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ABSTRACT 
Data collected from 52 plots from sites in Victoria and New South Wales were used to test 
whether a simple modelling technique – a generalised additive model (GAM) – could be 
used in conjunction with satellite imagery to detect the effect of prescribed burning on 
the hydrological cycle. Evapotranspiration (ET) was selected as the strongest indicator of 
a change in forest hydrology given the direct effect of removal of vegetation with fuel 
reduction burning. Variables included in the ET GAM were site details (location, elevation, 
aspect, slope), soil properties (total carbon and nitrogen), climate (short-term and long- 
term rainfall, maximum and minimum daily temperature, solar radiation) and the 
enhanced vegetation index (EVI), a commonly used spectral product derived from 
satellite imagery. These variables were used to develop GAMs using sites in each state 
and combined together. Results from this modelling suggested a change in ET due to 
prescribed burning was more obvious for sites in Victoria than in NSW. Vegetation (EVI) 
and climatic variables (solar radiation, df5 and df95) were the best predictors for 
changes in ET due to prescribed burning activities. Soil (C:N) and terrain variables (slope, 
aspect, elevation) were not important factors for detecting change in ET. Limitations due 
to temporal and spatial differences in sampling unburnt and burnt plots and future 
potential for this method are discussed. 
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END USER STATEMENT 

Dr Felipe Aires, NSW National Parks and Wildlife Service 

Landscape management agencies using prescribed fires as a management tool are 
required to monitor the impacts of hazard reduction programs on the environment. The 
effects of hazard reduction on hydrology are not fully understood and modelling studies 
are currently limited and/or require a broad range of variables to explain any changes 
seen in the landscape. 

This report demonstrates that site-based data can be combined with estimates of 
evapotranspiration from publicly available satellite imagery as a viable modelling option 
for landscapes managers to monitor the impact of hazard reduction programs on the 
hydrological cycle of treated forests. 

These results add important knowledge to the evidence-based approach needed by 
agencies to improve the way they monitor the impacts of hazard reduction. There is 
potential to utilise this knowledge to reduce the amount of staff necessary to collect data 
from the field to monitor any post-fire changes in hydrology and save important resources 
that can be reallocated to other functions. 
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INTRODUCTION 
As a consequence of global climate change, the frequency, timing and extent of 
bushfires are expected to increase and, in response, research into the consequences of 
fire on forest ecosystems has been intensified. One of the major concerns in Australia and 
elsewhere is the impact of fire on the hydrological cycle (Montes-Helu et al., 2009; Lane 
et al., 2010; Feikema et al., 2011; Smith et al., 2011; Glenn et al., 2013; Langhans et al., 
2016). An immediate result of bushfire is the reduction of aboveground vegetation which 
affects the evapotranspiration (ET) component of the hydrological cycle. There are a 
number of hydrological studies that have investigated the effect of unplanned fire in 
forests and many of these have focused on changes in ET (Montes-Helu et al., 2009; Glenn 
et al., 2013). However, studies investigating changes in ET due to prescribed fires (also 
referred to as controlled or planned fires) are limited. Prescribed fires are used to mitigate 
the risk of bushfire by decreasing fuel loads in forested areas. Such fires are generally less 
severe than bushfires and mostly affect the litter layer and understorey vegetation 
(Cawson et al., 2012). As a result, they are likely to have different, and presumably lesser, 
effects on post-fire hydrology compared to bushfires. A better understanding of the 
impacts of prescribed fire on forest hydrology will test this assumption and will be useful 
knowledge to have for decision making in forest management. An effective way to 
investigate potential effects of prescribed fire on ecosystem functioning, including 
hydrological cycling, is through testing and high-quality modelling. 

 
1.1 METHODS FOR ESTIMATING EVAPOTRANSPIRATION 

Estimating forest ET can be difficult as it is influenced by various environment and terrain 
factors. One of the more traditional methods used for estimation of ET is the ‘water 
balance’ equation, where precipitation, groundwater storage, inflow, and outflow are 
required for estimating ET (Pereira et al., 1999). More recently, other measurement 
methods and tools have been developed, such as flux tower methods (Rana and Katerji, 
2000), scintillometry to measure energy and water balances (Lenters et al., 2011), surface 
renewal methods using micrometeorology (Drexler et al., 2004) and monitoring of diurnal 
fluctuations in groundwater (Mould et al., 2010). However, these methods rely almost 
exclusively on use of hydrological data collected from the field. These data are often 
difficult and expensive to obtain, particularly for studies that require long term data for 
modelling purposes. For this reason, the use of remotely sensed data for estimation ET has 
increased and is becoming more and more sophisticated. 

Given that plant transpiration usually accounts for 80% or more of ET, data describing 
foliage density is often used in estimation of ET (Glenn et al., 2007). Along with data that 
can be used to estimate ET directly, a range of vegetation indices can be used as 
parameters in empirically-based hydrological models. Estimating foliage density using 
vegetation indices obtained from satellite imagery is one of the most well-developed 
remote sensing tools available (Pettorelli et al., 2005; Xue and Su, 2017). One of the most 
commonly used vegetation indices is the Normalised Difference Vegetation Index (NDVI) 
which is calculated based on reflectance values of near infrared and red bands of 
satellite images. 
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An inherent limitation of the NDVI is the influence of background colour (e.g. soil, shade 
from canopy trees, cloud cover). For example, values of NDVI can vary with soil type 
(Huete, 1988). Numerous other vegetation indices have been developed to account for 
this problem (Xue and Su, 2017). The Enhanced Vegetation Index (EVI) (Huete et al., 2002) 
is widely used and several studies (e.g. Nagler et al., 2005, Rahman et al., 2005, Yang et 
al., 2006) have demonstrated better predictions of ET than when using NDVI. The EVI uses 
the blue band of satellite images to correct background effects and, consequently, it 
may have a more direct relationship with leaf area index (LAI) to provide better 
predictions of ET (Glenn et al., 2007). Further details about EVI are provided in the 
methods section. 

Variations in weather such as rainfall and temperature are driving parameters for 
changes in ET (Hutley et al., 2001). As such, studies predicting ET using remotely sensed 
vegetation indices often include observed weather data. For example, Nagler et al. 
(2005) predicted ET using EVI together with precipitation and maximum daily  
temperature for a site located in the western United States. Eight out of nine sites showed 
a strong correlation between ET and EVI, and a strong correlation between ET and 
maximum temperature was also found. It was also shown that sites at lower elevations 
had peak ET earlier in the year (i.e. June or July) than sites at higher elevations (peaked  
in August or September) indicating the relative importance of landscape positioning. 
Similarly, Liu et al. (2012) demonstrated the importance of site location when investigating 
the sensitivity of ET to climate variation using more than 650 sites in China. Along the same 
line of investigation, Gao et al. (2008) found the greatest sensitivity of ET for climate 
variables in a forested site in Korea was due to elevation for sites on south-facing sites but 
not for north-facing sites. 

In the study presented here, empirical data collected from sites in Victoria sampled 
before and after prescribed fire and from sites in New South Wales treated with 
prescribed burning and adjacent unburnt areas were used in combination with satellite- 
derived data to investigate the following: 

• The effect of prescribed fire on ET in representative dry sclerophyll forests 

• The sensitivity of ET to differences in climate and terrain (e.g. location, slope, 
aspect, elevation) 

• The sensitivity of ET at a landscape-scale 
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2. METHODS 
 
2.1 STUDY SITES 

Field data were collected from sites located in NSW and Victoria (for site details see 
Gharun et al., 2015; Bell et al., 2018; 2020). Twenty-five pairs of plots (‘burn’ units) were 
identified in NSW where unburnt (control) plots were adjacent (within 50 m) to burnt plots. 
In each 22.5 m radius circular plot, four soil samples were taken, one each from the north, 
south, west, and east cardinal points. Samples from sites in Victoria were collected from 
plots (27 in total) from the same location before (within 2-3 months) and after (within 1 
month) a prescribed fire. 

In general, sites in Victoria had higher average annual rainfall (1096 and 946 mm, 
respectively) and lower daily solar radiation (15.5 and 16.2 MJ m2, respectively). Sites in 
NSW were generally located at greater elevation (355 m above sea level (asl)), had 
steeper slopes (8.5°), and lower aspects (155°) compared to the sites in Victoria (127 m 
asl, slope of 3.4° and aspect of 174°). A detailed description of data collecting methods 
can be found in Gharun et al. (2018). 

 
2.2 CHANGE DETECTION METHOD 

2.2.1 Generalised Additive Model 
Change detection compares differences of a point or points of reference in the 
landscape over time. Understanding the scope and magnitude of changes in the 
landscape is an important technique for understanding and managing interactions in  
the environment (Lu et al., 2004). Predicting changes in ET after fire involves using both 
spatial and temporal variables. The correlation between these data might be nonlinear 
while the dependency and spatial structure are still important (Bailey et al., 2005). For this 
reason, a generalised additive model (GAM) was used in this study. Generalised additive 
models can be used to combine smooth and linear relationships between covariant and 
predicted variables (Wood, 2017) and can therefore capture nonlinear patterns in the 
data. 

A basic function of a GAM is shown in Equation (1): 
 
 

l(g)~aO + f1(x1) + f2(x2) + ⋯+ fi(xi) (1) 
 

where the response variable l(g) is predicted from the sum of several individual 
nonparametric smoothing functions ( ) + ( ) + ⋯ + ( ). In this format, , ⋯ are smoothing 
functions for variable x1, x2…xi (Wood, 2017). While all other inputs are treated as 
constants, each of the smoothing functions can be treated as the effect of the input. 
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m=
 

The function ( ) is estimated from: 

fi(xi) = ∑M 

 
 

bm(xi)Pm 

 
 

(2) 
 
 

where bm( ) are the base functions and (3m are the parameters to be estimated (Wood, 
2008). 

In this study, 1, 2… i were the environmental and terrain variables that typically affect 
ET (e.g. rainfall, temperature, aspect and prescribed fire), , ⋯ indicate different 
relationships between ET and the input variables. The response variable, l(g), is the 
satellite-observed ET value, it is formulated as the sum of the individual smoothing 
functions of input variables. The smoothing function of the GAM provides flexibility in the 
model to present different forms of correlations between ET and individual input variables 
despite them being non-linear or linearly related. 

 
2.2.2 Covariates 
To determine the GAM for predicting ET (ET GAM) and, hence, the effect that prescribed 
fire may have on ET, data collected from the field were used together with satellite data. 
These data were grouped into three major forms: field-collected data, climate data and 
vegetation indices. 

 
Field collected variables 

Field collected data are the initial and central link of this study. These data were either 
used directly as a variable to create the GAM or used as an indicator for obtaining 
information from satellite imagery. For sites in both NSW and Victoria, samples of the 
upper layer of soil (0-10 cm) were collected either from plots at time points pre-fire and 
post-fire (sites in Victoria) or from unburnt and burnt paired plots (sites in NSW). Nitrogen 
and carbon content were analysed (LECO elemental analyser, CNS 2000; LECO, St 
Joseph, MI) and the measured values used as a variable for predicting ET. 

The locations (latitude and longitude) of all sites/plots were used to extract the 
corresponding terrain information including elevation (m asl), slope (°) and aspect (°). 
Digital Elevation Models (DEMs) derived from LiDAR 5 m grid of the sites/plots were 
acquired from Geoscience Australia (Geoscience Australia, 2015). Elevation, slope and 
aspect for each site/plot was then calculated in ArcGIS (version 10; Esri Australia Pty Ltd, 
Brisbane, Australia). 

The information relating to location together with the timing of sampling and prescribed 
burning allowed extraction of climate data and vegetation indices relevant to the study 
period. For sites located in NSW (paired burnt and adjacent unburnt plots), two different 
locations were used for the same site to extract pre-fire and post-fire climate and 
topography data. Consequently, only the satellite images and climate data collected 
during the post-fire period were used. For the sites located in Victoria, data were 
collected from the same location but at two different times (pre- and post-prescribed 
fire). 
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Climate variables 

For each of the study sites, climate variables for the corresponding date were assembled 
and included maximum daily temperature (Tmax), minimum daily temperature (Tmin), solar 
radiation and rainfall. The climate variables were obtained from SILO (Jeffrey et al., 2001), 
a gridded gauge-based climate data product with a spatial resolution of 0.05° × 0.05° 
(approximately 5 × 5 km) produced by the Queensland Climate Change Centre of 
Excellence (QCCCE; http://www.longpaddock.qld.gov.au/silo/). Data provided by SILO 
are extracted from daily climate data interpolated from point measurements made by 
the network of weather stations developed and maintained by the Bureau of 
Meteorology. Data from SILO is freely available and has been used extensively in 
hydrology studies based in Australia (Beesley et al., 2009). The climate conditions during 
the pre-fire and post-fire periods were extracted from the corresponding grid cell for 
each of the sites. Due to the close location of paired plots in sites in NSW (within 50 m), all 
of the control and burnt sites were found to be in the same grid cell, therefore, the same 
climate data were used. 

In addition to rainfall data, two discount factor values (df5 and df95) were used to 
represent the antecedent condition of rainfall. Discount factor values are values 
calculated based on a weighted past rainfall value (Wang et al., 2011). If the rainfall to 
time j is (q�m) �m�j, the DF factor value with discount factor d is calculated as: 

 

 
DF(d) = 

  
i-1 

∑  
d 1-i d  

1-i 

 
(3) 

i-1 
 

A weighting, d, was given to past rainfall values to calculate the sum of weighted past 
rainfall values. This weighted value diminishes with time at a defined (d) rate. A smaller 
value for d gives more weight to recently observed rainfall while a larger value for d is 
used to present longer term rainfall conditions (Wang et al., 2011). In this study, df5 was 
used to present short-term past rainfall and df95 was used to present long-term rainfall 
conditions. Rainfall data for the past 1000 days were used for calculating DF values. 

∑ 

http://www.longpaddock.qld.gov.au/silo/)
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Vegetation indices 
Vegetation indices for the sites were used to represent the change in vegetation cover due 
to prescribed fire. In this study, we used the National Aeronautics and Space Administration 

(NASA) Moderate Resolution Imaging Spectroradiometer (MODIS) product, and specifically, 
the enhanced vegetation index (EVI) ‘MOD16A1’ (Running et al., 2017). This product is 

available as an 8-day composite interval with a resolution of 500 
m. The EVI was used instead of NDVI because, as mentioned, the latter is very sensitive to 
canopy background colour (Huete, 1988) and we wished to avoid introducing avoidable 
noise to our models. The EVI is developed with an improved vegetation monitoring 
method by de-coupling the background colour by using correction coefficients: 

 
    =               d     +   1         d      2     b    + (4) 

 

where L is a canopy background adjustment term, C1 and C2 are the coefficients of the 
aerosol resistance term which uses the blue band to correct for aerosol influences in the 
red band (Huete et al., 2002). 

 
Predicted changes in ET derived from the ET GAM are reported as ‘kg m² 8-d’. The ET for 
each pixel is a sum of 8 days of composite imagery supplied for the MODIS products (i.e. 
EVI) as a means to remove artefacts and atmospheric effects. 

For each pair of the study sites in NSW, two EVI values for were extracted from the same 
satellite image for unburnt (control) and burnt plots. For plots in sites in Victoria, both pre- 
fire and post-fire images were used to extract EVI values for the two periods. 
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3. RESULTS AND DISCUSSION 
Compared to ET values extracted from MODIS (ETMODIS), a decrease in the modelled ET 
values (ETGAM) was found for sites in both NSW and Victoria (Table 1). The maximum ETGAM 

value for sites in NSW was reduced from 21.0 to 19.5 kg m² 8-d and the median value was 
reduced to 1.1 kg m² 8-d after prescribed fire. The change in ETGAM for sites in Victoria due 
to prescribed burning was more obvious with a reduction in the maximum value of 13.9 
kg m² 8-d alongside considerable decreases in median (39 to 11.1 kg m² 8-d) and 
minimum (33.2 to 8.1 kg m² 8-d) values. 

 
3.1 EXPLORATORY DATA ANALYSIS 

Overall, the number of observed values was similar for sites in NSW and Victoria, however, 
due to the close spatial location of some of the plots several had the same climate and 
ETMODIS values (Table 2). As a result, only 8-9 unique values were available as climate input 
variables for sites in NSW and 11-14 were available for sites in Victoria. This affected the 
degrees of freedom of the GAM model and possibly influenced the sensitivity level of the 
response variable. The close location of some plots also affected ETMODIS observations, 
particularly for some plots in sites in NSW because they were located in the same pixel of 
the satellite image and the same value was assigned to both burnt and unburnt plots. 
However, such spatial resolution constraints cuts both ways, e.g. for plots slightly further 
apart or positioned just in the next pixel, and the results of GAM modelling carry such 
inherent constraint and were interpreted as such. 

 
3.2 GENERALISED ADDITIVE MODELLING 

Selected predictor variables in the ETmodel showed significant correlations (Table 3). 
Despite the effect of  close locations of the unburnt and burnt plots, a significant effect  
of fire was still found for all of the models developed. None of the models predicted 
terrain or soil parameters to be a significant factor for ET estimation. The model for NSW 
did not predict EVI or short-term rainfall (df5) to be significant predictors for ET while the 
ETmodel value for Victoria plots was not affected by df5 or Tmax. However, when the 
observations from NSW and Victoria were combined (ALL model), all the climate inputs 
together with EVI were required for predicting ET. 

Overall, model predictions for the effect of prescribed fire on ETGAM  show high adjusted   
R2 values (Table 4). The model predictions for sites in NSW had a low adjusted R2 value 
(0.82) compared to model predictions for sites in Victoria (0.95), while the combined 
model had an adjusted R2 value of 0.92. 



12 

MILESTONE 2.3.3 WATER AND CARBON CALIBRATION MODEL REPORT NUMBER 566.2020 
 

 

 
 

Table 1. Summary of input data used for modelling. Sites in NSW had 25 observations for each variable and sites from Victoria had 27 observations for 
unburnt sites (sampled prior to prescribed burning) and 24 observations for burnt sites (the same sites sampled after prescribed burning). max = 
maximum, min = minimum, ET = evapotranspiration, Tmax = maximum daily temperature, Tmin = minimum daily temperature, EVI = enhanced vegetation 
index. 

 

NSW Victoria 

Variable Unburnt   Burnt   Unburnt   Burnt 

Max Median Min Max Median Min Max Median Min Max Median Min 

ET (kg m2 8-d) 21.0 18.5 7.6 19.5 17.4 7.4 44.6 39.0 33.2 30.7 11.1 8.1 

Nitrogen (%) 0.08 0.06 0.04 0.10 0.06 0.04 0.54 0.21 0.10 0.43 0.20 0.12 

Carbon (%) 3.49 2.18 1.16 3.92 2.36 1.36 11.75 6.52 2.48 12.44 6.22 3.63 

Aspect (°) 355 122 0 347 140 3 330 175 12 330 194 12 

Slope (°) 26.4 6.4 0.8 20.4 6.6 1.2 7.9 2.5 0.6 7.9 2.5 0.9 

Elevation (m) 664 430 35 684 441 42 271 113 55 271 115 55 

Tmax (°C) 25 21 18 25 21 18 29 21 21 30 23 13 

Tmin (°C) 12 11 7 12 11 7 17 16 10 13 9 7 

Solar radiation (MJ m2) 19 18 9 19 18 9 26 20 14 24 12 8 

df95 (mm) 1.53 1.02 0.25 1.53 1.02 0.25 2.76 1.79 1.17 4.94 2.38 1.40 

df5 (mm) 1.00 0.53 0.01 1.00 0.53 0.01 3.33 0.87 0 5.13 0 0 

EVI 0.41 0.33 0.27 0.42 0.29 0.24 0.86 0.74 0.65 0.89 0.81 0.74 
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Table 2. The number of unique variables used as input data for generalised additive modelling. ET = evapotranspiration, EVI, enhanced vegetation 
index; df5 and df95, discount factor value at the 5 and 95% confidence intervals; tmax, maximum temperature; tmin, minimum temperature. 

 

 
Time 

ET 
(kg m2 8-d) 

Nitrogen 
(%) 

Carbon 
(%) 

Slope 
(°) 

Aspect 
(°) 

Elevation 
(m) 

 
EVI 

Solar 
radiation 
(MJ m2) 

df95 
(mm) 

df5 
(mm) 

Tmax 

(°C) 
Tmin 

(°C) 

 
NSW 

Pre-fire 20 25 25 25 25 25 25 9 9 8 9 8 

Post-fire 19 25 25 25 25 25 23 9 9 8 9 8 

All 35 50 50 50 50 50 48 9 9 8 9 8 

 
Victoria 

Pre-fire 25 27 27 27 27 27 27 6 6 7 5 5 

Post-fire 23 24 24 24 24 24 24 8 8 8 8 7 

All 48 51 51 51 51 51 51 10 14 15 11 11 

 
 
 

Table 3. Blue shaded boxes indicate selected predictors for generalised additive models developed for predicting evapotranspiration. C:N = carbon 
to nitrogen ratio, EVI = enhanced vegetation index, df5 and df95 = discount factor values at 5 and 95% confidence intervals, respectively, tmax = 
maximum daily temperature, tmin = minimum daily temperature. 

 

 
Fire 

Solar 
radiation 
(MJ m2) 

 
C:N 

Slope 
(°) 

Aspect 
(°) 

Elevation 
(m) 

 
EVI 

df95 
(mm) 

df5 
(mm) 

Tmax 

(°C) 
Tmin 

(°C) 

NSW            

Victoria            

All sites            
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The validity of the assumptions of the ET GAM models and the adequacy of the model 
fit were tested using graphical techniques (Figures 1-3). In all three models (NSW, 
Victoria and All sites), the model adequacy was examined using the quantile-quantile 
plot for deviance residuals in the model. The closeness of the data to a 1:1 line for 
NSW, Victoria and all states models indicates the models in all cases were adequate 
to describe ET (panel (a), Figures 1-3). Model adequacy was also examined using the 
residuals of the model fits (panel (b), Figures 1-3). The residuals were randomly 
distributed, and no obvious trend was observed indicating that the variance in the 
models were consistent across all estimations of ET. Histograms of residuals (panel (c), 
Figures 1-3) were normally distributed indicating that the assumption of randomisation 
was met. Lastly, there were no obvious outliers in the observed versus predicted value 
plot (panel (d), Figures 1-3). 

 

Figure 1. Diagnostics of the fitted generalised additive model (GAM) for sites in NSW; (a) quantile-quantile 
plot for deviance residuals, (b) residuals of the model fits, (c) histograms of the residuals, and (d) modelled 
versus observed evapotranspiration values. The closer the data is to the red line in (a), the closer to 
normality are the data. 
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Figure 2. Diagnostics of the fitted generalised additive model (GAM) for sites in Victoria; (a) quantile- 
quantile plot for deviance residuals, (b) residuals of the model fits, (c) histograms of the residuals, and (d) 
modelled versus observed evapotranspiration values. The closer the data is to the red line in (a), the 
closer to normality are the data. 

 

Figure 3. Diagnostics of the fitted generalized additive model (GAM) for an ‘All states’ model (i.e. for sites 
in NSW and Victoria); (a) quantile-quantile plot for deviance residuals, (b) residuals of the model fits, (c) 
histograms of the residuals, and (d) modelled versus observed evapotranspiration values. The closer the 
data is to the red line in (a), the closer to normality are the data. 
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3.3 THE EFFECT OF PRESCRIBED FIRE AND OTHER VARIABLES 

The coefficients for the fire factors in the model indicate that the effect of prescribed 
fire on satellite observed ET (ETMODIS) was 9.6 times greater for sites sampled in Victoria 
(111.76) compared to sites sampled in NSW (11.68). This suggests that prescribed fire 
in Victoria has a greater effect on post-fire ET change. However, it may also be caused 
in part by the combined effects of different fire intensity among sites, the use of 
different collection methods (i.e. the same plot sampled before and after for Victoria 
versus control and burnt plots adjacent to each other for NSW), and differences in 
satellite imagery. 

The partial response curves for the different ET models are shown in Figures 4-6. The 
models for sites in both NSW and Victoria show a positive correlation between ETMODIS 

and solar radiation (Figure 4a and 5a) and a negative correlation between ET and 
long-term rainfall (df95) (Figure 4b and 5c). The model for sites in NSW also had a 
negative effect for Tmax (Figure 4c) while the model for sites in Victoria indicated EVI 
as a significant, positively correlated predictor of ET (Figure 5b). When the observed 
values from both states were combined, the model predicted a strong correlation of 
ETMODIS with solar radiation (Figure 6a), recent rainfall (df5) (Figure 6b) and EVI (Figure 
6c). Long-tern rainfall (df95) was predicted to have a negative effect on ET while other 
predictors were positively correlated. 

 
 

Figure 4. Partial response curves for evapotranspiration (ET) for variables included in the generalised 
additive model for sites sampled in NSW; (a) solar radiation (MJ m2), (b) discount value for precipitation 
at the 95% confidence interval (df95, mm), (c) maximum daily temperature (Tmax, ºC), (d) minimum daily 
temperature (Tmin, ºC), and (e) presence of prescribed fire at a site where B = burnt, U = unburnt. 
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Figure 5. Partial response curves for evapotranspiration (ET) for variables included in the generalised 
additive model for sites sampled in Victoria; (a) solar radiation (MJ m2), (b) enhanced vegetation index 
(EVI), (C) discount value for precipitation at the 95% confidence interval (df95, mm), (d) minimum daily 
temperature (Tmin, ºC), and (e) presence of prescribed fire at a site where B = burnt, U = unburnt. 

 

Figure 6. Partial response curves for evapotranspiration (ET) for variables included in the generalised 
additive model for all sites; (a) solar radiation (MJ m2), (b) discount value for precipitation at the 5% 
confidence interval df5, mm), (c) enhanced vegetation index (EVI), (d) discount value for precipitation 
at the 95% confidence interval (df95, mm) (e) maximum daily temperature (Tmax, ºC), (f) minimum daily 
temperature (Tmin, ºC), and (g) presence of prescribed fire at a site where B = burnt, U = unburnt. 
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To further investigate the effect of location, the data collected from the field, together 
with derived climate and vegetation variables were plotted on maps to allow visual 
investigation of spatial patterns. This step was particularly important for sites in NSW 
because pre-fire and post-fire data were collected at the same time but from 
different locations. In this instance, the effect of location on differences in ET can 
possibly be misinterpreted as the effect of a prescribed fire. Two examples of these 
maps for sites in NSW are provided in Figure 7 and for sites in Victoria in Figure 8. 

The elevation of sites in NSW was lower near the coast (dark blue) and for northerly 
sites (mid-blue) and greater towards the south west corner (light blue, Figure 7a). 
Long-term rainfall (df95) showed a similar pattern with rainfall increasing towards the 
southwest corner (lighter blue, Figure 7b). This distribution reflects the use of gridded 
climate data (SILO) in the model. The observations from sites in Victoria appeared to 
be more randomly distributed (Figure 8). No obvious patterns or similarities were 
observed for other variables in either state. 

 
 

Figure 7: Examples of spatial distribution of (a) elevation above sea level (m) and (b) discount value for 
precipitation at the 95% confidence interval (df95, mm) for sites sampled in NSW. 
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Figure 8: Examples of spatial distribution of (a) elevation above sea level (m), and (b) discount value for 
precipitation at the 95% confidence interval (df95, mm) for sites sampled in Victoria. 
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4. CONCLUSIONS AND NEXT STEPS 
The use of satellite imagery combined with data collected from the field in a GAM 
showed that prescribed burning had an effect on ET in forested sites in NSW and 
Victoria. The change in ET due to prescribed burning was stronger for sites in Victoria 
than in NSW, however, this might be an effect of temporal and/or satellite differences 
not accounted for by GAMs. Vegetation (EVI) and climatic variables (solar radiation, 
df5 and df 95) were the best predictors for changes in ET with prescribed burning. 
None of the soil (C:N) or terrain variables (slope, aspect, elevation) were identified as 
being important factors for detecting change in ET. 

Despite the promise shown by using this type of modelling approach, the analysis and 
comparison process was challenging because pre-fire and post-fire data were 
collected using different formats (before and after prescribed burning and in unburnt 
and burnt plots) and in different years. There were limitations to this study as no 
hydrological data was available for the sites which would have allowed changes to 
ET to be interpreted according to processes associated with the water cycle. If more 
accurate predictions and validation of ET are required additional data (e.g. 
streamflow, groundwater levels, water lost through evaporation) is still necessary 
despite the time and cost involved in collection of this type of information. 
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