ) = n(x) since W is the region

where we observe X. Thus n(X∩B) = N(B), connecting the random measure

construction of point processes to the random set theory construction. For a

thorough exposition of random set theory and point processes, see (Baddeley,

Rubak, et al., 2015; Gaetan and Guyon, 2009; Møller and Waagepetersen,

2003).

For all the results in this thesis, the random set and random measure

approaches produce equivalent results and we can shift between the two nota-

tional styles with impunity. We generally use the random set notation because

it allows for more intuitive expressions of integrals with respect to point pro-

cesses, as we discuss in Section 6.5.

This chapter follows the approach of the excellent Baddeley, Rubak, et al.

(2015) and provides the preliminary theory needed to understand the results

in Chapters 7 and 8. We expand on some sections and pivot the emphasis to

suit our ends, but the notation and approach are broadly consistent and we

owe much to this clear and thorough text.

We finish this section with some basic definitions and theory. In Section

6.2 we introduce the Poisson process, which is a fundamental point process

that plays a key role in general theory. We discuss inference and validation for

the Poisson process in Sections 6.3 and 6.4, showing strong links between the

Poisson process and traditional regression models. In Section 6.5 we discuss

some key technical results for point processes that will inform the discussion

of the spacing of points in Section 6.6. We finish the chapter by discussing

cluster processes in Section 6.7; these point processes allow interaction effects

between points and we use them to model lightning ignitions in Chapter 8.
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6.1.1 Key definitions

Point processes can be exceedingly general and it is common to make some

simplifying assumptions. A point process is simple if there are no coincident

points (Daley et al., 2003, Definition 3.3.II). A point process is locally finite

point process if the number of points in a bounded region is always finite, that

is n(X ∩ B) < ∞ for all bounded regions B ⊂ R2 (Baddeley, Rubak, et al.,

2015, Section 5.2.2). A locally finite point process excludes the case where

there is an ‘explosion’ of points, where an infinite number of points occurs in

a finite interval. All processes discussed in this thesis are simple and locally

finite and this greatly reduces the complexity of the surrounding theory.

There are two further definitions that play an important role in the theory

of point processes.

Definition 1. (Baddeley, Rubak, et al., 2015, Section 5.6.3) A point process

X on R2 is stationary if for all Borel sets B1, B2, . . . , Bk the joint distribution

of (
n(X ∩ {B1 + v}), n(X ∩ {B2 + v}), . . . ,n(X ∩ {Bk + v})

)
is identical for all vectors v ∈ R2, where {Bi + v} = {u ∈ R2 | u− v ∈ Bi}.

Intuitively, stationarity means that the statistical properties of the point

process are unaffected by translation; the points in a stationary point process

have no preference for any spatial location.

Definition 2. (Baddeley, Rubak, et al., 2015, Section 5.6.3) Let rθ(·) be the

operator that rotates space around the origin by the angle θ. A point process

X is isotropic if for all Borel sets B1, B2, . . . , Bk the joint distribution of(
n
(
rθ(X ∩B1)

)
, n
(
rθ(X ∩B2)

)
, . . . ,n

(
rθ(X ∩Bk)

))
is identical for all angles θ.

The definition for isotropy implies that the origin is a unique point, but

most point processes of interest are both stationary and isotropic. Combined,
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they imply that the process is unaffected by translation and rotation around

any point. Stationarity and isotropy are strong assumptions and they greatly

simplify the theory. We will often discuss theory for the stationary case before

generalising it to the non-stationary case.

6.1.2 Intensity

The intensity of a point process reflects the average density of points in the

process and is a key quantity for characterising point processes. For a station-

ary point process the intensity reflects the intuitive idea of the density: the

number of points per unit area.

Definition 3. For a stationary point process X the intensity is the constant

λ > 0 such that

E[n(X ∩B)] = λ|B|, (6.1)

for all bounded sets B ⊂ R2, where |B| is the Lebesgue measure of B.

For a non-stationary process we expect the mean number of points per

unit area to vary over space and we must work with the intensity function.

Definition 4. For a point process X, the intensity function, if it exists, is a

function λ : R2 → [0,∞) such that for all bounded sets B ⊂ R2,

E[n(B ∩X)] =

∫
B
λ(u) du.

If the process is simple then λ(u)δ is approximately the probability that

there is a point in a small region around u with area δ.

In general there is no guarantee that the intensity function exists and

instead we must rely on the intensity (mean) measure, Λ(·), which is the

measure that satisfies

E[n(B ∩X)] = Λ(B) (6.2)

for all bounded sets B ⊂ R2. For simplicity we assume that the intensity

function always exists, which is not unreasonable in most applied settings.
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The intensity function is an important summary statistic of a point process;

plots of the intensity function can be used to identify areas with a high or low

expected number of points. However, similarly to the mean of a random

variable, it does not contain all the information about the process. It is

possible for point processes to have identical intensity functions yet generate

very different point patterns.

6.2 The Poisson process

The Poisson process is arguably the most natural point process. It appears in

limiting theorems in a similar way to the Normal distribution in the Central

Limit Theorem (Daley et al., 2008, Chapter 11) and forms the boundary

between clustering and regularity (Section 6.6). In this section we discuss the

definition and properties of the homogeneous (stationary) and inhomogeneous

(non-stationary) Poisson processes.

6.2.1 The homogeneous Poisson process

In spatial statistics, the idea of complete spatial randomness requires some

care. It is generally understood (Baddeley, Rubak, et al., 2015, Section 5.3,

Diggle, 2013) to mean two properties:

Homogeneity The points have no preference for any spatial location; and,

Independence The numbers of points in disjoint regions are independent of

each other.

Section 5.3.2 of Baddeley, Rubak, et al. (2015) showed how the Poisson process

is constructed from these two properties.

Definition 5. (Baddeley, Rubak, et al., 2015, Section 5.3.2) A point process

X on R2 is a homogeneous Poisson process with intensity λ > 0 if the following

is true:
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1. for any subset B ⊂ R2, the number of points in X ∩ B has a Poisson

distribution with mean λ|B|; and,

2. the random variables n(X∩B1), n(X∩B2), . . . ,n(X∩Bk) are indepen-

dent for disjoint B1, B2, . . . , Bk.

There are some important properties of the Poisson process that help us

to understand its role in the theory (Baddeley, Rubak, et al., 2015, Section

5.3.3).

Stationarity The process is stationary since the distribution of the number

of points in a region is dependent only on the area of the region and

since disjoint regions are independent of each other.

Superimposing The superimposition of independent Poisson processes is an-

other Poisson process. If X1,X2, . . . ,Xn are independent Poisson pro-

cesses with intensities λ1, λ2, . . . , λn respectively then the point process⋃
i Xi is a Poisson process with intensity

∑
i λi.

Thinning In some sense the reverse of superimpositioning, a Poisson pro-

cess can be thinned to create another Poisson process with a reduced

intensity. Thinning with probability p > 0 is the operation where each

point in the process is independently discarded with probability 1 − p.

The remaining points form the thinned process. A Poisson process with

intensity λ, when thinned with probability p, becomes a Poisson process

with intensity λp.

Conditional distribution Conditional on the number of points in a region

B, the location of the points is distributed independently and uniformly

at random across B.

The conditional distribution property of the Poisson process immediately

suggests way to simulate a Poisson distribution. Begin by determining the
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total number of points in the window of interest, W , by simulating a Poisson

variable with mean λ|W |. Then simulate the location of each of the points by

uniformly sampling points from W . The conditioning property tells us that

the resulting points form a Poisson process with intensity λ.

6.2.2 The inhomogeneous Poisson process

Generalising the Poisson process to allow the intensity to vary over space

is natural and straightforward. The inhomogeneous Poisson process plays a

fundamental role in the theory of point processes as well as being a useful

model in its own right.

Definition 6. A point process X on R2 is an inhomogeneous Poisson point

process with intensity function λ : R2 → R≥0 if it satisfies the following:

1. for any subset B ⊂ R2, the number of points in X ∩ B has a Poisson

distribution with mean
∫
B λ(u) du; and,

2. the random variables n(X∩B1), n(X∩B2), . . . ,n(X∩Bk) are indepen-

dent for disjoint B1, B2, . . . , Bk.

The homogeneous Poisson process can be recovered from the inhomoge-

neous Poisson process by taking the intensity function to be a constant. As

such, we use the name Poisson process to refer to the inhomogeneous Poisson

process, which includes the case of constant intensity.

As in the homogeneous case, the superimposition of independent inhomo-

geneous Poisson processes results in a Poisson process. If X1,X2, . . . ,Xn are

independent Poisson processes with intensity functions λ1(u), λ2(u), . . . , λn(u)

then the superimposition
⋃n
i=1 Xi is a Poisson process with intensity function

λ(u) =
∑n

i=1 λi(u).

The inhomogeneous Poisson process (with bounded intensity function) can

also be understood as a thinned homogeneous Poisson process. Suppose that
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λ(u) is a function such that λ(u) ≤ M for all u ∈ W . Let X be a Poisson

process with rate M . If each point xi in X is thinned with probability p(xi) =

λ(xi)/M then the resulting process will be an inhomogeneous Poisson process

with intensity function λ(u). This characterisation suggests a simple way to

sample from an inhomogeneous Poisson process: simulate a point pattern x

from a Poisson process with constant intensity M such that M ≥ λ(u) for all

u ∈ W , then for each point xi ∈ x, remove xi with probability 1 − λ(u)/M .

The remaining points will form a realisation of an inhomogeneous Poisson

process with intensity function λ(u).

Covariate effects

An inhomogeneous Poisson processs can be used as a simple model for point

patterns that are influenced by covariates. Typically this is done by assuming

that, conditioned on the value of the covariates at every location, X is an

inhomogeneous Poisson process with intensity function that is a log-linear

sum of the covariates,

λ(u) = exp

(
α+

p∑
j=1

βjzj(u)

)
, (6.3)

where α, β1, . . . , βp are constants and zj(u) is the value of the jth covariate at

location u. The log-linear form of the intensity function is convenient because

it maps covariates that take any value in R to the positive real line and so

allows (6.3) to be meaningfully interpreted as an intensity function.

The log-linear form can be understood as a series of thinning or ‘modulat-

ing’ steps. The log-linear intensity function can be expressed as the product

λ(u) = exp(α) exp(β1z1(u)) exp(β2z2(u)) · · · exp(βpzp(u)).

If exp(βjzj(u)) < 1 for all j then the process is equivalent to a homogeneous

Poisson process with intensity exp(α) that undergoes a series of thinning steps

with probabilities exp(βjzj(u)). For general exp(βjzj(u)), not necessarily less
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than 1, we can think of it as a series of ‘modulating’ steps that thin or ‘excite’

the point process based on the value of the covariates.

6.3 Inference for the Poisson process

The definition of the intensity of a stationary point process (Definition 3)

immediately suggests that the intensity of a homogeneous Poisson process

(and other stationary point processes) can be estimated non-parametrically

using the method-of-moment style estimator

λ̂ =
n(x)

|W |
. (6.4)

Things are complicated by inhomogeneity, where both parametric and non-

parametric methods of inference can be appropriate. Non-parametric methods

are identical to kernel smoothing methods for point data and give an empirical

estimate of the intensity function λ̂(u). We focus on parametric model fitting

using maximum likelihood estimation since this is traditionally the approach

taken to incorporate covariate effects.

Defining the likelihood function for the spatial Poisson process, and spatial

point processes more generally, requires some advanced theory about proba-

bility densities with respect to point processes. These are defined for point

processes with (almost surely) finite numbers of points; the Poisson process is a

finite point process when restricted to the observational window W . Roughly

speaking, the density of X, f(x), is the probability of observing the point

pattern x from the point process X divided by the probability of observing

the same point pattern from a stationary Poisson process with unit intensity.

Formally, the density of a point process X with respect to a Poisson process

Y with unit intensity, if it exists, is a function f : Nlf → R≥0 satisfying

E[h(X)] = E[h(Y)f(Y)]

for all functions h : Nlf → R, where Nlf as the set of all locally finite point

patterns onR2 (x ∈ Nlf if n(x∩B) <∞ for all bounded B) (Baddeley, Rubak,
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et al., 2015, equation 13.62). The likelihood function is simply L(θ) = f(x).

For the inhomogeneous Poisson process, this is

L(θ) =

( ∏
xi∈x

λθ(xi)

)
exp

(
|W | −

∫
W
λθ(u) du

)
∝
( ∏
xi∈x

λθ(xi)

)
exp

(
−
∫
W
λθ(u) du

)
(6.5)

(Baddeley, Rubak, et al., 2015, equation 9.39). The log-likelihood function is

l(θ) =

(∑
xi∈x

log λθ(xi)

)
−
∫
W
λθ(u) du, (6.6)

where the |W | term has been omitted. For general parametric forms of the

intensity function, the integral in the log-likelihood function prevents an ana-

lytic expression of the maximum likelihood estimate of θ. Instead we resort to

numerical techniques, known as numerical quadrature, which is a generalisa-

tion of the idea of Riemann sum approximations to a curve. In Section 6.3.1

we discuss coarse quadrature approximations, which are commonly used to

fit Poisson processes. We discuss alternative approaches, known as fine pixel

approximations, in Section 6.3.2. Fine pixel approximations show a strong

connection between Poisson process models and standard regression models.

Finally, note that the naive estimator (6.4) for the intensity of a stationary

point process is also the maximum likelihood estimator for the homogeneous

Poisson process. This can easily be seen by setting λθ(xi) = λ in (6.6).

6.3.1 Coarse quadrature approximation

Similarly to Reimann approximations of integrals, course quadrature approxi-

mations use the value of the function at a series of points, known as quadrature

points, to estimate the value of an integral. Unlike Reimann approximations,

the points are not regularly spaced and are chosen so that the ‘important’

points are the focus.
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The integral term in the log-likelihood function of the Poisson process

(equation 6.6) can be approximated by∫
W
λ(u) du ≈

m∑
j=1

λ(uj)wj ,

where {uj}mj=1 are the quadrature points and wj are weights summing to |W |.

If {uj} is chosen to include all points in x as well as suitably chosen dummy

points then the log-likelihood can be approximated by

l(θ) ≈
m∑
j=1

(
1x(uj) log λθ(uj)− λθ(uj)wj

)
, (6.7)

where 1x(uj) = 1 if uj ∈ x and 0 otherwise. As noted by Berman and Turner

(1992), this can be rewritten as

l(θ) ≈
m∑
j=1

(
1x(uj)

wj
log λθ(uj)− λθ(uj)

)
wj . (6.8)

Although the value of 1x(uj)/wi is not necessarily integer, the form of (6.8)

is the same as the weighted log-likelihood function for a series of independent

Poisson random variables with mean λθ(uj) (see Harrell, 2015, Section 9.9 for

information on weighted log-likelihood functions). The form of the approxi-

mate log-likelihood in (6.8) allows standard GLM fitting software to estimate

the parameters of a Poisson process model.

There are many methods for choosing the dummy quadrature points and

weights, but the goal is always the same. Intuitively, the dummy quadrature

points are chosen to form a rough grid-like structure across the study window

W and the quadrature weights are the area associated with each of the ‘grid’

cells. A precise discussion of how quadrature schemes can be chosen is found

in Section 9.8.1.2 of Baddeley, Rubak, et al. (2015).

6.3.2 Fine pixel approximations

By default, spatstat (the companion package to Baddeley, Rubak, et al., 2015)

uses coarse quadrature approximation techniques to fit Poisson processes to
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data. Fine pixel approximations are an alternative quadrature approxima-

tion and show an even stronger connection between regression models and

the Poisson process. Unlike coarse quadrature approximation, fine pixel ap-

proximations use the value of the function on a regular grid to estimate the

integral.

Pixel counts

Suppose that the domainW is split into a regular grid with cell centers {uj}mj=1

and cell area a. Then the integral in the Poisson log-likelihood function (equa-

tion 6.6) can be approximated by∫
W
λθ(u) du ≈

m∑
j=1

λθ(uj)a. (6.9)

Furthermore, if the point xi falls in the jth grid cell, approximate the value

of log λθ(xi) by log λθ(uj). By summing over grid cells instead of points the

sum in the log-likelihood function (6.6) can be rewritten as

∑
xi∈x

log λθ(xi) ≈
m∑
j=1

yj log λθ(uj), (6.10)

where yj is the number of points in the jth grid cell. Putting approximations

(6.9) and (6.10) together yields the approximation

l(θ) ≈
m∑
j=1

yj log λθ(uj)− λθ(uj)a. (6.11)

By adding and subtracting the terms yj log a, (6.11) becomes

l(θ) ≈
m∑
j=1

yj log(λθ(uj)a)− λθ(uj)a− yj log(a) (6.12)

∝
m∑
j=1

yj log(λθ(uj)a)− λθ(uj)a, (6.13)

where (6.13) is proportional to (6.12) since yj log(a) is independent of θ. Equa-

tion (6.13) is the log-likelihood function for Poisson regression with mean
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λθ(uj)a (equation 3.4). Like coarse quadrature approximation, this allows

inference techniques for regression models to be used for the Poisson process.

The relationship between Poisson regression and the Poisson process is

not surprising. The numbers of points in disjoint regions in a Poisson process

is independently distributed according to a Poisson distribution, a property

shared by Poisson regression.

Pixel presence–absence

An alternative fine pixel approximation is linked with logistic regression. Sim-

ilarly to the pixel counts approximation, divide the spatial region W into a

regular grid with centers {uj}mj=1 and grid cell area a. If the grid cells {Bj}mj=1

are sufficiently small such that there is no more than one point in each grid

cell, then logistic regression with

πj = P(n(x ∩Bj) > 0) ≈ 1− exp(−λθ(uj)a)

≈ 1− (1− λθ(uj)a)

= λθ(uj)a

is a suitable model for the data. This leads to the log-likelihood

l(θ) =

 m∑
j=1

yj log(λθ(uj)a)

+

 m∑
j=1

(1− yj) log(1− λθ(uj)a)

 (6.14)

for the logistic regression model (equation 3.3). As the grid becomes increas-

ingly fine, and hence the area a→ 0, the first sum in (6.14) becomes

m∑
j=1

yj log(λθ(uj)a) ∝
m∑
j=1

yj log(λθ(uj)) (6.15)

→
∑
xi∈x

log(λθ(xi)). (6.16)
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Likewise, by noting that log(1 + x) ≈ x when x ≈ 0, the second sum in (6.14)

is approximated by

m∑
j=1

(1− yj) log(1− λθ(uj)a) ≈
m∑
j=1

(1− yj)(−λθ(uj)a) (6.17)

=
m∑
j=1

−λθ(uj)a+
m∑
j=1

yjλθ(uj)a (6.18)

→ −
∫
W
λθ(u) du. (6.19)

The final line follows from noting that
∑m

j=1−λθ(uj)a is a Riemann approx-

imation of −
∫
W λθ(u) du and that

∑m
j=1 yjλθ(uj)a → 0, since the number of

of yi = 1 cells remains fixed as the parition becomes finer (a → 0). Combin-

ing (6.16) and (6.19) gives the log-likelihood function of the Poisson process

(equation 6.6). This approximation allows inference for logistic regression to

be used for the Poisson process.

6.4 Validation for the Poisson process

Validation of a Poisson process model involves checking that the intensity

function is appropriate and that the number of points in disjoint regions are

independent of each other. Both residuals and hypothesis tests exist to inves-

tigate the fit of the intensity function. In this section we discuss residuals for

interrogating the fit of the intensity function of a Poisson process. Hypoth-

esis tests for the intensity function can be found in Baddeley, Rubak, et al.

(2015, Section 10.4 and 10.5). Approaches for validating the independence

assumption can be found in Baddeley, Rubak, et al. (2015, Section 11.6).

6.4.1 Residual measure

The raw residual measure of a point process is the difference between the

observed and expected number of points and is given by the signed measure
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R(B) = n(x ∩B)−
∫
B
λ̂(u) du

(Baddeley, Turner, et al., 2005). It is commonly visualised as the observed

points superimposed on a plot of the negative estimated intensity function. To

make this easier to interpret, the residuals are often smoothed. The smoothed

residual field is defined as the function

s(u) =
1

e(u)

∑
xi∈x

k(u− xi)−
∫
W
λ̂(v)k(u− v) dv

 ,
where k(u) is a smoothing kernel and e(u) :=

∫
W k(u − v) dv is an edge cor-

rection (Baddeley, Rubak, et al., 2015, Section 6.5.1.1 for details on the edge

correction, not to be confused with the edge corrections discussed in Section

6.6.4). The smoothed residual field is essentially the difference between a non-

parametric estimate of the intensity function and a smoothed version of the

fitted intensity function. Values of s(u) should be close to 0 for a model that

fits well.

6.4.2 Rescaled residuals

It can be difficult to interpret the values of the residual measure, since the

variance of the residual measure is dependent on the intensity measure. These

sorts of issues are commonly tackled by reweighting residuals to have constant

variance. The weighted residual measure is

R(w)(B) =
∑

xi∈X∩B
w(xi)−

∫
B
w(u)λ̂(u) du,

where w(u) is a weight function (Baddeley, Turner, et al., 2005), possibly

dependent on the estimated intensity function. If λ̂(u) = λ(u), the mean

of the residual measure takes value 0 on all sets (this results from a simple

application of Campbell’s formula, see Section 6.5 below). Good choices of

the weight function can control the variance of the residual measure.
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One such weighting is used in the Pearson residual measure,

R(P )(B) =
∑

xi∈x∩B
λ̂(xi)

−1/2 −
∫
B
λ̂(u)1/2 du.

To prevent the Pearson residual measure being unbounded, set the measure

to take value 0 on sets with λ̂(u) = 0. The Pearson residual measure has

unit variance, that is Var(R(P )(B)) = |B| for all bounded sets B (this results

from an application of Campbell’s Formula and the Extended Slivnyak–Mecke

Theorem, Section 6.5 below).

Similarly to the raw residual measure, we can smooth the rescaled residuals

to make visual interpretation more straightforward. The smoothed Pearson

residual field is given by the function

s(P)(v) =
∑

xi∈X∩B
λ̂(xi)

−1/2k(v − x)−
∫
B
λ̂(u)1/2k(v − u) du,

where k(u) is the smoothing kernel. Although the Pearson measure is con-

structed to have unit variance, we expect the variance of the smoothed Pearson

field to differ due to the dependence introduced by the smoothing kernel. Bad-

deley, Rubak, et al. (2015, Section 11.3.5) found that if the smoothing kernel

k(x) is the radially symmetric Gaussian density with variance σ2, the pointwise

variance of the smoothed Pearson residual field is Var(s(P)(u)) ≈ 1/(4πσ2).

6.5 Integrals and Campbell’s formula

Integrals with respect to point processes play an important role in concepts

such as the K-function (Section 6.6.1) and in more advanced point processes,

such as cluster processes (Section 6.7). The integral of a function f : R2 → R

with respect to a point process X is written as∑
xi∈X

f(xi),

the sum of the values of f at each point in the point process. In the notation

of random measures, this is the stochastic integral with respect to the random
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measure N , ∑
xi∈X

f(x) =

∫
R2

f(u) dN(u).

One of the most useful sets of results in point process theory is Campbell’s

formula and its generalisations. These results allow us to calculate the expec-

tation of an integral with respect to a point process by using the standard

Lebesgue measure and the intensity function.

Theorem 1. (Campbell’s formula, equation 6.11, Baddeley, Rubak, et al.,

2015) If X is a point process with intensity function λ(u) then

E

∑
xi∈X

f(x)

 =

∫
f(u)λ(u) du. (6.20)

Section 6.5.1 discusses the theory needed to understand the extension of

Campbell’s formula, but it presents a significant increase in complexity. The

extensions of Campbell’s formula are presented in Section 6.5.2.

6.5.1 Palm probabilities

Conditioning plays an important role in elementary probability theory and is

invaluable in the study of point processes. The distribution of the distance

from a typical point to its nearest neighbouring point, that is the distance

from u to the closest point xi ∈ X given that u ∈ X, is closely tied to ideas

of clustering and regularity of point processes. However, it is not immedi-

ately obvious how to construct conditional probability in this context. In

this section we discuss the Palm probability, Pu(A), which is essentially the

probability of event A occurring conditioned on the event that u ∈ X.

Let (Ω,F ,P) be the underlying probability space of the point process.

Then for any event A ∈ F and Borel set B ⊂ R2, define the measure

C(A,B) = E[n(X∩B)1A], known as the Campbell measure (Baddeley, Bárány,

and Schneider, 2007, Section 3.2, Daley et al., 2008, Section 13.1). If we
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consider the event A as being fixed we can define a measure µA such that

µA(B) = C(A,B). Then

µA(B) ≤ E[n(X ∩B)]

= Λ(B).

This implies that µA is absolutely continuous with respect to Λ and so the

Radon–Nikodym theorem (Daley et al., 2003, theorem A1.4.IV) ensures the

existence of a function fA(u) such that

µA(B) =

∫
B
fA(u) dΛ(u).

The function fA(u) is known as the Palm probability.

Definition 7. (Baddeley, Rubak, et al., 2015, equation 8.48) Suppose X is

a point process with intensity function λ(u). Suppose there exists a function

Q(u,A) such that, for any event A and any spatial region B,

E[n(X ∩B)1A] =

∫
B
Q(u,A)λ(u) du.

Then Q(u,A) := Pu(A) is the Palm probability of the event A given a point

at u.

The Palm probability measures constitute a family of probability measures

on Ω indexed by u that correspond to the point process X conditioned on

u ∈ X. The expectation with respect to the Palm probability measure Pu(·)

is well defined and is denoted by the operator Eu(·).

The Palm probabilities are difficult to calculate for a general point process.

However they are simple to calculate for the Poisson process, courtesy of the

independence property; the Palm probability measure Pu(·) corresponds with

the probability measures of the process X∪{u}, which is the superimposition

of the the Poisson process X and the non-random single point at location u.
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6.5.2 Extensions of Campbell’s formula

We can now state the generalisation of Campbell’s formula, known as Campbell–

Mecke’s formula. Denote Nlf as the set of all locally finite point patterns on

R2. So x ∈ Nlf if n(x ∩B) <∞ for all bounded B.

Theorem 2. (Campbell–Mecke’s formula, equation 8.50, Baddeley, Rubak,

et al., 2015) If X is a point process with intensity function λ(u) and f :

W × Nlf → R is a function that is integrable with respect to the Campbell

measure then

E

∑
xi∈X

f(xi,X \ {xi})

 =

∫
Eu[f(u,X \ {u})]λ(u) du.

If X is Poisson, Campbell–Mecke’s formula can be restated without the

Palm probabilties. This is known as the Slivnyak–Mecke theorem.

Theorem 3. (Slivnyak–Mecke theorem, equation 3.7, Møller and Waagepetersen,

2003) If X is a Poisson process with intensity function λ(u) and f : R2×Nlf

is a function, then

E

∑
xi∈X

f(xi,X \ {xi})

 =

∫
R2

E
[
f(u,X)

]
λ(u) du.

Lastly, we state a useful extension of the Slivnyak–Mecke Theorem.

Theorem 4. (Extended Slivnyak–Mecke theorem, equation 3.9, Møller and

Waagepetersen, 2003) If X is a Poisson process with intensity function λ(u)

and f : (R2)k ×Nlf is a function, then

E

 ∑
x1 6=x2 6=... 6=xk∈X

f(x1, x2, . . . , xk,X \ {x1, x2, . . . , xk})


=

∫
R2

∫
R2

· · ·
∫
R2

E
[
f(u1, u2, . . . , uk,X)

]( k∏
i=1

λ(ui)

)
du1 du2 . . . duk.

To see how to extend the Slivnyak–Mecke Theorem, consider the point

process on (R2)k constructed by taking every k-tuple of unique points in
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X. The Extended Slivnyak–Mecke Theorem comes from an application of

Campbell–Mecke’s formula to this extended point process. We present the

Slivnyak–Mecke theorems here because they give more explicit expressions for

the quantities we will calculate later.

6.6 Correlation

More complex point processes than the Poisson process often involve depen-

dence between points. Similarly to random variables, one way to describe

dependence is through concepts of correlation. In this section we discuss the

second moment properties of point processes and how they link to the cluster-

ing and regularity of points. Intuitively, clustering is the tendency of points

to be attracted to one another whilst regularity is the tendency of points to

be repulsed by one another. Regularity is the regular spacing of points, or

equivalently, the absence of clustering.

Figure 6.1 shows three point patterns, one exhibiting clustering, one ex-

hibiting complete spatial randomness (CSR) and the last showing regularity.

Although CSR (Figure 6.1(b)) has regions showing clustering behaviour and

regions showing regularity behaviour, these arise purely by chance and do not

represent an underlying interaction between the points. As such, the Poisson

process is sometimes referred to as CSR and acts as the boundary between

clustering and regularity. A point pattern is said to exhibit clustering if there

is attraction between points in the process, resulting in point patterns with

more clustering of points than would be expected for the Poisson process. A

point pattern is said to exhibit regularity if points repel each other, resulting

in point patterns with less clustering of points than would be expected for the

Poisson process.

Notions of correlation for point processes are significantly complicated by

non-stationarity. Intuitively, correlation is a measurement of the interaction

between points. However, an inhomogeneous Poisson process with distinct
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(a) Clustering (b) CSR

(c) Regularity

Figure 6.1: Simulated point patterns exhibiting clustering, CSR and regularity. Each
point pattern has 75 points simulated from (a) a Thomas cluster process (Section
6.7), (b) a homogeneous Poisson process and (c) a Hardcore process (Møller and
Waagepetersen, 2003).

areas of high and low intensity will result in point patterns with clusters,

although the points are independent of each other.

For inhomogeneous point processes, clustering and regularity are under-

stood after taking spatial variation in the intensity function into consideration.

An inhomogeneous point process exhibits clustering if it shows a higher degree

of clustering than an inhomogeneous Poisson process with the same intensity
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function. Likewise, an inhomogeneous point process exhibits regularity if it

shows a higher degree of regularity than an inhomogeneous Poisson process

with the same intensity function.

In practice, it is impossible to determine from a single point pattern

whether a point process is an inhomogeneous Poisson process or a non-Poisson

point process. A cluster in a point pattern may be due to local variation in the

intensity function, or it may be due to interactions between the points. In the

absence of repeated observations of the point process (known as a replicated

point pattern, see Chapter 7) we must use our understanding of the physical

process to decide whether the point pattern is exhibiting interactions between

the points or simply spatial variation in the intensity function.

As this discussion suggests, it is easiest to understand correlation for sta-

tionary point processes. We begin our discussion with the homogeneous K-

function, which is a summary function of the correlation between points in

a stationary point process, in Section 6.6.1. This theory can be generalised

for non-stationary point processes; Section 6.6.2 covers the inhomogeneous

K-function.

6.6.1 The homogeneous K-function

The K-function, also known as Ripley’s K-function, is a summary function

that describes the degree of clustering in a point process. It is independent of

the intensity of the process, so meaningful comparisons can be made between

processes with different intensities.

Definition 8. (Baddeley, Rubak, et al., 2015, Section 7.3.2) If X is a station-

ary point process with intensity λ > 0, the K-function is

K(r) =
1

λ
Eu

∑
xi∈X

1
{

0 < ‖u− xi‖ ≤ r
} , (6.21)

where ‖·‖ denotes the Euclidean distance.
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The expectation in the definition of the K-function is the expectation with

respect to the Palm probability (Section 6.5.1) and will be independent of u

since X is stationary. Intuitively we think of the K-function as the expected

number of points within distance r of a point u given that the point u is in

X.

For a homogeneous Poisson process the expectation in the K-function

is simply the expected number of points in a circle of radius r and hence

K(r) = πr2. Since the Poisson process acts as the boundary between cluster-

ing and regularity, the curve πr2 is used to distinguish between clustering and

regularity behaviour.

The easiest K-functions to interpret are those where either K(r) > πr2 or

K(r) < πr2 for all r > 0, as these cases represent clustering and regularity

respectively. In practice, most K-functions tend to fall strictly above or below

the πr2 curve (Baddeley, Rubak, et al., 2015, Section 7.3.3). Interpreting a K-

function that crosses the πr2 function is difficult. For example, if K(r) > 1 for

r less than some constant c, it can be tempting to conclude that the process

shows clustering at spatial scales less than c, however this interpretation is

incorrect since K(r) is a cumulative function. In this case it can be simpler

to work with the pair correlation function.

Definition 9. (Baddeley, Rubak, et al., 2015, Section 7.6.1) The pair corre-

lation function for a stationary isotropic point process is

g(r) =
K ′(r)

2πr
, (6.22)

where K ′(r) is the derivative of the K-function.

If g(r) > 1 for some value r then points distance r apart from each other

would occur more frequently than would be expected for a Poisson process

with identical intensity. The scale of interaction of a process can defined in

terms values of r where the pair correlation function is greater than or less

than 1.
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A common alternative to theK-function is the L-function, L(r) =
√
K(r)/π,

which is defined such that the L-function of the Poisson process is the straight

diagonal line, L(r) = r.

To derive the empirical K-function we first find an expression for the K-

function in terms of E rather than Eu by considering that for any bounded

region B,

E

 ∑
xi∈X∩B

∑
xj∈X

1
{

0 < ‖xj − xi‖ ≤ r
}

=

∫
B
Eu

∑
xj∈X

1
{

0 < ‖xj − u‖ ≤ r
}λ du (6.23)

= λ|B|Eu
∑
xj∈X

1
{

0 < ‖xj − u‖ ≤ r
} , (6.24)

where (6.23) follows from the Campbell–Mecke formula and (6.24) is because

the value of Eu
[∑

xj∈X 1
{

0 < ‖xj − u‖ ≤ r
}]

is independent of u since X

is stationary. So for any choice of B, and in particular B = W , we can

reformulate the K-function as

K(r) =
1

λ2|W |
E

 ∑
xi∈X∩W

∑
xj∈X

1
{

0 < ‖xj − xi‖ ≤ r
} . (6.25)

Finally, note that for a Poisson process

E
[
n(X ∩W )

(
n(X ∩W )− 1

)]
= λ2|W |2. (6.26)

Equations (6.25) and (6.26) motivate the empirical K-function,

K̂(r) =
|W |

n(x)(n(x)− 1)

∑
xi∈x

∑
xj∈x
xj 6=xi

1{‖xi − xj‖ ≤ r}e(xi, xj), (6.27)

where e(u, v) is an edge correction function. The edge correction addresses

any error introduced by ignoring points outside the study window that may

have an effect on the observed points. We discuss edge corrections in Section

6.6.4.
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6.6.2 The inhomogeneous K-function and the general pair

correlation function

To discuss the generalisation of the K-function for non-stationary point pro-

cesses we must first discuss the second moment intensity function and the

general pair correlation function.

Definition 10. (Baddeley, Rubak, et al., 2015, Definition 7.4) For a point

process X and two disjoint, compact regions A,B, the second moment inten-

sity function, if it exists, is the function λ2 : R2 ×R2 → R≥0 satisfying

E[n(A ∩X)n(B ∩X)] =

∫
A

∫
B
λ2(u, v) dv du.

Roughly speaking, we can interpret λ2(u, v)δ2 as the probability of having

one point in a small region around u and another point in a small region around

v where δ is the area of each of the small regions. For the Poisson process,

λ2(u, v) = λ(u)λ(v), which is a consequence of the independence of disjoint

regions. The second moment intensity is related to the mean of random sums

over all pairs of distinct points,

E

∑
xi∈X

∑
xj∈X
xj 6=xi

f(xi, xj)

 =

∫
R2

∫
R2

f(u, v)λ2(u, v) dudv. (6.28)

This follows from an application of Cambell’s formula (equation 6.20) to the

point process of all pairs of distinct points in X ×X. The general pair cor-

relation function is defined by the relationship between the second and first

moment intensity functions.

Definition 11. (Baddeley, Rubak, et al., 2015, equation 7.46) For a point

process X with intensity function λ(u) and second moment intensity function

λ2(u, v), the pair correlation function is defined for distinct u, v ∈ R2 as

g2(u, v) =
λ2(u, v)

λ(u)λ(v)
. (6.29)
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Notice that the pair correlation function for a stationary isotropic point

processes, equation (6.22), is a function of the radius r, whereas in general

the pair correlation function is a function of two point locations u and v. For

a stationary isotropic process, these two definitions are related by g2(u, v) =

g(‖u− v‖).

The pair correlation function (6.29) for a Poisson process is equal to 1 for

all distinct values of u and v. A process with g2(u, v) greater (less) than 1

exhibits positive (negative) correlation between points at positions u and v.

This indicates that when a point is present at location u there is an increased

(decreased) likelihood of a point being at position v.

The inhomogeneous K-function

In Baddeley, Møller, and Waagepetersen (2000) the authors proposed a K-

function for correlation-stationary point processes, which are more general

point processes than stationary point processes and includes the inhomoge-

neous Poisson process and cluster processes (Section 6.7).

Definition 12. (Baddeley, Rubak, et al., 2015, equation 7.47) A point process

X is correlation-stationary if the pair correlation function is dependent only

on the relative locations of the two points. That is, if there exists a function

f such that

g2(u, v) = f(v − u).

The requirement of correlation-stationarity is essentially the bare mini-

mum needed for the idea of a K-function to make sense. Intuitively, K(r)

is the expected number of points within radius r of a ‘typical’ point in the

process. Correlation-stationarity means that the (second moment) interaction

between points depends only on the relative position of the points and not on

their absolute location, so the idea of a typical point still makes sense.
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The idea behind the inhomogeneous K-function is to weight the contribu-

tion of each point to the K-function so as to remove the effect of changes in

the value of the intensity function.

Definition 13. (Baddeley, Møller, et al., 2000, equation 2) For a correlation-

stationary point process X with intensity function λ(u), the inhomogeneous

K-function is

Kinhom(r) = Eu

∑
x∈X

1
{

0 < ‖u− x‖ ≤ r
}

λ(x)

 ,
where a/0 is interpreted to be 0 for all a.

The interpretation of Kinhom(r) is identical to that of K(r) since the in-

homogeneous K-function for the Poisson process is

Kinhom(r) =

∫
1

λ(v)
1
{

0 < ‖u− v‖ ≤ r
}
λ(v) dv = πr2.

If the process is stationary, the intensity function is a constant and the inho-

mogeneous K-function reduces to the homogeneous K-function.

To derive the empirical inhomogeneous K-function we take a similar ap-

proach to the homogeneous case. For any bounded region B

E

 ∑
xi∈X∩B

∑
xj∈X

1
{

0 < ‖xj − xi‖ ≤ r
}

λ(xj)λ(xi)


=

∫
B
Eu

∑
xj∈X

1
{

0 < ‖xj − u‖ ≤ r
}

λ(xj)λ(u)

λ(u) du (6.30)

= |B|Eu
∑
xj∈X

1
{

0 < ‖xj − u‖ ≤ r
}

λ(xj)

 , (6.31)

where (6.30) follows from the Campbell-Mecke formula and (6.31) is a conse-

quence of being correlation-stationary. This suggests that

K̂∗inhom(r) =
1

|W |
∑
xi∈x

∑
xj∈x
xj 6=xi

1
{
‖xi − xj‖ ≤ r

}
λ̂(xi)λ̂(xj)

e(xi, xj), (6.32)
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known as the ‘plug-in’ estimator, is a suitable estimator for the inhomogeneous

K-function. As before, e(xi, xj) is an edge correction (Section 6.6.4).

Unfortunately this estimator is prone to errors caused by bias in the es-

timate of the intensity function, especially if there are points associated with

small values of the estimated intensity function. This has caused it to per-

form poorly in some cases (Diggle, 2013; Diggle, Gómez-Rubio, et al., 2007;

Gabriel and Diggle, 2009). In the Section 6.6.3 we discuss ways to normalise

the estimate so that it is less sensitive to bias in the estimate of the intensity

function.

Connecting the K-function and the pair correlation function

Definition 9 showed a strong connection between the pair correlation function

and the K-function for stationary isotropic point processes. A similar relation-

ship holds more generally and can be helpful when calculating the theoretical

K-function for complex point processes. Relation (6.31) implies that, for any

bounded region B,

Kinhom(r) =
1

|B|
E

 ∑
xi∈X∩B

∑
xj∈X

1
{

0 < ‖xj − xi‖ ≤ r
}

λ(xi)λ(xj)

 (6.33)

=
1

|B|

∫
B

∫
Br(u)

1

λ(u)λ(v)
λ2(u, v) dv du (6.34)

=
1

|B|

∫
B

∫
Br(u)

g2(u, v) dv du (6.35)

where Br(u) is a closed ball centred at u of radius r. Equation (6.34) follows

from Campbell’s formula applied to the process of all pairs of distinct points,

see (6.28). If g2(u, v) is correlation-stationary (Definition 12), then g2(u, v)

depends only on the distance ‖u− v‖ and (6.35) can be expressed as

Kinhom(r) =
1

|B|

∫
B

∫
Br(0)

g2(0, v) dv du

=

∫
Br(0)

g2(0, v) dv (6.36)
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We can further simplify expression (6.36) if we assume that the pair cor-

relation function is isotropic.

Definition 14. A function f : R2 → R is isotropic if there exists another

function f∗ : R→ R such that f(u) = f∗(
√
‖u‖) for all u ∈ R2.

A function is isotropic if it depends only on the distance from the origin.

If the pair correlation function is isotropic it is common to reformulate it in

terms of the distance from the origin.

Definition 15. The isotropic pair correlation function, if it exists, is the

function g : R→ R≥0 satisfying

g2(u, v) = g(‖v − u‖)

for all u, v ∈ R2.

Replacing the pair correlation function in (6.36) with the isotropic pair

correlation function and rewriting the integral in terms of polar coordinates

yields

Kinhom(r) = 2π

∫ r

0
sg(s) ds. (6.37)

For stationary point processes, relationship (6.37) implies Definition 9, the

pair correlation function for stationary point processes.

6.6.3 The normalised inhomogeneous K-function

The ‘plug-in’ estimator for the inhomogeneous K-function, equation (6.32),

can perform poorly due to bias in the estimated intensity function. One

approach to reducing this error is to divide the empirical K-function by a

normalising term that is similarly affected by the bias in the estimated inten-

sity function. If chosen appropriately, the bias in the normalising term should

‘cancel out’ with the bias in the empirical K-function.
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A simple improvement to the ‘plug-in’ estimator for the inhomogeneous

K-function, equation (6.32), is suggested by the observation that

E

 ∑
xi∈X∩W

1

λ(xi)

 = |W |, (6.38)

which follows from Campbell’s formula (Section 6.5). Replacing |W | in (6.32)

with
∑

xi∈X∩W
[
λ̂(xi)

]−1
results in an estimator for the inhomogeneous K-

function, which may have reduced error over the ‘plug-in’ estimator.

Baddeley, Rubak, et al. (2015) suggested estimators for the inhomogeneous

K-function of the form

K̂inhom(r) =
1

|W |D(x)

∑
xi∈x

∑
xj∈x
xj 6=xi

1
{
‖xi − xj‖ ≤ r

}
λ̂(xi)λ̂(xj)

e(xi, xj), (6.39)

where D(x) is a data-dependent normalising term chosen to counter the ef-

fects of bias in the estimate of the intensity function. The normalising term

suggested by (6.38) is

D1(x) =
1

|W |
∑
xi∈x

1

λ̂(xi)
.

D1(x) is the default choice of normalising term used by spatstat.

An extreme example of bias would be if the intensity function was incor-

rectly estimated by a constant factor at every location, say λ̂(u) = V λ(u).

Then for all r > 0, the ‘plug-in’ estimator (6.32) would be incorrect by a

factor of 1/V 2 and the estimator (6.39) with normalising term D1(x) would

be incorrect by a factor of 1/V . An immediate solution to this is to take

D2(x) =
[
D1(x)

]2
=

1

|W |2

∑
xi∈x

1

λ̂(xi)

2

,

however this has some issues, namely that the empirical inhomogeneous K-

function with normalising term D2(x) (and D1(x) for that matter) does not

reduce to the empirical homogeneous K-function if we assume that the inten-

sity function is a constant.
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The unpublished work Moradi et al. (n.d.), proposes a better normalising

term for the case when X is an inhomogeneous Poisson process,

D2−(x) =
1

|W |2

∑
xi∈x

∑
xj∈x
xj 6=xi

1

λ̂(xi)λ̂(xj)

 . (6.40)

This is motived by the observation that

E

∑
xi∈x

∑
xj∈x
xj 6=xi

1

λ(xi)λ(xj)

 =

∫
W

∫
W

1

λ(u)λ(v)
λ2(u, v) dudv = |W |2,

since the second moment intensity function of the Poisson process is λ2(u, v) =

λ(u)λ(v). If we have the extreme case where the estimated intensity function

is biased by a constant factor V then, for the Poisson process, the normalising

term D2−(x) will be an unbiased estimator of 1/V 2.

In the case when the intensity function is a constant and estimated by

λ̂, the empirical inhomogeneous K-function with normalising term D2−(x)

reduces to the homogeneous K-function. To see this, simply substitute

D(x) = D2−(x) =
1

|W |2

∑
xi∈x

∑
xj∈x
xj 6=xi

1

λ̂2

 =
n(n− 1)

|W |2λ̂2
,

into equation (6.39).

6.6.4 Edge corrections

The K-function describes the propensity of points to cluster or space them-

selves in a point process and reflects interactions between the points in the

process. In practice we have knowledge about the point process only in the

observation window W and must use this to estimate the K-function. Points

that lie close to the boundary of W will have fewer neighbouring points than
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those in the middle of W simply because we fail to observe the points out-

side W . Edge corrections attempt to reduce this bias by using fairly general

assumptions about point processes to reweight points that are close to the

boundary of W .

There are numerous methods of edge correction and in practice the choice

of method should not overly influence the results. We discuss the translation

edge correction to give a feel for how these corrections work, and refer the

reader towards Baddeley, Rubak, et al. (2015, Section 7.4.2) for alternative

methods and further details.

The contribution of a pair of points (xi, xj) ∈ X ×X to the K-function

is related to the likelihood of observing these points given the distance and

orientation between them. If the point process is stationary then the likelihood

of observing a pair of points (xi, xj) is proportional to the area of the part

of W that admits the observation of such a pair. The extreme case is when

we are interested in points which are spaced further apart than the maximum

distance within W , which we have no chance of observing. We can write the

subset of W that admits pairs of points such as (xi, xj) as W ∩(W −(xj−xi)).

This leads to the translation edge correction

e(xi, xj) =
|W |

|W ∩ (W − (xj − xi))|
,

which reflects the proportion of W that admits a pair of points with the same

orientation and seperating distance as (xi, xj).

6.7 Cluster point processes

Cluster processes are a class of point processes that use a two-stage mechanism

to induce clustering between the points. At its most general, a cluster process

is defined by a parent point process Φ, along with offspring processes {Xc}c∈Φ

that cluster their points around their centres, c. The cluster process consists
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of the superimposition of all the offspring processes,

X =
⋃
c∈Φ

Xc.

These processes are exceedingly general and so we restrict our attention to

Neymann–Scott cluster processes (NSCP) which are cluster processes satisfy-

ing the following:

1. the parent process, Φ, is a Poisson process;

2. the offspring processes, Xc, are independent of each another;

3. the offspring processes, if shifted to the same location, are identically

distributed; and,

4. the offspring within a cluster are independently and identically dis-

tributed.

Things are futher simplified by making further assumptions:

5. each cluster contains a Poisson number of points; and,

6. the distribution of points around the cluster centre is isotropic.

If the preceding six conditions are true, then the stationary NSCP can be

described as follows. The parent process Φ is a homogeneous Poisson process

with intensity κ. Each offspring process Xc is an inhomogeneous Poisson

process with intensity function µh(u − c) where µ > 0 is the mean number

of points in a cluster and h(u) is an isotropic density function, known as the

spatial kernel . The superimposition of all the offspring processes conditioned

on the parent process,
⋃
c∈Φ Xc |Φ, is a Poisson process with intensity function

ν(u) = µ
∑
c∈Φ

h(u− c). (6.41)
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This follows directly from the superimposition property of the Poisson process

(Section 6.2). The expected number of points in a region B can be found using

Campbell–Mecke’s formula,

E
[
n(X ∩B)

]
= E

∑
c∈Φ

n(Xc ∩B)


=

∫
R2

E
[
n(Xc ∩B)

]
κdc

= κ

∫
R2

∫
B
µh(u− c) dudc

= κµ

∫
B

∫
R2

h(u− c) dcdu

= κµ|B|.

This shows that the intensity of a stationary NSCP is

λ = κµ. (6.42)

As we discuss in Section 6.7.3, the Neyman–Scott cluster process has the

attractive property that statistical inference can be performed without knowl-

edge of the points in the parent process. This is important in practice, when

the parent process is usually unobserved.

Cluster processes are part of a more general class of point processes known

as Cox processes or doubly stochastic Poisson processes. They are a general-

isation of the Poisson process, constructed by allowing the intensity measure

(equation 6.2) to be a random measure. That is, suppose that Λ is a random

measure on R2; a point process X on R2 is a Cox process with driving inten-

sity measure Λ if X |Λ is a Poisson process with intensity measure Λ. The

NSCP is a Cox process with driving intensity given by (6.41). It is because of

this interpretation that the NSCP is sometimes refered to as the Shot-Noise

Cox process.
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6.7.1 The pair correlation function and K-function for the

NSCP

The K-function for the NSCP is most easily calculated using the pair corre-

lation function and the relationship (6.37). To calculate the pair correlation

function we first need the second moment intensity function. For a NSCP X

and disjoint regions A,B ⊂ R2,

E
[
n(X ∩A)n(X ∩B)

]
= E

∑
ci∈Φ

n(Xci ∩A)
∑
cj∈Φ

n(Xcj ∩B)



= E

∑
ci∈Φ

∑
cj∈Φ
cj 6=ci

n(Xci ∩A)n(Xcj ∩B)

 (6.43)

+ E

∑
ci∈Φ

n(Xci ∩A)n(Xci ∩B)

 . (6.44)

The expectation (6.43) can be calculated using the Slivnyak–Mecke Theorem,

E

∑
ci∈Φ

∑
cj∈Φ
cj 6=ci

n(Xci ∩A)n(Xcj ∩B)


=

∫
R2

∫
R2

E
[
n(Xx ∩A)n(Xy ∩B)

]
κ2 dx dy

= κ2

∫
R2

∫
R2

(∫
A
µh(u− x) du

∫
B
µh(v − y) dv

)
dx dy

= κ2µ2|A||B|. (6.45)
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The expectation (6.44) can be calculated using Campbell’s formula,

E

∑
ci∈Φ

n(Xci ∩A)n(Xci ∩B)


=

∫
R2

E
[
n(Xx ∩A)n(Xx ∩B)

]
κdx

= κ

∫
R2

(∫
A
µh(u− x) du

∫
B
µh(v − x) dv

)
dx

= κµ2

∫
A

∫
B

(∫
R2

h(u− x)h(v − x) dx

)
dv du. (6.46)

Then the second moment intensity can be found by combining (6.45) and

(6.46) and shrinking the regions A and B to the points u and v,

λ2(u, v) = lim
A↓{u}

lim
B↓{v}

E
[
n(X ∩A)n(X ∩B)

]
|A||B|

= κ2µ2

(
1 +

1

κ

∫
R2

h(u− x)h(v − x) dx

)
.

So the pair correlation function for the NSCP is

g2(u, v) =
λ2(u, v)

λ(u)λ(v)

= 1 +
1

κ

∫
R2

h(u− x)h(v − x) dx. (6.47)

If h(u) is isotropic, we can rewrite the integral in (6.47) as∫
R2

h(u− x)h(v − x) dx =

∫
R2

h
(
(u− v)− x

)
h(x) dx,

which is the convolution of h with itself, evaluated at u− v. We can write

g2(u, v) = 1 +
1

κ
h ∗ h(u− v), (6.48)

where ∗ is the convolution operator. This implies that the isotropic pair

correlation function exists and is given by

g(r) = 1 +
1

κ
h ∗ h(r), (6.49)

where h ∗ h(r) is the convolution of h with itself evaluated at a point with

distance r from the origin,

h ∗ h(r) =

∫
R2

h((0, r)− u)h(u) du.
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The K-function for a specific NSCP is typically calculated using rela-

tionship (6.49) to find the isotropic pair correlation function and then using

relationship (6.37),

K(r) = 2π

∫ r

0
g(s) ds.

This is used in Section 6.7.2 to calculate the K-function for some common

NSCPs.

6.7.2 Specific NSCP

Different choices of spatial kernel h(u) give rise to different NSCPs with dif-

ferent clustering behaviours. In this section we discuss a few of the commonly

used NSCPs.

The Matérn cluster process

A simple NSCP is the Matérn cluster process, which takes a uniform density

on a circle of radius R to be the spatial kernel.

h(u) =
1

2πR2
1
(
‖u‖ ≤ R

)
The value of R controls the degree of clustering.

The Thomas cluster process

The Thomas cluster process is a NSCP where the spatial kernel is a radially

symmetric bivariate Normal density,

h(u) =
1

2πσ2
exp

(
− ‖u‖

2

2σ2

)
,

where σ > 0 is called the scale parameter.

The pair correlation function for the Thomas cluster process can easily be

calculated from equation (6.49). Since the Normal distribution is stable, the

convolution h∗h a radially symmetric bivariate Normal density with marginal
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variance 2σ2. So the isotropic pair correlation function is

g(r) = 1 +
1

4πκσ2
exp

(
− r2

4σ2

)
.

Using the isotropic pair correlation function and the relationship (6.37),

the K-function of the Thomas cluster process is

K(r) = πr2 +
1− exp

(
−r2/(4σ2)

)
κ

.

The Cauchy cluster process

The Cauchy cluster process is a NSCP where the spatial kernel h(u) is a

radially symmetric bivariate Cauchy density,

h(u) =
1

2πσ2

(
1 +
‖u‖2

σ2

)−3/2

,

where σ > 0 is called the scale parameter. This distribution is heavy-tailed,

meaning that points can be very far from the center process that spawned

them. This may be suitable for data which occasionally has points far from

what appears to be their parent cluster, although this can be difficult to assess

since the parent process is typically unobserved.

Since the Cauchy distribution is stable, the convolution of h(u) with it-

self is a bivariate Cauchy density with scale parameter 2σ. Using (6.49), an

expression for the isotropic pair correlation function is

g(r) = 1 +
1

4πκσ2

(
1 +

r2

2σ2

)−3/2

.

Then, from (6.37), the K-function is

K(r) = 2π

∫ r

0
sg(s) ds

= πr2 +
1

8πκσ2

∫ r

0
s

(
1 +

s2

4σ2

)−3/2

ds

= πr2 +
1

8πκσ2

∫ r

0
−4σ2 d

ds

[(
1 +

s2

4σ2

)−1/2
]

ds

= πr2 +
1

κ

(
1−

(
1 +

r2

4σ2

)−1/2
)
.
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6.7.3 Inference for the NSCP

In general, likelihood methods of inference are not available for the NSCP

since the likelihood function is intractable (Baddeley, Rubak, et al., 2015,

Section 12.6.1). Instead, what is essentially a method-of-moments style ap-

proach known as Minimum contrast estimation is employed. The intensity

(the first moment) is estimated using (6.4). Then the cluster parameters, κ

and σ, are estimated by choosing the values that minimise the ‘distance’ be-

tween the model and empirical K-functions (the second moment). Formally,

the contrast between the model and empirical K-functions is

D(θ) =

∫ b

a

(
Kθ(s)

q − K̂(s)q
)p

ds, (6.50)

where Kθ(r) is the model K-function which depends on the parameters θ, and

K̂(r) is the empirical K-function. If p = 2 and q = 1 this is equivalent to

minimising the mean squared error between the two functions. The default

in spatstat is p = 2 and q = 1/4. The choice of the interval to compare

the functions over, (a, b), depends on the data; however spatstat will attempt

to choose suitable values for the user. Finally, the mean cluster size can be

estimated by µ̂ = λ̂/κ̂, which follows from (6.42).

6.7.4 The inhomogeneous NSCP

There are several possible ways to define the inhomogeneous NSCP: the parent

process Φ, the offspring processes {Xc} or both can be inhomogeneous. Model

fitting with an inhomogeneous parent process proves to be difficult and so

usually one works with a homogeneous parent process and inhomogeneous

offspring processes.

Again we have a parent process Φ which is a Poisson process with rate κ,

but this time the offspring processes Xc are inhomogeneous Poisson processes

with intensity functions

λ(u) = µ(u)h(u− c),
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where µ(u) is known as the modulating intensity . Conditioned on the parent

process, the offspring process is a Poisson process with intensity function

ν(u) = µ(u)
∑
c∈Φ

h(u− c).

The intensity of the inhomogenous NSCP is

λ(u) = κµ(u),

which follows from an application of Campbell’s formula, similar to the ho-

mogeneous case (6.42).

Similarly to the Poisson process, an inhomogeneous NSCP (with bounded

intensity function) is equivalent to a thinned homogeneous NSCP. Let X be

an inhomogeneous NSCP with centre process intensity κ, spatial kernel h(u)

and (bounded) modulating intensity function µ(u). Let Y be a homogeneous

NSCP with identical centre process intensity and spatial kernel and with mean

cluster size M , where M > µ(u) for all u ∈ W . Then X has the same

distribution as Y that has been thinned with probability µ(u)/M .

This thinning construction of the inhomogeneous NSCP suggests a method

of calculating the second moment intensity function (Definition 10), which

is required to calculate the pair correlation function and inhomogeneous K-

function. If X and Y are the inhomogeneous and homogeneous NSCPs de-

scribed in the previous paragraph then we can rewrite integrals with respect

to X to be with respect to Y;∑
xi∈X

f(xi) =
∑
yi∈Y

f(yi)1X(yi), (6.51)

where 1X(yi) is an indicator function taking value 1 if the point yi survived

the thinning process and is in the NSCP X. Using relationship (6.51), it

is relatively straightforward to show that the pair correlation function, and

hence the K-function, of the inhomogeneous NSCP is identical to that of

the homogeneous NSCP. This implies that the inhomogeneous NSCP is also

correlation stationary.
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Inference for the inhomogeneous NSCP is much the same as that for the ho-

mogeneous NSCP; minimum contrast estimation (Section 6.7.3) is used to esti-

mate the cluster parameters. For the homogeneous NSCP, the non-parametric

estimator (6.4) is used to estimate the intensity. For the inhomogeneous NSCP,

either parametric or non-parametric estimators are available, but we focus on

parametric estimators since we are interested in incorporating the influence of

covariates on the intensity function.

Schoenberg (2005) showed that the maximum likelihood estimator of the

intensity function of the Poisson process is an approximate estimator for the

intensity function of certain non-Poisson point processes. This allows the ma-

chinery of Poisson process inference to be used for the inhomogeneous NSCP.

It is common to assume that the modulating intensity is a log-linear sum of

the covariates, which makes estimating the intensity function equivalent to

fitting a Poisson process with a log-linear intensity function (Section 6.2.2).

This approach to inference shows a connection between a Poisson process

and a NSCP which share the same intensity function. It is interesting to see

how these processes compare in terms of the variance of the number of points in

a bounded region B. An expression of this variance for spatial Cox processes,

which includes the NSCP, can be found in Jalilian, Guan, and Waagepetersen

(2013):

Var
[
n(X ∩B)

]
=

∫
B
λ(u) du+

∫
B

∫
B
λ(u)λ(v)

[
g2(u, v)− 1

]
dudv, (6.52)

where g2(u, v) is the pair correlation function. The first integral in (6.52),∫
B λ(u) du, is the variance of the number of points in B of a Poisson process

with intensity function λ(u). The second integral in (6.52) is a modifying effect

on the variance caused by the interaction between the points. In the case of

a NSCP, the pair correlation function is always greater than 1, resulting in a

larger variance than a Poisson process with identical intensity function.
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6.7.5 Validation for the NSCP

Present approaches to validating NSCP models are very limited. Residual

measures (Section 6.4) of NSCPs are very difficult to analyse since there is

dependence between the residual measure at nearby locations. Because of

this, well fitting models can have residual measures that exceed two stan-

dard deviations over large regions. The degree of clustering can be validated

by comparing the fitted and estimated K-functions. To make this compar-

ison meaningful, confidence intervals must be placed around the estimated

K-function. This can be done using bootstrap approaches (Baddeley, Rubak,

et al., 2015, Sections 7.7.2 and 7.7.3).





Chapter 7

Replicated point patterns

Collections of independent point patterns. Spatio-temporal point

processes. Inference with replicated point patterns. Ratio estima-

tors and pooling ratio estimators. The pooled K-function. A new

weighting for the pooled K-function. Model validation with repli-

cated point patterns.

7.1 Introduction to replicated point patterns

Classically, inference for point processes is considered as though we have only

a single observation to work with and in many applications, this is the case.

Species distribution modelling, for example, is often forced to work with a

single point pattern of recorded animal sightings. However some situations

are closer to traditional statistics, where repeated independent observations

of the same process are available. For example, Diggle, Lange, and Beneš

(1991) looked at the spatial distribution of pyramidal neurons between nor-

mal, schizoaffective and schizophrenic persons at time of death by comparing

multiple observations of brain tissue from each group. Point processes that

evolve through time offer another potential source of repeated observations.

For example, daily point patterns of wildfire ignitions can be considered as

repeated observations of the same process.

A collection of independent point patterns is known as a replicated point
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pattern (RPP) and we denote them as {Xt}t∈T , where T is an index set,

which we denote as T = {1, 2, . . . , ndays} for convenience. The simplest case

of a RPP is when each point pattern is identically and independently dis-

tributed, representing repeated observations of the same experiment. At its

most general a RPP consists of a collection of conditionally independent, given

the value of covariates, point patterns which are not identically distributed.

For example, a covariate dependent inhomogeneous Poisson process can have

intensity function

λ(u, t) = exp

α+
d∑
j=1

βjzj(u, t)

 ,

where zj(u, t) is the value of the jth covariate at location u on day t, giving

rise to a collection of conditionally independent point patterns.

As we have mentioned above, point patterns generated by processes that

evolve through time can be thought of as RPPs, but only if we are willing to

assume independence between the observations. If this is an unreasonable as-

sumption, an alternative approach is to consider the point patterns as coming

from a point process on an expanded space. A spatio-temporal point process

is a point process defined on the space R2×T , where T is the time dimension,

usually T = R or Z. The Poisson process is easily extended to this setting;

the number of points in a space-time region B × [0, t] is Poisson distributed

with mean
∫ t

0

∫
B λ(u, t) dudt. Expanding the state space to include the time

dimension allows for processes to have dependence in both space and time.

Diggle (2013) provides a good introduction to the theory and application of

spatio-temporal point processes.

The transition to RPPs has consequences for inference and validation of

point process models. In Sections 7.2 and 7.3 we discuss how information from

multiple point patterns can be combined to get estimates of model parameters

or the K-function. Section 7.5 looks at validating models when replicated

point patterns are available.
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7.2 Inference with replicated point patterns

In Sections 6.3 and 6.7.3 we discussed inference for the Poisson process and

the Neyman–Scott cluster process when there is a single point pattern avail-

able. Generalising those inference techniques to accommodate replicated point

patterns is straight forward.

Homogeneous Poisson process The maximum likelihood estimator of the

intensity of the homogeneous Poisson process becomes

λ̂ =

∑ndays

t=1 n(Xt ∩W )

ndays|W |
,

which is simply the average of the intensity estimates from each day.

Inhomogeneous Poisson process The likelihood function of the inhomo-

geneous Poisson process becomes

L(θ) =

ndays∏
t=1

 ∏
xi∈xt∩W

λθ(xi, t)

 exp

(
−
∫
W
λθ(u, t) du

)
,

which can be maximised using the same approaches as before.

Cluster processes Inference for Neyman–Scott cluster process begins by es-

timating the intensity function using the method outlined above for the

Poisson process. Cluster parameters are estimated using minimum con-

strast methods and requires an estimate of the K-function. As we will

see in Section 7.3, estimating the K-function from RPPs requires some

additional care.

7.3 Estimating the K-function from replicated

point patterns

It is not immediately obvious how to estimate the K-function using replicated

point patterns. One approach is to calculate an estimate of the K-function for
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each observation in the RPP and then combine them into a single estimate.

This is a common enough idea within statistics, known as pooling. An illustra-

tive example of pooling is the case where we have two samples, {x1, x2, . . . , xn}

and {y1, y2, . . . , ym} from the same population and we wish to estimate the

population mean. The sample means from the unpooled data sets, x̄ and ȳ,

can be combined as (x̄n+ ȳm)/(n+m) to calculate a pooled estimate for the

mean.

More generally, suppose we are interested in estimating a quantity that can

be expressed as a ratio R = A/B. A ratio estimator is an estimator of the form

R̂ = Â/B̂, where Â is an estimator of A and B̂ is an estimator of B. If we have

a collection of such estimators, R̂1 = Â1/B̂1, R̂2 = Â2/B̂2, . . . , R̂n = Ân/B̂n,

then a pooled estimator is given by

R =

∑n
i=1 Âi∑n
i=1 B̂i

=

 n∑
i=1

B̂i

−1
n∑
i=1

B̂iR̂i (7.1)

If the (Âi, B̂i) pairs are independent and identically distributed and they sat-

isfy

E(Â | B̂ = b) = bR

and

Var(Â | B̂ = b) = cb,

where c > 0 is a constant then R is the minimum-variance linear unbi-

ased estimator of R given B̂1, B̂2, . . . , B̂n (Baddeley, Rubak, et al., 2015,

Section 16.8.1). That is, given B̂1, B̂2, . . . , B̂n, the estimator R has mini-

mum variance amongst all unbiased estimators that are linear combinations

of Â1, Â2, . . . , Ân.

Both the homogeneous and inhomogeneous K-functions can be expressed

as ratio estimators. The empirical homogeneous K-function (6.21) can be

expressed as

K̂(r) =
Â(r)

B̂
,
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where

Â(r) = |W |
∑
xi∈x

∑
xj∈x
xj 6=xi

1{‖xi − xj‖ ≤ r}e(xi, xj) (7.2)

and

B̂ = n(x)(n(x)− 1). (7.3)

If we denote the tth empirical homogeneous K-function as K̂t(r), then a pooled

empirical homogeneous K-function follows directly from (7.1);

K̂(r) = c−1

ndays∑
t=1

n(xt)(n(xt)− 1)K̂t(r)

where c =
∑ndays

t=1 n(xt)(n(xt) − 1) (Baddeley, Rubak, et al., 2015, Section

16.8.1).

Pooling empirical inhomogeneous K-functions is less straightforward since

they are not identically distributed. The empirical inhomogeneous K-function

(6.39) can be expressed as the ratio estimator

K̂inhom(r) =
Â(r)

B̂
, (7.4)

where

Â(r) =
1

|W |
∑
xi∈x

∑
xj∈x
xj 6=xi

1
{
‖xi − xj‖ ≤ r

}
λ̂(xi)λ̂(xj)

e(xi, xj) (7.5)

and

B̂ = D(x). (7.6)

For each point pattern in the RPP denote

K̂
(t)
inhom(r) =

Ât(r)

B̂t
,

where Ât(r) and B̂t are the estimates of (7.5) and (7.6) coming from the tth

point pattern.

Despite the empirical inhomogeneous K-functions failing to be identically

distributed, the currently accepted estimator for the pooled inhomogeneous
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K-function is derived from (7.1),

K̂pool
inhom(r) =

∑ndays

t=1 Ât(r)∑ndays

t=1 B̂t
, (7.7)

(Baddeley, Rubak, et al., 2015, section 16.8.1).

However this estimator is overly influenced by bias in the estimate of the

intensity function. The contribution of a pair of points to K̂inhom(r) is related

to the reciprocal of the estimated intensity function at the locations of the

points. Hence, points in regions where the estimated intensity function takes

very small values have a large influence on K̂inhom(r). In practice, points that

correspond to low values of the estimated intensity function can dominate

the pooled estimator (7.7) resulting in jumps in the estimated function, even

for large data sets. In the next section we discuss a new method for pooling

estimates of the inhomogeneous K-function that reduces the variance over the

naive approach.

7.4 The weighted pooled K-function

We propose a weighted pooled K-function which has a reduced variance over

the naive pooled K-function. First, observe that the pooled estimator (7.1)

can be expressed as

R =

∑n
i=1 n

−1Âi∑n
i=1 n

−1B̂i
,

which is the ratio of the means of the estimators. This suggests that we

might be interested in estimating the numerator and denominator terms using

weighted averages such as

Â =

n∑
i=1

wiÂi, (7.8)

subject to
∑n

i=1wi = 1. Assuming that the Âi are independent and unbiased,

the choice of weights that minimises the variance of (7.8) are

wi =
θ−1
i∑n

i=1 θ
−1
i

, (7.9)
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where θi = Var(Âi) (Rubin and Weisberg, 1974). Note that this result is

unchanged if all the θi are multiplied by the same constant factor, that is

θi = cVar(Âi) for all i where c > 0 is a constant.

Consider the generalisation of (7.7),

K̂pool
inhom(r) =

∑ndays

t=1 w−1
t Ât(r)∑ndays

t=1 w−1
t B̂t

, (7.10)

where the wt are weights. We propose that a good choice of weights is given

by (7.9) with θt = Var(ξt) where

ξt =
∑
xi∈xt

∑
xj∈xt
xj 6=xi

1

λ(xi, t)λ(xj , t)
. (7.11)

We argue that these weights approximately minimise the variance of the nu-

merator of (7.10) and if the normalising term is D2−(x) (equation 6.40), it

also minimises the variance of the denominator.

To see this for the numerator, replace the estimated intensity function by

the true intensity function and ignore the edge corrections. Then

Ât(r) ≈
1

|W |
∑
xi∈xt

∑
xj∈xt
xj 6=xi

1
{
‖xi − xj‖ ≤ r

}
λ(xi, t)λ(xj , t)

→ |W |−1ξt,

as r becomes large enough that ‖xi−xj‖ ≤ r for all xi, xj ∈ xt. This assumes

thatW is bounded, which is a very mild assumption. So Var[Ât(r)] ≈ cVar(ξt),

where c is a constant, showing that θt = Var(ξt) produces weights that ap-

proximately minimise the variance of the weighted sum (7.8).

The same holds for the denominator if the normalising term D2−(x) is

used. This follows directly from the definition of D2−(x) (equation 6.40), as-

suming that estimated intensity function is equal to the true intensity function

t; D2−(xt) = |W |−2ξt.

In the next section we cover the calculation of Var(ξt) for the inhomo-

geneous Poisson process; it turns out to be very difficult for general point
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processes. We believe that these weights may provide better performance

even for non-Poisson processes. The weighted pooled estimator (7.10) is ap-

proximately ratio unbiased regardless of the choice of weights or whether X

is Poisson. Because of this, using weights calculated for the Poisson process

is unlikely to cause harm. In future work we will explore this by using simu-

lated data to compare the weighted and unweighted pooled estimators of the

K-function.

7.4.1 Calculation of weights

In this section we calculate the value of Var(ξt) for the inhomogeneous Poisson

process; it is difficult to calculate for more general processes. To reduce the

complexity of the notation, we supress the time index t and work with

ξ =
∑

xi∈X∩W

∑
xj∈X∩W
xj 6=xi

1

λ(xi)λ(xj)
(7.12)

where X is an inhomogeneous Poisson process. The mean of ξ is

E(ξ) = |W |2,

which follows from the extended Slivnyak–Mecke formula (Section 6.5.2). The

second moment of ξ is

E(ξ2) = E

∑∑
xi 6=xj

∑∑
xi′ 6=xj′

1

λ(xi)λ(xj)λ(xi′)λ(xj′)

 ,
where the sum is understood to be over all xi, xj , xi′ , xj′ ∈ X ∩W .

To apply the Slivnyak–Mecke theorem we need the sum to be over all

distinct pairs of points, so we split this sum into three cases. Either there are

(i) two pairs of coincident points, (ii) one pair of coincident points or (iii) all

points are distinct. Since xi 6= xj and xi′ 6= xj′ there are two ways for case (i)
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to occur and four ways for case (ii) to occur. So

E(ξ2) = E

∑∑∑∑
xi 6=xj 6=xi′ 6=xj′

1

λ(xi)λ(xj)λ(xi′)λ(xj′)


+ 4E

∑∑∑
xi 6=xj 6=x′i

1

λ(xi)2λ(xj)λ(xi′)


+ 2E

∑∑
xi 6=xj

1

λ(xi)2λ(xj)2

 .
Then the extended Slivnyak–Mecke theorem yields

E(ξ2) = |W |4 + 4|W |2
∫
W

1

λ(u)
du+ 2

(∫
W

1

λ(u)
du

)2

.

Putting the two moments together gives the variance of ξ as

Var(ξ) = 4|W |2
∫
W

1

λ(u)
du+ 2

(∫
W

1

λ(u)
du

)2

.

Extending this result to non-Poisson processes presents significant chal-

lenges. Calculating the mean and second moment of ξ would require the Palm

probabilities (Section 6.5.1), which can be very difficult to calculate for point

processes that are non-Poisson.

7.5 Validation with replicated point patterns

Replicated point patterns provide new opportunities for model validation. If

we think of the index t as time, we can reduce the point patterns in the

RPP down to a purely spatial point process and a purely temporal process by

considering
⋃
t Xt and {n(Xt ∩W )}t∈T . Since the point patterns in a RPP

are independent, the spatial and temporal processes can be easy to work with.

Since
⋃
t Xt is a spatial point process, we can analyse its residual measure.

Each point pattern in the RPP gives rise to a residual measure, which can

be summed to give the residual measure of the spatial process
⋃
t Xt. For
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the Poisson process, the summed residual measures will correspond with the

residual measure of a Poisson process with intensity function equal to the

sum of intensity functions from each of the days, λ(u) =
∑

t λ(u, t). This can

be analysed as usual, revealing possible misfits in the intensity function. As

before, it is not obvious how to analyse residual measures for cluster processes,

due to the dependence between spatial locations.

Thankfully we can analyse the temporal process {n(Xt ∩W )}t∈T for both

Poisson and cluster processes. By definition, the distribution of n(Xt∩W ) for

the Poisson process is Poisson with mean parameter
∫
W λ(u, t) du. Suitably

chosen quantiles of the Poisson distribution can act as guidelines for large

values of the observed temporal process. The distribution of n(Xt ∩W ) for

cluster processes is less obvious, but it is easy to estimate the quantiles using

simulations. Days with observed values n(xt) that fall outside suitably chosen

quantiles may reflect poor fit and the model behaviour on these days should

be investigated further.

Simulation offers further ad hoc methods for model validation. Simulated

and observed RPPs can be compared using a suite of summary statistics,

such as the number of days with one or more points. By including summary

statistics that reflect different properties of the process, we can build up a

picture of how well the model replicates the behaviour of the observed process.

Suitable quantiles for the summary statistics can be estimated by quantiles

from the simulated RPPs.

Choosing relevant summary statistics for this comparison is important

and should be based on the objectives of the modelling project. They should

be chosen to reflect properties of the model that are desirable for the given

application. For example, if we want a model to forecast extreme fire days

then we could consider the number of days with greater than twenty ignitions.

By having a comprehensive suite of summary statistics we can see if and how

a model fails to reflect the observed data.



Chapter 8

Point process models for

lightning-caused wildfire

ignition

A review of point process models in the lightning ignition literature.

Methods and results for Poisson and cluster process models for

lightning ignition. A return to the case studies. A discussion of

the accuracy and practical value of the models.

8.1 Introduction

Point processes offer a natural framework within which to study wildfire igni-

tion point data. Unlike regression models, the precise ignition location can be

used and covariate data can be on different scales rather than having to adopt

a common resolution. Like regression models, point processes can be used for

inference or prediction. Inference can involve inspection of a fitted intensity

function or an estimated K-function. Prediction can involve estimating the

intensity as well as simulating point patterns under new conditions.

In terms of modelling wildfire ignitions, there is an important distinction

between Poisson and non-Poisson point process models. In Section 6.3 we
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discussed how inference for the inhomogeneous Poisson process is approxi-

mately equivalent to fitting a spatial logistic or Poisson regression model.

Furthermore, in Section 3.1.3 we showed the equivalence of logistic and Pois-

son regression for events of low probability. Because of this we believe that

any of a suitably constructed Poisson point process, logistic regression and

Poisson regression model will yield similar modelling results, in the sense that

the inferential conclusions and the predicted values from the models will be

similar.

However, non-Poisson point processes offer a genuine difference to regres-

sion models. Regression models generally rely on the assumption of condi-

tional independence between the observations: given the values of the co-

variates the response variables are independent. This is essentially the same

assumption used for covariate dependent Poisson process models. However,

non-Poisson point processes such as Cluster, Cox and Gibbs processes (Bad-

deley, Rubak, et al., 2015; Daley et al., 2008; Diggle, 2013) have interaction

effects between the points. When modelling wildfire ignitions there are sev-

eral reasons we might expect the assumption of conditional independence to be

poor. Lightning storms can cause large numbers of lightning strikes clustered

in time and space. Similary, for human-caused ignition, a single defective train

or piece of machinery may cause multiple ignitions in the same region on the

same day. These physical processes of ignition suggest that non-Poisson point

processes may be more suitable for modelling wildfire ignition location than

Poisson point processes.

8.1.1 Literature review

The use of point processes in the wildfire ignition literature can be roughly

split into three groups: (i) Poisson process models, (ii) exploratory analysis

with spatial correlation summary functions such as the K- and L-functions,

and (iii) non-Poisson process models. As discussed above, Poisson process
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models yield very similar results to suitable regression models. Many of the

Poisson process papers have similar aims and conclusions to their regression

model brethren (Brillinger, Preisler, and Benoit, 2003; Liu et al., 2012; Peng et

al., 2005; Schoenberg et al., 2008; Xu et al., 2011; Yang, He, et al., 2007; Yang,

Weisberg, et al., 2015), although they typically investigate spatial residuals

much more rigorously. We focus our review on papers using non-Poisson

process methods.

Work using K- and L-functions (Section 6.6) does not assume a model

for the point patterns, but instead aims to detect the presence of interactions

between the points of the process. Podur et al. (2003) analysed the L-function

of lightning ignition point patterns for various years in Ontario, Canada, and

found evidence of clustering. Similary, Wang and Anderson (2010) analysed

K-functions of human- and lightning-caused wildfire ignition point patterns in

Alberta, Canada, and found evidence of clustering for both causes. Wang et al.

(2010) also looked at the cross-type K-function (Baddeley, Rubak, et al., 2015,

Section 14.6.4) to study the interaction between the human- and lightning-

caused ignition point locations, finding evidence of inhibition between the two

types of points. Other exploratory work, Nichols et al. (2011), calculated

summary point patterns known as prototypes, which are “analogous in many

ways to the median of a collection of real numbers”. They argued that these

prototype point patterns represent the ‘median’ wildfire ignition point pattern.

Non-Poisson point processes can be used for both the prediction of points,

and the exploration of interactions between them. The tutorial paper Turner

(2008) used Gibbs point process models (Baddeley, Rubak, et al., 2015, Chap-

ter 13) to analyse annual forest fire ignition point patterns for New Brunswick,

Canada. Gibbs point processes are typically constructed using the Papangelou

conditional intensity function, which can be roughly understood as the den-

sity function for the location of a point u conditional on the location of the

remainder of the point process x\{u}. Gibbs point processes are generally
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used for modelling inhibition between points (Baddeley, Rubak, et al., 2015,

Section 13.1), although the Geyer model used in Turner (2008) can produce

clustering.

Møller and Dı́az-Avalos (2010) used an inhomogeneous spatio-temporal

cluster process (Section 7.1) to model daily lightning-caused wildfire ignitions

in the Blue Mountains, USA. The spatio-temporal cluster process X is de-

fined on the space R2 × Z and follows a similar construction to the cluster

process defined in Section 6.7. The parent processes {Φt}∞t=−∞ are (gen-

erally homogeneous) Poisson processes, the spatial kernel h(u) is replaced

by a bivariate density function h(u, t) on R2 × Z and the modulating in-

tensity µ(u) is replaced by a bivariate function µ(u, t) on R2 × Z. Møller

and Dı́az-Avalos (2010) assumed that that the modulating intensity func-

tion was separable, µ(u, t) = µ1(u)µ2(t), and the spatio-temporal kernel was

separable, h(u, t) = h1(u)h2(t), where h1(u) is the radially symmetric bi-

variate Normal density function and h2(t) is a decreasing linear function on

{0, 1, . . . , 19} such that it forms a probability mass function. These separabil-

ity assumptions allowed the authors to find expressions for the K-functions of

the spatial point process
⋃
t Xt and the temporal point process N = {n(Xt)}t,

where Xt is the point process corresponding to the points arriving at time t,

Xt = X ∩ (R2 × {t}). These K-functions were used to estimate parameters

using minimum contrast methods (Section 6.7.3).

Juan, Mateu, and Saez (2012) looked at annual ignition point locations

for wildfires in Catalonia, Spain, split into four causes: natural, negligence,

intentional and unkown. For their initial analysis they fitted Poisson process,

Thomas cluster process (Section 6.7.2) and Gibbs process models for each year

and each ignition cause. They extended this work by considering the years

as observations from a replicated point pattern and fitting a single model per

cause. To deal with the between-year variation they introduced random effect

terms (Wood, 2017).
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Serra et al. (2014) used the same data set as Juan et al. (2012), but fitted

a log-Gaussian Cox process model (Baddeley, Rubak, et al., 2015, Section

12.2.4) to the annual ignition point locations. A log-Gaussian Cox process is a

Cox process whose driving intensity function is a Gaussian field (an extension

of Brownian motion to R2). Similarly to their previous work (Juan et al.,

2012), random effect terms were included to deal with unexplained variation.

8.1.2 Relating point process models to wildfire management

A review of the point process literature as applied to the modelling of wildfire

ignitions reveals a wealth of approaches that are often very complex. It can

be helpful to consider these modelling approaches in terms of their modelling

outcomes for wildfire management. In this section we discuss four management

problems that models can assist with. We take regression models to be the

default approach and discuss the potential improvements that non-Poisson

point process models may provide.

Daily ignition forecasts for operational use

Models such as the logistic regression model presented in Chapter 5 can be

used to produce daily estimates of ignition likelihood, or for point process

models, the intensity function. These forecasts can assist fire managers to

make decisions about resource allocation on a given day.

Typically the use of a non-Poisson point process model has no impact on

the estimated intensity function. As we discuss in Section 6.7.4, the standard

method for estimating the intensity function of a Neyman–Scott cluster pro-

cess is identical to that for the Poisson process. The intensity function of the

Gibbs process is not a simple function of the model parameters and must be

approximated using a Poisson-saddlepoint approximation (Baddeley, Rubak,

et al., 2015, Section 13.12.6). This approximation could introduce further er-

rors into the estimation of the intensity function. Estimates of the intensity
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function for a Poisson and non-Poisson point process model should be similar

since the intensity is a first moment property of a point process. Non-Poisson

point processes are concerned with interactions between the points, which are

second (or higher) moment properties of the process.

Prediction intervals for the number of wildfire ignitions on a given day

can also be an important component of model output for operational use. A

Poisson process model can produce unrealistically narrow prediction intervals,

giving a false impression of model certainty. If there is evidence of clustering or

inhibition between the points, a non-Poisson point process model may produce

more accurate prediction intervals. The variance of the number of points in a

region for a cluster process will be larger than that for a Poisson process with

identical intensity (Equation 6.52), resulting in wider prediction intervals.

Daily ignition forecasts for risk modelling

As discussed in Section 5.6, risk is often estimated using fire spread simulation

models along with collections of initial ignition locations. Current approaches

simulate each fire independently (Department of Environment, Land, Water

and Planning, 2015), but future spread models may allow for interactions

between multiple fires. If these models were to be developed, it would be

important for the spatial patterns of ignition locations to reflect those likely

to be experienced. Simulated point patterns from non-Poisson point process

models could be used to initialise spread models for forecasting wildfire risk,

and this could improve the accuracy of risk modelling. We have no insight

into spread modelling and how achievable it is to model multiple fires simul-

taneously and so it may be the case that non-Poisson process models will offer

little improvement to risk modelling in the foreseeable future.
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Long term ignition forecasts

Point process models have been fitted to annual ignition patterns (Aragó et

al., 2016; Dı́az-Avalos, Juan, and Serra-Saurina, 2016; Juan et al., 2012; Serra

et al., 2014; Turner, 2008), however these models may not be of much prac-

tical use since they do not link ignitions with the local weather conditions.

The wildfire ignitions of most interest to management authorities are those

occurring on extreme fire weather days when rapid escalation and spread is

likely. In Victoria, single-day wildfire events have historically resulted in the

largest loss of life and property (Department of Environment, Land, Water

and Planning, 2015).

As we note in Section 5.6, fire spread models use weather conditions to

simulate fire spread. Ignition models should reflect the daily weather condi-

tions if they are to be used in conjunction with spread models. Models of

annual ignition patterns could be used to study the clustering behaviour of

ignitions, or the influence of covariates on the ignition process; however this

faces similar criticism. A process may exhibit clustering on an annual time

scale, but not on a daily time scale, making it difficult to interpret the results

in terms of the fire events facing wildfire managers. For these reasons, we

believe that models operating on a daily time scale give more insight.

Understanding ignition factors

Point process theory has been used to investigate the determinants of wildfire

ignition. Point process models whose intensity is a function of covariates can

be used to explore the impact of weather conditions or planning measures on

ignition likelihood. Usually these studies look at the intensity function, whose

estimate will be roughly equivalent for Poisson and non-Poisson point process

models, as previously discussed.

Non-Poisson point processes allow the second (or higher) moment prop-

erties of wildfire ignition point patterns to be investigated. The K- and L-
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functions have been used to explore the clustering behaviour of ignitions in

both time and space. These papers often analyse annual ignition patterns

making it difficult to interpret these functions in terms of the events of inter-

est to wildfire managers; it would be more helpful to analyse these functions

for daily point patterns. Nonetheless, non-Poisson point processes and the K-

and L-functions are valuable tools for exploring the clustering or regularity

behaviour of wildfire ignitions.

8.1.3 Chapter aims

This thesis is predominantly interested in using wildfire ignition models to as-

sist operational decision making and risk analysis. In this chapter we compare

cluster process and Poisson process models for daily lightning ignition point

patterns. The Poisson process model is considered to be roughly equivalent

to the logistic regression model discussed in Chapter 5 and we take this to

be the baseline performance of an ignition location model. Given the above

discussion on how these models can be used to assist wildfire managers, we

are interested to see if the cluster process can improve the following:

1. the accuracy of the prediction interval for the number of wildfire ignitions

on a given day; and,

2. the realism of the simulated ignition patterns for extreme fire weather

days.

8.2 Method

We organised the data into point patterns for each day in the training period

(Section 5.2, the 1997–1998 fire season until the 2004–2005 fire season) and

validation period (Section 5.2, the 2005–2006 fire season until the 2011–2012

fire season), resulting in 1698 and 1486 point patterns respectively. These are

the same time periods used in Chapter 5 for the logistic regression model.
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Unlike regression models, point process models use the exact point locations

data rather than converting them to presence–absence rasters.

Similarly, we used the same covariate data (Table 2.2) for the point process

models as we did for the logistic regression model. Although we could have

used the raw data, which would have avoided coercing the covariate data onto

the shared regular grid, we used the same data as the regression model so that

fair comparisons could be made between the models. In general, point process

models do not need covariate data to share a common grid structure.

We considered three point process models for lightning-caused wildfire ig-

nition: an inhomogeneous Poisson process model as well as two inhomogeneous

cluster process models. The intensity function of the inhomogeneous Poisson

process model has the log-linear form

λ(u, t) = exp

{ d∑
j=1

fj(zj(u, t))

}
,

where {fj} are scaling functions.

We considered both a Thomas and a Cauchy cluster process model (Section

6.7.2), which we call the Thomas and Cauchy model respectively. Both cluster

models share the following structure and associated notation:

• the center processes Φt are homogeneous Poisson processes with intensity

κ > 0;

• the offspring processes Xc,t have intensity functions µ(u, t)h(u−c), where

µ(u, t) is the modulating intensity and h(u) is the spatial kernel; and,

• the modulating intensity has the form

µ(u, t) = exp

{ d∑
j=1

fj(zj(u, t))

}
,

where {fj} are scaling functions.

The cluster models differ in their spatial kernels, which are symmetric bivariate

Normal and Cauchy densities for the Thomas and Cauchy models respectively.
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To evaluate model fit we looked at both spatial and temporal diagnostics,

although spatial residual measures are currently limited to the Poisson pro-

cess. To assess how well the models reflect the clustering behaviour of the

observed lightning ignition data we compared the empirical K-function with

the model K-functions and calculated numerous summary statistics using sim-

ulated data. We returned to the case studies from Section 5.5 to compare the

cluster process models with the logistic regression model. Finally, we exam-

ined how the cluster process models improve on the logistic regression model

by evaluating the accuracy of prediction intervals for the number of fires on a

day and by judging the realism of simulated point patterns.

8.2.1 Inference

Inference for the Poisson process is typically carried out using quadrature

methods (Section 6.3); these approximate the likelihood function for the Pois-

son process and allow regression inference methods to be used. Some of these

approaches are equivalent to fitting a logistic regression model (Section 6.3.2).

This link suggests that model selection approaches for regression models could

be co-opted to perform model selection for the intensity function of point pro-

cesses.

Motivated by this, we scaled the covariates in the intensity function of

our point process models using the scaling functions selected during model

selection in Chapter 5. Expressing the intensity function in terms of fractional

polynomials,

λ(u, t) = exp

{
β0 +

d∑
j=1

βj1(zj(u, t))
(pj1) + βj2(zj(u, t))

(pj2)

}
,

we used Box–Tidwell transformations (zj(u, t))
(pj1) and (zj(u, t))

(pj2) identical

to those in the logistic regression model (Table 5.4). With the fractional poly-

nomial powers fixed, we used kppm() from spatstat to fit the coefficients, β0
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and βj1, βj2, j = 1, 2, . . . . Allowing the coefficients to be fitted by kppm() gave

the model some ability to adapt to the differences between the two processes.

We used K-functions and minimum contrast methods (Section 6.7.3) to

estimate the cluster parameters of the Thomas and Cauchy processes. The

empirical K-function was calculated for each point pattern and then combined

to produce a pooled estimate of the K-function using the variance minimis-

ing weights proposed in Section 7.4. After the clustering parameters were

estimated, the modulating intensity was estimated by µ̂(u, t) = λ̂(u, t)/κ̂.

All work was carried out with the R package spatstat 1.55-0, which is the

companion package to Baddeley, Rubak, et al. (2015).

8.3 Results

As a consequence of the model fitting process, the intensity function was

identical for all three point process models. Table 8.2 details the terms in the

log-intensity function.

Estimates of the cluster parameters can be found in Table 8.1. The Thomas

model had larger estimated parent process intensity, κ̂, than the Cauchy

model, corresponding to more frequent clusters of points. Figure 8.2 shows

a radial cross section of the fitted spatial kernels. Compared to the Thomas

model, the Cauchy model corresponds to more tightly clustered points, al-

though the heavy tails allow small numbers of ignitions to fall far from their

centre.

Figure 8.1 shows the weighted pooled empiricalK-function, equation (7.10),

as well as the unweighted version, equation (7.7), for comparison. The em-

pirical K-function was notably above the πr2 curve that signifies complete

spatial randomness, suggesting a high degree of clustering in the process. In

particular, the empirical K-function departs very rapidly from the πr2 curve

for very small values of r. Comparing the weighted and unweighted estimates
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Figure 8.1: The weighted and unweighted empirical K-functions with their associ-
ated 95% confidence intervals. The weighted K-function has a narrower pointwise
confidence and was unaffected by the jump near r = 0.

we see that the weighting smoothed the jump in the estimate near r = 0 and

significantly reduced the width of the pointwise confidence intervals.

Parameter κ̂ σ̂

Thomas 1.790× 10−5 27.41
Cauchy 1.339× 10−5 18.33

Table 8.1: Estimates of the cluster parameters.
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Figure 8.2: A radial cross section of the estimated spatial kernels for the Thomas and
Cauchy cluster processes. The Cauchy cluster process has tighter clustering around
0, but heavier tails than the Thomas process.

8.3.1 Validation of spatial fit

Figure 8.3(a) shows the spatial residual measure (Section 6.4) of the Poisson

model over the fitting period. The background colour map shows the negative

of the sum of the intensity functions over all days. The point masses have

positive charge and represent ignitions. Point masses with a charge greater

than 1 are at locations with more than one recorded ignition, although these

occurred on different days. Points should not coincide in a Poisson process

(nor presumably in real life); coincident points are a result of data collec-

tion methods. Ignition point locations are often recorded from roads, rather

than the actual site of ignition, which can cause records to have overlapping

locations. The raw residual field shows that the Poisson process broadly pre-

dicts high intensity in a horizontal band across the middle of the state, which

generally matches the ignition pattern.

The Pearson residual measure, Figure 8.3(b), shows the residuals after

being reweighted to account for the natural variance of the Poisson process. To

interpret this more easily, we calculated the smoothed Pearson residual field,

as shown in Figure 8.3(c), using a Gaussian smoother with bandwidth 67.5 km,
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the default chosen by spatstat. We felt that this smoother was too aggressive.

Figure 8.3(d) shows the smoothed Pearson residual field calculated with a

smaller bandwidth of 15 km. For an individual point pattern, the variance

of the smoothed Pearson residual field (with smoothing kernel bandwidth 15

km) was 3.54 × 10−4. Assuming that the point patterns that make up the

RPP are independent, the variance of the smoothed Pearson residual field of⋃
t Xt is 3.54× 10−4 × ndays = 0.600. We added a contour to Figure 8.3(d) at

twice the standard deviation about 0, namely ±1.55.

The smoothed Pearson residual field showed generally poor fit for the

intensity function for the Poisson model. Figure 8.3(c) shows that the model

overpredicted likelihood in the west of the state and underpredicted likelihood

in the east of the state. Figure 8.3(d) shows that within these regions of poor

fit, the spatial distribution of the poor fitting residuals has no obvious pattern.

Figure 8.4 shows the model K-functions for the Thomas and Cauchy mod-

els, along with the empirical K-function and its 95% pointwise confidence

intervals. The K-function of the Cauchy cluster process shows marginally

better fit than that of the Thomas cluster process, managing to keep inside

the pointwise confidence interval over the plotted range, [0, 250].

8.3.2 Validation of temporal fit

To analyse the temporal fit we checked if the observed temporal process,

{n(Xt)}
ndays

t=1 , fell within the model 95% prediction intervals. This is easy

for the Poisson process since the distribution of the number of points on a

given day is Poisson with mean parameter equal to the intensity measure of

the state for that day, Λ̂(W, t). For the cluster processes the distribution of the

number of points in a region is not obvious and so we use simulated quantiles

from the fitted models.

For the Poisson model, 92.2% of days and 77.5% of lightning-fire days fell

between their 0.025 and 0.975 quantiles, suggesting a degree of poor fit. The
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(a) (b)

(c) (d)

Figure 8.3: Various residual measures for the inhomogeneous Poisson model. The
smoothed field was calculated with a Gaussian smoother with the stated standard de-
viation (kernel bandwidth).

Cauchy model performed much better, reporting 96.8% of days and 88.6% of

lightning-fire days between their 0.025 and 0.975 quantiles. The performance

of the Cauchy and Thomas cluster processes were almost identical and, for

brevity’s sake, we exclusively analyse the Cauchy process.

Closer inspection of the days with poor fit for the Cauchy model revealed

exceptionally poor fit for days with very large numbers of ignitions. For exam-

ple, the training data set included 29 days with 25 or more lightning ignitions

and the Cauchy model showed poor fit for 15 of these (Table 8.3). The Cauchy

cluster process underpredicted the number of ignition for all of these 15 poorly

fitted days, in the sense that the 0.975 quantile for the number of ignitions

was less than the observed number of ignitions. Often the underprediction was
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spectacular with the 0.975 quantile sitting below half the observed number of

ignitions.

Model performance on 2003-01-08 is worthy of further discussion, since this

day marks one of the more significant fire events in recent Victorian history

and since the model performed so abysmally. The Alpine and Canberra Fires

were started by a series of lightning strikes on the 7th and 8th of January

2003 by a cold front moving over southeast Australia (Stephenson, 2010). In

Victoria, the fires quickly escalated and merged, eventually burning 1.1 million

ha over 59 days. The model found the period surrounding and including 2003-

01-08 to have a very low likelihood of ignition. The reason for this is simple:

the values of the covariates included in the model were all moderate over

this period. However, Australia was enduring one of the worst droughts in

recorded history (Worboys, 2003) and there is concern that the dryness indices

(the Drought Factor and KBDI) were hitting their maximum values too easily,

hiding the true level of dryness.

Date No. Ignitions Λ̂(Wt) 0.025 quantile 0.975 quantile

1997-11-26 130 27.0 4 76
1998-02-27 26 0.9 0 3
1998-12-26 51 6.2 0 18
1999-01-28 107 25.8 3 62
2001-01-04 96 32.0 6 68
2001-01-05 54 4.9 0 14
2002-02-15 74 20.0 1 45
2002-11-02 73 9.4 1 25
2002-12-03 37 3.1 0 10
2003-01-08 88 0.6 0 3
2003-02-27 26 4.3 0 15
2003-11-30 49 17.2 1 41
2004-01-04 26 2.3 0 8
2005-01-20 56 18.0 1 44
2005-01-26 74 19.8 2 43

Table 8.3: Days with at least 25 lightning ignitions and for which the observed
number of ignitions exceeded the estimated 0.975 quantile of the fitted Cauchy
cluster process.
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8.3.3 Validation using simulated point patterns

For each day in the validation period we used the estimated intensity function

for that day to simulate 100 point patterns from each of the three fitted

processes. This resulted in 100 independent replicated point patterns for each

process, simulating the lightning ignition process over the entire validation

period. For each of the 100 simulation runs we calculated the total number of

lightning ignitions, total number of lightning-fire days, the maximum number

of ignitions on a single day and the mean number of lightning ignitions on a

lightning-fire day. Table 8.4 shows the 95% prediction intervals for each of

these statistics, estimated using the 0.025 and 0.975 sample quantiles.

In terms of the total number of ignitions, none of the models showed a lack

of fit. This is unsurprising given that the intensity of the process is strongly

connected to the total number of points. The two cluster processes had wider

prediction intervals, reflecting a higher variance caused by the clustering of

points (equation 6.52). Similarly, none of the models showed poor fit in terms

of the maximum number of ignitions on a single day, although the predic-

tion intervals for the two cluster processes were exceptionly large, possibly

unreasonably so.

All models showed poor fit in terms of the number of lightning-fire days.

A total of 451 lightning-fire days were observed during the validation period,

whilst the Thomas cluster process performed best with a prediction interval

of [702, 767]. This misfit was reflected in the mean number of ignitions on

a lightning-fire day, which, for all models, was much lower than than the

empirical mean of the observed data. For example, the 95% confidence interval

for the mean number of ignitions on a lightning-fire day for the Thomas model

was [3.73, 4.50], whereas the observed empirical mean was 6.63.

We also calculated the value of the summary statistics in Table 8.4 for

each fire season, seen in Figures 8.5 and 8.6. The model misfit over the

whole validation period is repeated for each year. Furthermore, we see that
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Statistic Observed Poisson Thomas Cauchy

Total no. ignitions 2991 [2924, 3114] [2719, 3291] [2784, 3364]
Total no. lightning-fire
days

451 [778, 839] [702, 767] [717, 775]

Max no. ignitions on
single day

85 [74.5, 107] [63.0, 247] [58.0, 241]

Mean no. ignitions on
lightning-fire day

6.63 [3.61, 3.88] [3.73, 4.50] [3.69, 4.52]

Table 8.4: Comparisons of the observed and simulated data over the validation
period. Simulated 95% prediction intervals are given for each of the processes.

the model failed to react to the significant variation in the lightning ignition

process between years. For example, the 2006–2007 fire season saw a very

large number of wildfire ignitions whilst the 2010–2011 fire season saw very

few. Figure 8.5(a) shows that the models predicted moderate numbers of

ignitions for the 2006–2007 fire season, roughly half the number of ignitions

observed. The models predicted slightly below average numbers of ignitions

for the 2010–2011 fire season, but failed to reflect the extremely low numbers

observed. The models failure to react to annual variation in ignition counts

could be due to missing covariates or it could be that the lightning ignition

process is non-stationary. It is also worth noting that single day fire events

can have a huge impact on the total number of ignitions in a fire season. A

model that performs poorly on the most extreme day of the fire season may

report terrible fit for that fire season, despite fitting well for all other days.
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Figure 8.4: The K-functions for the fitted models. The solid blue line is the empirical
K-function and the dashed lines form the pointwise 95% confidence interval. The solid
black line is the πr2 curve and is the K-function for a Poisson process, representing
complete spatial randomness.
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(a) Total number of ignitions by fire season.

(b) Total number of fire days by fire season

Figure 8.5: Plots comparing observed data with 95% confidence intervals from model
simulated data.
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(a) Maximum number of ignitions on a single day by fire season.

(b) Mean number of ignitions on a fire day by fire season.

Figure 8.6: Plots comparing observed data with 95% confidence intervals from model
simulated data.
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8.4 Case studies

Similar to our analysis of the logistic regression model, we looked at model

output from the fitted point process models to get a better sense of model

performance. In order to compare the cluster process models with the logistic

regression model, we returned to the same four periods chosen for analysis in

Section 5.5. Although the intensity function of the point process models is

of practical interest, it is visually almost identical to the likelihood function

of the logistic regression model and so we focused entirely on the prediction

intervals produced by the point process models.

Table 8.5 shows the observed number of ignitions together with the 95%

prediction intervals for the Poisson process, Thomas and Cauchy models. Un-

surprisingly, the cluster process models do not make up for a poor fitting

intensity function. For example, on the 8th of February 2009 the Poisson

model produced a prediction interval of [0, 6] whilst the Thomas and Cauchy

models produced prediction intervals of [0, 9] and [0, 7] respectively. No model

accurately reflected the 23 observed ignitions.

The cluster process models produced much wider prediction intervals. For

2009-02-07, 2010-02-10 and 2006-01-21, this made the difference between the

observed number of ignitions falling inside or outside of the prediction inter-

val. In general we believe that the wider prediction intervals are more realistic.

The lower bound of the prediction intervals given by the cluster process mod-

els were often much closer to 0. Even on days with extreme fire weather, if

there is no lightning then there can be no lightning-caused wildfire ignition,

suggesting that accurate prediction intervals should often include 0. The pre-

diction intervals for the Poisson model could have unrealistically large lower

bounds, for example, 25, 41 and 74 for 2010-02-10, 2006-01-20 and 2006-01-21

respectively.

However the upper bound of the prediction intervals for the cluster pro-

cess models may be unrealistically large. The Thomas and Cauchy cluster



184 CHAPTER 8. LIGHTNING IGNITION: CLUSTER PROCESS

Date Observed Poisson Thomas Cauchy

Black Saturday
2009-02-05 1 [0, 4] [0, 4] [0, 5]
2009-02-06 1 [0, 5] [0, 7] [0, 5]
2009-02-07 9 [15, 31] [5, 58] [4, 48]
2009-02-08 23 [0, 6] [0, 9] [0, 7]
2009-02-09 13 [0, 2] [0, 2] [0, 3]
2009-02-10 1 [0, 2] [0, 3] [0, 2]

Elevated ignition activity
2010-02-08 2 [0,6] [0,10] [0,9]
2010-02-09 58 [6,22] [1,33] [1,35]
2010-02-10 65 [25,51] [1,98] [5,105]
2010-02-11 19 [14,32] [2,66] [2,60]
2010-02-12 2 [0,3] [0,4] [0,3]
2010-02-13 0 [0,2] [0,2] [0,3]

High forecast ignition likelihood
2006-01-18 5 [0,6] [0,13] [0,12]
2006-01-19 30 [1,13] [0,14] [0,21]
2006-01-20 66 [41,68] [4,134] [9,130]
2006-01-21 56 [74,107] [6,230] [10,241]
2006-01-22 43 [2,12] [0,18] [0,18]
2006-01-23 4 [0,5] [0,8] [0,9]

Moderate ignition activity
2011-01-20 0 [0,4] [0,4] [0,4]
2011-01-21 4 [2,10] [0,18] [0,17]
2011-01-22 2 [2,13] [0,20] [0,26]
2011-01-23 1 [0,4] [0,6] [0,5]
2011-01-24 0 [0,2] [0,2] [0,1]
2011-01-25 0 [0,2] [0,2] [0,2]

Table 8.5: Observed ignitions and 95% prediction intervals for the four case
study periods.

processes produced the prediction intervals [6, 230] and [10, 241] respectively

for 2006-01-21, whereas the Poisson process produced a prediction interval of

[74, 107]. An upper bound in excess of 200 may be physically unrealistic; the

maximum number of lightning ignitions observed in a single day during the

study period was 130.
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8.5 Prediction intervals

To evaluate the accuracy of the prediction intervals we calculated the propor-

tion of days in the validation period where the observed number of ignitions

fell within the 95% prediction interval of the model. This is closely linked

with the analysis of temporal diagnostics (Section 8.3.2), except that we now

focus on the validation data. We interpret this quantity as the estimated

coverage probability of the prediction interval. Note that the calculated pre-

diction intervals are simply the 95% quantiles from simulated data and do

not incorporate uncertainty in the parameter estimates. Table 8.6 shows the

estimated coverage probability for each of the three models. The prediction

intervals for the Poisson model were too narrow, reflected in the estimated

coverage probability of 0.888 across all days in the validation period. The

coverage probabilities for the Thomas and Cauchy models were 0.948 and

0.950 respectively, showing good accuracy.

However we were concerned that the reported accuracy of the prediction

intervals was being inflated by days with no lightning fires. Many of these days

are easy to predict, indeed a model which always predicts 0 ignitions would

have a coverage probability of 0.697, which is the proportion of days with

no fires. A more meaningful quantity is the estimated coverage probability

for lightning-fire days. The estimated coverage probability for lightning-fire

days was 0.716 for the Poisson model and 0.834 and 0.849 for the Thomas

and Cauchy models respectively. As expected, restricting the calculation to

lightning-fire days reduced the accuracy of the prediction intervals.

We also explored model performance during severe conditions. We looked

at observed severe days, defined as days with 10 or more ignitions, as well

as predicted severe days, defined as days where the intensity measure for the

state was above 8.89. The choice of threshold for observed severe days was

made based on practical considerations and led to 78 observed severe days

in the validation data. The choice of threshold for predicted severe days was
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made so that the number of predicted severe days in the validation data was

also 78. Looking at observed severe days, we saw a further drop in accuracy

for all models, with an estimated coverage probability of 0.244 for the Poisson

process and 0.410 and 0.462 for the Thomas and Cauchy models respectively.

On predicted severe days the cluster process models performed much better

than the Poisson model, with coverage probabilties of 0.821 and 0.782 for the

Thomas and Cauchy models respectively and 0.295 for the Poisson model.

In general, the Poisson model produced unrealistically narrow prediction

intervals. The two cluster process models performed similarly to each other,

and both were a marked improvement over the Poisson model. However the

coverage probabilities for all of the models were low for severe observed days.

Poisson Thomas Cauchy

All days 0.888 0.948 0.950
Lightning-fire days 0.716 0.834 0.849

Observed severe days 0.244 0.410 0.462
Predicted severe days 0.295 0.821 0.782

Table 8.6: The proportion of days in the validation data set where the mod-
elled 95% prediction interval contains the observed number of ignitions. Ob-
served severe days were those with 10 or more ignitions and predicted severe
days were days where those were the intensity measure of the state was above
8.89.

8.6 Lineups

If ignition models are used in risk assessment then it is reasonable to expect

that the observed ignition pattern could have been generated from the fitted

model. One way to assess this is to produce a ‘police lineup’ consisting of

the observed point pattern along with simulated point patterns from a model

(Buja et al., 2009). We could conclude that the simulated point patterns

are ‘realistic’ if a human struggles to accurately identify the observed point

pattern. This sort of visual inspection test is helpful for noticing issues with
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model fit that might be missed by specific summary statistics.

Risk analyses typically model fire spread using the ‘worst’ observed fire

weather conditions. To keep in line with this we investigated severe days, as

defined in Section 8.5, during the training period. There were 69 observed

severe days and 69 predicted severe days, resulting in a total of 95 unique

days selected for analysis.

To demonstrate the performance of the models, we present lineups for

three days chosen uniformly at random from those selected as severe days.

Figures 8.7 to 8.9 show lineups for the Poisson model, Figures 8.10 to 8.12

show lineups for the Thomas model and Figures 8.13 to 8.15 show lineups for

the Cauchy model. We have intentially left the labelling ambiguous so that

the reader may challenge themselves to identify the observed point pattern;

their true identities are revealed in the captions.

Identifying observed point patterns from the Poisson process lineups was

relatively easy. Only 30.5% of the days selected for analysis where such that

the 95% prediction interval for the total number of ignitions included the ob-

served number of ignitions. Typically the observed point pattern had notably

more or few points than the simulated point pattern (Figure 8.7 for example).

For days when the simulated point patterns had similar numbers of points,

the observed point pattern could often be identified because it seemed to have

a higher degree of clustering (Figures 8.8 and 8.9 for example).

It was more difficult to identify the observed point patterns from the clus-

ter process lineups. Firstly, the cluster process models were more likely to

generate point patterns with reasonable numbers of points; for the Thomas

and Cauchy processes respectively, 73.7% and 70.5% of the days selected for

analysis where such that the 95% prediction interval for the total number

of ignitions included the observed number of ignitions. Both cluster process

models produced convincing point patterns for days with moderate numbers

of points (Figures 8.12 and 8.15 for example).
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The spatial distribution of observed lightning ignitions on days with very

large numbers of lightning ignitions was difficult to replicate. There was sig-

nificant variation in the clustering dynamics between days. For example, the

observed point pattern on 1998-01-14 had 30 points with relatively regular

spacing. The Thomas model produced overly clustered point patterns for this

day (Figure 8.10). The Cauchy model fared much better (Figure 8.13), thanks

to the heavy tails of the spatial kernel. Contrast this with the observed point

pattern on 2001-01-02, which showed a high degree of clustering. Figures 8.11

and 8.14 show both cluster process producing much more convincing point

patterns during these conditions, however the observed point pattern can be

easily identified by its highly non-symmetrical clusters. Overall, the heavy

tails of the spatial kernel of the Cauchy model allowed it to produce more re-

alistic point patterns on these extreme days, although it was far from reliable.

It is also worth noting that although it can be difficult to identify the

observed point patterns, the cluster models would often produce clearly un-

realistic point patterns (plot 12 from Figure 8.10 for example). Although it

is a sign of underlying poor fit, these unrealistic point patterns could be dis-

carded before use in risk analysis. Lastly, the Poisson model performed very

poorly on days that had high estimated ignition likelihood but no observed

ignitions. Whereas the cluster models could produce point patterns with no

points, courtesy of the large variance of the total number of points (equation

6.52), the Poisson model would almost always produce point patterns with a

nonzero number of points.
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Figure 8.7: A lineup of simulated point patterns from the Poisson model along with
the observed point pattern (pattern 7, which has 30 points).
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Figure 8.8: A lineup of simulated point patterns from the Poisson model along with
the observed point pattern (pattern 6, which has 63 points).
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Figure 8.9: A lineup of simulated point patterns from the Poisson model along with
the observed point pattern (pattern 14, which has 8 points).
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Figure 8.10: A lineup of simulated point patterns from the Thomas model along
with the observed point pattern (pattern 8, which has 30 points).
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Figure 8.11: A lineup of simulated point patterns from the Thomas model along
with the observed point pattern (pattern 3, which has 63 points).
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Figure 8.12: A lineup of simulated point patterns from the Thomas model along
with the observed point pattern (pattern 15, which has 8 points).
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Figure 8.13: A lineup of simulated point patterns from the Cauchy model along with
the observed point pattern (pattern 12, which has 30 points).
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Figure 8.14: A lineup of simulated point patterns from the Cauchy model along with
the observed point pattern (pattern 12, which has 63 points).
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Figure 8.15: A lineup of simulated point patterns from the Cauchy model along with
the observed point pattern (pattern 14, which has 8 points).
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8.7 Discussion

This chapter explored the the use of Poisson and cluster process models for

daily lightning-caused wildfire ignitions. Due to the model selection method,

all models had a non-linear log-intensity function which was very similar to

the likelihood function for the logistic regression model in Chapter 5.

A lot of effort was spent interrogating the fit of the models. It was im-

mediately apparent that the Poisson model had poor fit, struggling to stand

up under both spatial and temporal interrogation. This was not surprising

given the high degree of clustering that was suggested by the empircal K-

function (Figure 8.1). Both cluster models showed improved fit. Neither the

temporal residuals nor the K-functions of the cluster models suggested overall

poor fit, although the cluster models frequently underpredicted the number

of ignitions on days with large numbers of observed ignitions. Comparisons

between simulated and observed data showed that all models overestimated

the likelihood of a lightning-fire day and underestimated the the number of

fires per lightning-fire day, although the cluster process models offered a clear

improvement over the Poisson model.

In essence this misfit is being caused by the variety of behaviour shown by

the observed process on similar fire weather days. That is, days with almost

identical weather conditions can produce wildly varying numbers of ignitions,

demanding that the models have large variance in the total numbers of points

they generate. However, if the variance increases whilst the intensity remains

the same then the Thomas and Cauchy cluster process can produce clusters

with unrealistically large numbers of points. Indeed, this is already visible in

the estimated maximum number of ignitions on a single day (Table 8.4), which

had 95% confidence intervals of [63, 247] for the Thomas model and [58, 241] for

the Cauchy model. None of the models were able to reliably reflect the annual

variation in ignition behaviour, reflecting a poor fitting intensity function.

We revisited the case studies analysed using the logistic regression model,
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focusing on the prediction intervals produced by the various models. The

prediction intervals of the Poisson model generally behaved similarly to those

from the logistic regression model in the sense that they were accurate on

the same days and when they were inaccurate, they both overpredicted or

both underpredicted. The cluster process models generally produced much

wider prediction intervals than the Poisson model; the former more successfuly

conveyed the uncertainty in the predictions.

Visual inspection of simulated point patterns from the cluster processes

suggested that the shape of the spatial kernels may be inappropriate. The ob-

served lightning ignition patterns often showed a degree of anisotropy which

suggests that the spatial kernels should be asymmetric. Another notable be-

haviour of the observed lightning ignition patterns was the relatively frequent

occurrence of pairs, or triples, of points which appeared anomalously close to

each other. The high frequency of these pairs of points resulted in the esti-

mated K-function being greater than πr2 for very small values of r, something

that the Thomas and Cauchy models struggled to replicate. Others have noted

similar behaviour and model limitations. Turner (2008) wrote that “there are

also many pairs which appeared to be at anomalously small (though non-

zero) distances. . . I decided to eliminate all such pairs for the purpose of this

exploratory analysis”. Møller and Dı́az-Avalos (2010) found that “the misfit

suggests that the events in the data set show higher clustering at short dis-

tances than that estimated by our model”. We are led to believe that these

points are probably fairly accurate and should not be removed from the data

set (Duff, T., 2018, personal communication).

Model validation exposed some issues with model fit and we are interested

to see how the model compares with other models in the wildfire ignition lit-

erature. Turner (2008) considered annual, rather than daily, ignition point

patterns and validated their Poisson models by inspecting residual fields as

well as QQ plots generated from the residual field (Baddeley, Turner, et al.,
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2005). Møller and Dı́az-Avalos (2010) considered daily ignition point patterns

and validated their spatio-temporal NSCP model by inspecting plots of raw

spatial residuals as well as comparing estimated L-functions with model L-

functions. Many papers compared plots of the empirical and model K- and

L-functions (Aragó et al., 2016; Juan et al., 2012). Others seem to have no

validation (Dı́az-Avalos, Juan, et al., 2016; Serra et al., 2014). Our experience

of model validation leads us to believe that a non-Poisson model can have

elements of poor fit despite the model K- or L-functions showing good ad-

herance to their empirical counterparts. We were only able to recognise flaws

in model fit after interrogating diagnostics of the temporal process (Section

8.3.2), which other work in the literature does not do.

The poor fit of the Poisson model raises questions about the fit of the logis-

tic regression model in Chapter 5. The link between the Poisson process and

logistic regression suggests that we would have found evidence of poor fit for

the logistic regression model had we investigated its spatial and temporal fit.

However, there are a few important differences between the models that may

influence model fit. Firstly, we are concerned that the point process models

used in this study struggled with the relatively high frequency of observed

pairs of points with anomalously small distance between them. This problem

will disappear entirely when the point patterns are reduced to binary grids as

they are in logistic regression and this may result in improved performance.

More generally, logistic regression is focused on binary grids while point pro-

cess models are focused on exact point locations. This is a classic example of

the balance between precision and accuracy; we expect the logistic regression

model to be more accurate than the Poisson model. Secondly, we used the

same covariate data for both of our models so that we could more easily make

comparisons. However, point process models are not limited to regular grids

and can make use of the highest resolution data available for each covariate,

which may improve fit. Thirdly, some ignition location data close to the bor-
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der of the study region was lost in the rasterisation process. We expect that

the point process models would perform better than indicated in the present

study if we had not enforced parity in data between the regression and point

process models.

In terms of providing practical outcomes for fire management, the cluster

models are a clear improvement over the Poisson model. The cluster models

produced more accurate prediction intervals than the Poisson model, which

more accurately conveys uncertainty in the predicted output. All models

struggled to produce accurate prediction intervals on severe fire days, with the

Cauchy model performing best. In general the point process models underpre-

dicted the number of ignitions on observed severe fire days; this is a problem

that the point process models share with the logistic regression model.

Simulated point patterns from the cluster models were much more realistic

than those from the Poisson model. Simulations from the Poisson model often

stood out because they were overly regular. To our eyes, the Cauchy model

tended to produce slightly more realistic simulated point patterns than the

Thomas model. This was a result of the heavy tails of the spatial kernel,

giving a more natural spread to the points in the clusters.

In this chapter we showed that cluster process models can offer improved

fit over more standard models, such as regression models or Poisson process

models. From the perspective of a fire management authority, the improved

model fit will result in more accurate prediction intervals for operational fore-

casts and in more realistic simulated point patterns for long term risk analyses.

It is important to note that cluster models do not improve the estimate of the

intensity function. Close inspection of the point process models suggested

many approaches to improving model fit, which we discuss in Section 9.1.





Chapter 9

Conclusion

9.1 Approaches to improving the models

During validation of the logistic regression (Section 5.6) and point process

models (Section 8.7) some narratives emerged about when and how the models

failed to fit. In this section we discuss possible improvements to the models

based on our understanding of their weaknesses at modelling lightning ignition

patterns. We have organised the ideas based on whether they apply to all

models or just to the point process models. We do not list ideas that apply

only to the logistic regression model since we believe that the point process

models are the better approach.

9.1.1 All models

These suggestions for improving model fit apply to both the logistic regression

and point process models.

Missing covariates

Perhaps the most impactful improvement to the models would be to acquire

data for important covariates that are missing from this analysis. As we

discussed in Section 5.6, the most notable omissions from our current analysis

are a grassland curing index and a fuel load variable.

203
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Both the preliminary data analysis (Section 2.2) and the annual fit of

the point process models (Section 8.3.3) suggested that an index for the El

Niño–Southern Oscillation (ENSO) could improve model fit. Ideally ENSO

should not be a candidate covariate since it influences the wildfire regime only

through its impact on the environmental covariates such as precipitation and

temperature, however an ENSO index may act as a good substitute for missing

or unknown environmental covariates.

Interaction terms

We could have explored using interaction terms in our models. In particular,

there should be interaction terms between covariates linked with lightning,

and the other weather covariates. These interactions may be important since

lightning strikes are much more likely to result in detectable ignitions if the

fire weather conditions are extreme. This suggests that the effect on ignition

likelihood of the covariates linked with lightning strikes (CAPE index, 850 hPa

dewpoint depression, etc.) should vary across the levels of the other weather

covariates. Interaction terms may go some way towards improving model fit

for periods such as the 2003 Alpine Fires (discussed in Section 8.3.2), where

extreme drought magnified the effect of otherwise relatively benign conditions.

Random effects terms

The lightning ignition process proved to be highly variable. Models struggled

to reproduce the between-year variation (Section 8.3.3) as well as the variance

in the number of ignitions on a single day (Section 8.7). Mixed effect models

(Wood, 2017) provide a way of introducing additional variance into a model.

For example, a logistic regression model could be constructed such that

π(z(y)) =

d∑
j=1

fj(zj(y)) + ry,

where ry ∼ N(0, σ2
y) is a random effect term and accounts for variation be-

tween the fire seasons and σ2
y > 0 is a constant. Random effect terms can

also be added to the intensity function of a point process; this feature is im-
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plemented in spatstat for log-linear intensity functions of Poisson and Gibbs

process models. Random effect terms have already been implemented in point

process models for wildfire ignitions; Juan et al. (2012) fitted a Gibbs process

model with a random effect term for each year.

There are two notable consequences of a mixed effect model. Firstly, the

estimate of the predictor term can be more accurate if the random effect term

is appropriately specified; the random effect term can make a model resistant

to the influence of ‘outliers’ in the data. Secondly, the random effect term

will inflate the prediction intervals generated by the model. This is desirable,

since we do not wish predictions to be unrealistically confident, but it is not

as desirable as the addition of other significant covariates which could increase

the accuracy without increasing the uncertainty of predictions.

9.1.2 Point process models

These suggestions for improving model fit apply only to the point process

models.

High resolution data

Motivated by a desire to fairly compare the logistic regression model to the

cluster process models, we used the same observation window and covariate

data for all models. However, as we discussed in Section 8.2, point process

models can make use of the highest resolution data available for each covariate.

In particular, the point process models could have used the high resolution

Victoria Fuel Layer (Section 2.1) to maximum effect, including vegetation

type as a categorical covariate rather than the proportion covariate described

in Section 5.2.

Spatio-temporal cluster process models

There was significant evidence of temporal interactions in the lightning ig-

nition process. The case studies in Sections 5.5 and 8.4 showed periods of

hightened lightning ignition activity that seemed to exceed the duration of
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extreme fire weather, suggesting temporal dependence between the ignition

patterns. As we discussed in Section 8.1.1, spatio-temporal cluster process

models have been used to model wildfire ignitions (Møller and Dı́az-Avalos,

2010), however this work assumes that the spatio-temporal kernel is seper-

able, h(u, t) = h(u)h(t), where h(u) and h(t) is the spatial and temporal

kernel respectively. In effect, this allows for spatial data and temporal data to

be used, but prevents the use of spatial-temporal data such as daily gridded

data. Clearly this is undesirable if the objective is operational forecasting.

Non-separable spatio-temporal processes present significant barriers to infer-

ence and, although some headway is being made (A. Rodrigues and Diggle,

2010), they are far from mainstream.

Advanced intensity estimation

The standard approach to inference for the inhomogeneous NSCP (Section

6.7.4) is to approximate the intensity function of the NSCP using the intensity

function of an inhomogeneous Poisson process. This method is statistically

inefficient, making no use of the second moment information in the data.

Methods exist that make use of the second moment information (Baddeley,

Rubak, et al., 2015, Section 12.4.4) and they are implemented in spatstat for

single point patterns, but are not yet available for replicated point patterns.

Using these methods may improve the accuracy of the estimated intensity

function.

Mechanisms for ‘anomalously’ close pairs of points

As noted in Section 8.7, lightning ignition point patterns often have very close

pairs of points. The point process models explored in this thesis struggled

to reproduce this kind of behaviour. This suggests that the Gaussian and

Cauchy spatial kernels, used in the Thomas and Cauchy models respectively

(Section 6.7.2), may have been inappropriate.

An alternative class of spatial kernels that could be interesting to investi-
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gate are of the form

h(u) = pφ(u) + (1− p)δR(u),

where φ(u) is a symmetric bivariate density such as the Gaussian or Cauchy

density and δR(u) is the uniform density on the circle of radius R centred on

the origin (which is the spatial kernel for the Matérn process, Section 6.7.2).

If R ≈ 0, then this kernel is essentially the mixture of the ‘bulky’ spatial

kernel φ(u) and the ‘spike’ spatial kernel δR(u). This spike at the origin will

encourage more points within very small distances of one another, although

it may result in clusters with far more than 2 anomalously close points.

Another approach to dealing with these close points is to construct marked

point patterns (Baddeley, Rubak, et al., 2015, Chapter 15), which are point

patterns where each point has an associated number, known as a mark. In this

case, each lighting ignition point pattern would be converted into a marked

point pattern where the ‘anomalously’ close clusters of points would be re-

placed by a single point with mark equal to the number of points in the

‘anomalously’ tight cluster. A cluster process model could be fitted to the

marked point process and another distribution could be fitted to the marks.

The process of converting the lightning ignition point patterns into marked

point patterns would require some subjective decisions about what constitutes

‘anomalously’ close.

9.2 Final words

This thesis looked at two approaches to modeling lightning-caused wildfire ig-

nition locations. The logistic regression model presented in Chapter 5 showed

an ability to model lightning ignition location that would benifit operational

planning as well as long term risk analysis. We demonstrated how to decon-

struct model forecasts into contributions from the individual covariates (Sec-

tion 5.3.1), making it easier to relate model output back to the environmental
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conditions driving it. We used a similar idea to construct an approximating

model, which we implemented in Section 5.4.3 and showed good performance,

although we adopted the full model out of concern that the approximating

model may struggle on extreme days. Nonetheless, we believe this is an inter-

esting and simple method of generating approximating models.

In Chapter 8 we presented point process models for lightning ignition.

There was evidence of significant clustering in the lightning ignition point

patterns and this led to both cluster process models having improved fit over

the Poisson process model. We found significant misfit between the observed

and simulated number of lightning-fire days for all models (Section 8.3.3),

although the cluster models were the least affected. We used a new weighted

pooled empirical K-function (Section 7.4), giving an improved estimate for

the K-function (Figure 8.1).

Ultimately, point process theory offers a more natural framework to model

wildfire ignitions. A Poisson process model is roughly equivalent to a logistic or

Poisson regression model, but allows the use of data with varying resolutions.

Although we didn’t discuss it, concepts of covariate contributions (Sec 3.3.1,

3.5 and 3.6) are easily extended to point process models, where the terms in

the log-intensity function are the contributions from the covariates.

Like most large modeling projects, the list of possible improvements to

the model is lengthy (Section 9.1). We believe that the most promising routes

to improvement are also the simplest: acquiring data for other important

covariates, including interaction terms and using high resolution data.

Lightning-caused wildfire ignition is a significant threat in Australia and

abroad. The process governing lightning-caused wildfire ignition is complex

and highly variable, posing a significant modelling challenges. Models will

always struggle to accurately capture the behaviour of wildfire ignitions and

users should be very critical of models. However, with a thorough understand-

ing of any misfit, models such as those presented in this thesis are valuable
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tools and could be used to to inform operational decision making and to im-

prove long-term risk forecasts.
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Appendix C

Scaling functions

The vertical red lines show the 0.001 and 0.999 quantiles of the observed co-

variates.
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Index

H measure, 52

K-function

empirical, 131

homogeneous, 129

inhomogeneous, 137

pooled, 156

AUC, 50

Borel sets, 108

Campbell measure, 124

Campbell’s formula, 124

Campbell–Mecke’s formula, 126

candidate covariates, 28

classifier, 47

cluster process, 139

Cauchy, 145

Thomas, 144

Cook’s distance, 40

correlation-stationary, 133

covariate contribution, 36

covariate contribution anomaly, 44

covariate contributions, 36

covariates, 19

design matrix, 30

edge corrections, 138

effect size, 56

Hedges’ g, 56

fire day, 4

fire season, 13

fractional polynomials, 23

hat matrix, 39

Hosmer–Lemshow test, 37

intensity, 111

intensity function, 111

second moment, 132

isotropic

function, 136

point process, 110

Kolmogorov–Smirnov statistic, 55

L-function, 131
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leverage, 39

lightning-fire day, 16

likelihood ratio, 29

link function, 20

locally finite, 110

logit, 21

model approximation, 34

modulating intensity, 147

pair correlation function

general, 132

isotropic, 136

pair correlation functions

stationary, 130

Palm probability, 125

performance measure, 48

point pattern, 107

Poisson process

homogeneous, 112

inhomogeneous, 114

precision, 58

purposeful selection, 28

random measure, 108

random set, 108

regression

generalised additive models,

23

generalised linear models, 19

logistic, 21

Poisson, 22

regular grid, 20

residual measure

Pearson, 123

raw, 121

residuals, 38

sensitivity, 49

simple point process, 110

Slivnyak–Mecke theorem, 126

extended, 126

spatial kernel, 140

specificity, 49

splines, 25

stationary point process, 110

validation

logistic regression, 37

Poisson process, 121

Wald statistics, 30
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Diggle, P. J., V. Gómez-Rubio, P. E. Brown, A. G. Chetwynd, and S. Gooding

(2007). “Second-Order Analysis of Inhomogeneous Spatial Point Processes Using

Case–Control Data”. en. In: Biometrics 63.2, pp. 550–557. doi: 10.1111/j.1541-

0420.2006.00683.x.
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“Spatio-temporal log-Gaussian Cox processes for modelling wildfire occurrence:

the case of Catalonia, 1994–2008”. en. In: Environmental and Ecological Statistics

21.3, pp. 531–563. doi: 10.1007/s10651-013-0267-y. (Visited on 04/05/2017).

Stephenson, C. (2010). The Impacts, Losses and Benefits Sustained from Five Severe

Bushfires in South-Eastern Australia. Tech. rep. 88. Melbourne: Bushfire Coop-

erative Research Centre. (Visited on 11/21/2016).

https://doi.org/10.1016/j.apgeog.2014.01.011
https://doi.org/10.1175/1520-0450(1999)038<1565:COLAWF>2.0.CO;2
https://doi.org/10.2307/2986270
https://doi.org/10.1002/sim.3994
https://doi.org/10.1002/j.2333-8504.1974.tb00860.x
https://doi.org/10.1016/j.jspi.2003.09.027
https://doi.org/10.1007/s10651-007-0087-z
https://doi.org/10.1007/s10651-007-0087-z
https://doi.org/10.1007/s10651-013-0267-y


BIBLIOGRAPHY 237

Tjur, T. (2009). “Coefficients of Determination in Logistic Regression Models—A

New Proposal: The Coefficient of Discrimination”. In: The American Statistician

63.4, pp. 366–372. doi: 10.1198/tast.2009.08210. (Visited on 12/19/2017).

Todd, B. and P. H. Kourtz (1992). “Predicting the daily occurrence of people-caused

forest fires”. In: Proceedings of the Eighth Central Region Fire Weather Committee

Scientific and Technical Seminar. Winnipeg.

Turner, R. (2008). “Point patterns of forest fire locations”. en. In: Environmental

and Ecological Statistics 16.2, pp. 197–223. doi: 10.1007/s10651-007-0085-1.

(Visited on 10/05/2016).

Vasconcelos, M. J. P. d., S. Silva, M. Tome, M. Alvim, and J. M. C. Pereira (2001).

“Spatial prediction of fire ignition probabilities: Comparing logistic regression and

neural networks”. In: Photogrammetric Engineering and Remote Sensing 67.1,

pp. 73–81. (Visited on 10/21/2016).

Vasilakos, C., K. Kalabokidis, J. Hatzopoulos, G. Kallos, and Y. Matsinos (2007).

“Integrating new methods and tools in fire danger rating”. en. In: International

Journal of Wildland Fire 16.3, p. 306. doi: 10 . 1071 / WF05091. (Visited on

10/21/2016).

Vasilakos, C., K. Kalabokidis, J. Hatzopoulos, and Y. Matsinos (2008). “Identifying

wildland fire ignition factors through sensitivity analysis of a neural network”.

en. In: Natural Hazards 50.1, pp. 125–143. doi: 10.1007/s11069-008-9326-3.

(Visited on 10/21/2016).

Vega Garcia, C., P. M. Woodard, S. J. Titus, W. L. Adamowicz, and B. S. Lee

(1995). “A Logit Model for Predicting the Daily Occurrence of Human Caused

Forest-Fires”. en. In: International Journal of Wildland Fire 5.2, p. 101. doi:

10.1071/WF9950101. (Visited on 10/05/2016).

Wang, Y. and K. R. Anderson (2010). “An evaluation of spatial and temporal patterns

of lightning- and human-caused forest fires in Alberta, Canada, 1980–2007”. en.

In: International Journal of Wildland Fire 19.8, p. 1059. doi: 10.1071/WF09085.

(Visited on 10/05/2016).

Williams, D. (1991). Probability with Martingales. en. Cambridge: Cambridge Uni-

versity Press.

Wood, S. N. (2017). Generalized additive models: an introduction with R. 2nd. Boca

Raton: CRC Press.

https://doi.org/10.1198/tast.2009.08210
https://doi.org/10.1007/s10651-007-0085-1
https://doi.org/10.1071/WF05091
https://doi.org/10.1007/s11069-008-9326-3
https://doi.org/10.1071/WF9950101
https://doi.org/10.1071/WF09085


238 BIBLIOGRAPHY

Woolford, D. G., D. R. Bellhouse, W. J. Braun, C. B. Dean, D. L. Martell, and J. Sun

(2011). “A Spatio-temporal Model for People-Caused Forest Fire Occurrence in

the Romeo Malette Forest”. In: Journal of Environmental Statistics 2.1, pp. 1–26.

Woolford, D. G., J. Cao, C. B. Dean, and D. L. Martell (2010). “Characterizing

temporal changes in forest fire ignitions: looking for climate change signals in a

region of the Canadian boreal forest”. en. In: Environmetrics 21.7-8, pp. 789–800.

doi: 10.1002/env.1067. (Visited on 08/22/2016).

Woolford, D. G., C. B. Dean, D. L. Martell, J. Cao, and B. M. Wotton (2014).

“Lightning-caused forest fire risk in Northwestern Ontario, Canada, is increas-

ing and associated with anomalies in fire weather”. en. In: Environmetrics 25.6,

pp. 406–416. doi: 10.1002/env.2278. (Visited on 08/15/2016).

Worboys, G. (2003). “A Brief Report on the 2003 Australian Alps Bushfires”. In:

Mountain Research and Development 23.3, pp. 294–295. doi: 10.1659/0276-

4741(2003)023[0294:ABROTA]2.0.CO;2. (Visited on 04/11/2018).

Wotton, B. M. and D. L. Martell (2005). “A lightning fire occurrence model for

Ontario”. In: Canadian Journal of Forest Research 35.6, pp. 1389–1401. doi:

10.1139/x05-071. (Visited on 08/22/2016).

Wotton, B. M., D. L. Martell, and K. A. Logan (2003). “Climate Change and People-

Caused Forest Fire Occurrence in Ontario”. en. In: Climatic Change 60.3, pp. 275–

295. doi: 10.1023/A:1026075919710. (Visited on 09/02/2016).

Xu, H. and F. P. Schoenberg (2011). “Point process modeling of wildfire hazard in

Los Angeles County, California”. EN. In: The Annals of Applied Statistics 5.2A,

pp. 684–704. doi: 10.1214/10-AOAS401. (Visited on 10/05/2016).

Yang, J., H. S. He, S. R. Shifley, and E. J. Gustafson (2007). “Spatial Patterns of Mod-

ern Period Human-Caused Fire Occurrence in the Missouri Ozark Highlands”. In:

Forest Science 53.1, pp. 1–15.

Yang, J., P. J. Weisberg, T. E. Dilts, E. L. Loudermilk, R. M. Scheller, A. Stanton,

and C. Skinner (2015). “Predicting wildfire occurrence distribution with spatial

point process models and its uncertainty assessment: a case study in the Lake

Tahoe Basin, USA”. en. In: International Journal of Wildland Fire 24.3, p. 380.

doi: 10.1071/WF14001. (Visited on 10/05/2016).

Zhang, H., X. Han, and S. Dai (2013). “Fire Occurrence Probability Mapping of

Northeast China With Binary Logistic Regression Model”. In: IEEE Journal of

https://doi.org/10.1002/env.1067
https://doi.org/10.1002/env.2278
https://doi.org/10.1659/0276-4741(2003)023[0294:ABROTA]2.0.CO;2
https://doi.org/10.1659/0276-4741(2003)023[0294:ABROTA]2.0.CO;2
https://doi.org/10.1139/x05-071
https://doi.org/10.1023/A:1026075919710
https://doi.org/10.1214/10-AOAS401
https://doi.org/10.1071/WF14001


BIBLIOGRAPHY 239

Selected Topics in Applied Earth Observations and Remote Sensing 6.1, pp. 121–

127. doi: 10.1109/JSTARS.2012.2236680.

Zhang, Y., S. Lim, and J. J. Sharples (2016). “Modelling spatial patterns of wildfire

occurrence in South-Eastern Australia”. In: Geomatics, Natural Hazards and Risk

7.6, pp. 1800–1815. doi: 10.1080/19475705.2016.1155501.

https://doi.org/10.1109/JSTARS.2012.2236680
https://doi.org/10.1080/19475705.2016.1155501


 

Minerva Access is the Institutional Repository of The University of Melbourne

 

 

Author/s: 

Read, Nicholas

 

Title: 

Statistical models for the location of lightning-caused wildfire ignitions

 

Date: 

2018

 

Persistent Link: 

http://hdl.handle.net/11343/214157

 

File Description:

Thesis

 

Terms and Conditions:

Terms and Conditions: Copyright in works deposited in Minerva Access is retained by the

copyright owner. The work may not be altered without permission from the copyright owner.

Readers may only download, print and save electronic copies of whole works for their own

personal non-commercial use. Any use that exceeds these limits requires permission from

the copyright owner. Attribution is essential when quoting or paraphrasing from these works.


	Contents
	List of Figures
	List of Tables
	Introduction
	Lightning-caused wildfire ignition
	Models for lightning-caused wildfire ignitions
	Thesis outline

	Data and preliminary analysis
	Data
	Preliminary analysis of wildfire ignition data

	Regression models
	Basic theory
	Generalised linear models
	Generalised additive models
	Equivalence of logistic and Poisson regression for low probability events

	Model selection
	Model selection: purposeful selection

	Model approximation
	Covariate contributions

	Model validation for logistic regression
	The Hosmer–Lemeshow goodness-of-fit test
	Diagnostics for logistic regression

	Interpreting the model
	Forecasts
	Deconstructing forecasts - GLM
	Deconstructing forecasts - GAM


	Performance measures for binary response models
	Classifiers
	The AUC
	The H measure
	Measures of separation of the score distributions
	Interpreting performance measures
	Influence of the class probabilities
	Influence of `obvious' cases

	Summary and recommendations

	A logistic regression model for lightning-caused wildfire ignition
	Introduction
	Data preparation
	Method
	Deconstructing forecasts by covariate
	Baseline logit-likelihood

	Results
	Diagnostics
	Model interpretation
	Approximating model

	Case studies
	Black Saturday - February 2009
	February 2010
	January 2006
	January 2011

	Discussion

	Point processes
	Introduction to point processes
	Key definitions
	Intensity

	The Poisson process
	The homogeneous Poisson process
	The inhomogeneous Poisson process

	Inference for the Poisson process
	Coarse quadrature approximation
	Fine pixel approximations

	Validation for the Poisson process
	Residual measure
	Rescaled residuals

	Integrals and Campbell's formula
	Palm probabilities
	Extensions of Campbell's formula

	Correlation
	The homogeneous K-function
	The inhomogeneous K-function and the general pair correlation function
	The normalised inhomogeneous K-function
	Edge corrections

	Cluster point processes
	The pair correlation function and K-function for the NSCP
	Specific NSCP
	Inference for the NSCP
	The inhomogeneous NSCP
	Validation for the NSCP


	Replicated point patterns
	Introduction to replicated point patterns
	Inference with replicated point patterns
	Estimating the K-function from replicated point patterns
	The weighted pooled K-function
	Calculation of weights

	Validation with replicated point patterns

	Point process models for lightning-caused wildfire ignition
	Introduction
	Literature review
	Relating point process models to wildfire management
	Chapter aims

	Method
	Inference

	Results
	Validation of spatial fit
	Validation of temporal fit
	Validation using simulated point patterns

	Case studies
	Prediction intervals
	Lineups
	Discussion

	Conclusion
	Approaches to improving the models
	All models
	Point process models

	Final words

	Nadaraya Watson smooths of covariate/response pairs
	Covariate contribution density estimates
	Scaling functions
	Index
	Bibliography

