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Abstract: Live Fuel Moisture Content (LFMC) contributes to fire danger and behavior, as it affects 
fire ignition and propagation. This paper presents a two layered Landsat LFMC product based on 
topographically corrected relative Spectral Indices (SI) over a 2000–2011 time series, which can be 
integrated into fire behavior simulation models. Nine chaparral sampling sites across three Landsat 
-5 Thematic Mapper (TM) scenes were used to validate the product over the Western USA. The 
relations between field-measured LFMC and Landsat-derived SIs were strong for each individual 
site but worsened when pooled together. The Enhanced Vegetation Index (EVI) presented the 
strongest correlations (r) and the least Root Mean Square Error (RMSE), followed by the Normalized 
Difference Infrared Index (NDII), Normalized Difference Vegetation Index (NDVI) and Visible 
Atmospherically Resistant Index (VARI). The relations between LFMC and the SIs for all sites 
improved after using their relative values and relative LFMC, increasing r from 0.44 up to 0.69 for 
relative EVI (relEVI), the best predictive variable. This relEVI served to estimate the herbaceous and 
woody LFMC based on minimum and maximum seasonal LFMC values. The understory 
herbaceous LFMC on the woody pixels was extrapolated from the surrounding pixels where the 
herbaceous vegetation is the top layer. Running simulations on the Wildfire Analyst (WFA) fire 
behavior model demonstrated that this LFMC product alone impacts significantly the fire spatial 
distribution in terms of burned probability, with average burned area differences over 21% after 8 
h burning since ignition, compared to commonly carried out simulations based on constant values 
for each fuel model. The method could be applied to Landsat-7 and -8 and Sentinel-2A and -2B after 
proper sensor inter-calibration and topographic correction. 
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1. Introduction 

Fire disturbances play a key role in vegetation succession, as well as in the ecosystem’s structure 
and function [1]. Live and dead biomass constitutes the fuel that burns during a fire, and the fuel 
properties describe their state or moisture content, as well as their spatial distribution and impact on 
fire spread, intensity and severity [2]. Among these properties, fire ignition and propagation depend 
on Live Fuel Moisture Content (LFMC) [3–6]. Fuels with high LFMC take longer to ignite as water 
acts as a heat sink, slowing down fire spread and intensity [5,7]. LFMC is defined as the amount of 
water in the fuel over its dry weight times 100. This amount of water is calculated as the difference 
between the fresh weight and the oven-dried weight at 60–100 °C for 24–48 h [5]. More recently, 
Matthews [8] suggested to dry samples at 105 °C to ensure complete water removal from the samples. 
The US National Fire Danger Rating System (NFDRS) distinguishes annual and perennial herbaceous 
LFMC depending on how the drying of the live fuel occurs throughout the year [9]. In addition, the 
NFDRS also considers the woody LFMC, measuring the moisture of the foliage and of small twigs 
that are < 0.6 cm [9].  

Climate and plant adaptation strategies to drought play a key role on LFMC, with changes in 
the water content of leaves as well as in dry matter [10]. LFMC remote sensing estimates rely on the 
spectral changes due to the direct impact of liquid water absorption features and the indirect impact 
of pigment and structural changes associated with water content variation [11]. Two different 
approaches have been applied to monitor LFMC from remote sensing data: empirical Spectral Indices 
(SI) [12–14] and radiative transfer models (RTM) [15–17]. RTM only outperforms empirical models if 
they are appropriately parameterized and constrained, which requires accurate structural 
information [15]. Yebra et al. [11] provide a complete review on these methods and their operational 
implications. 

Fire management tools demand comprehensive spatial and temporal LFMC coverage [18]. 
Therefore, field sampling only serves to calibrate and validate these remote sensing estimates. 
Operational LFMC remote sensing products benefit fire behavior models, as they can improve fire 
growth simulations. Most fire simulators generally include a constant LFMC value for each fuel 
model, thus missing the spatial LFMC variability across the landscape. The Modeling Dynamic Fuels 
with an Index System (MoD-FIS) from the LANDFIRE program (https://www.landfire.gov/; last 
accessed 3 April 2020) goes further, detecting the key seasonal changes in herbaceous vegetation to 
adjust their dynamic fuel models. However, operational tools such as Wildfire Analyst (WFA, 
http://wildfireanalyst.com/ [19]) demands operational spatially and temporally explicit LFMC 
products to better estimate fire behavior. Based on BEHAVE surface fire behavior model [2], WFA 
already digests current spatial weather data available in real time and allows the inclusion of 
predefined LFMC layers as an input. Other software like FlamMap 
(https://www.firelab.org/project/flammap/; last accessed 3 April 2020) or FARSITE 
(https://www.firelab.org/project/farsite/; last accessed April 3rd, 2020) do not include LFMC as a 
layer. 

A common limitation in fire behavior models is also that they require herbaceous and woody 
LFMC, whereas optical remote sensing is only sensitive to the top layer. An alternative is to use 
meteorological phenological models like the Growing Season Index (GSI) [20]. The 2016 NFDRS 
depends on this index to predict herbaceous and woody LFMC. Despite this, the index requires 
extrapolation from meteorological locations to build a spatially comprehensive LFMC map.  

High temporal resolution sensors such as AVHRR [13,21] or MODIS [16,22] or VIIRS, allow the 
capturing of daily changes in LFMC. Nevertheless, cloud coverage can reduce their effective temporal 
resolution. Besides, spatial heterogeneity of fuels limits their application, due to their low spatial 
resolution ( ≥ 250 m). Medium spatial resolution (20–30 m) sensors, such as Landsat-5 Thematic 
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Mapper (TM), enable a better spatial characterization [23], but only once every 16 days until its 
decommission. The combination of Landsat-7 and 8, and Sentinel-2A and 2B ensures an overpass 
every 3 days at the equator and nearly daily at mid-latitudes at 10–30 m spatial resolution [24]. After 
proper sensor inter-calibration, these data open new opportunities to quantify LFMC for fire 
management applications. For this end, LFMC signal needs to be discriminated from atmospheric 
and topographic effects, sun and sensor geometry, soil background, species composition or other 
plant characteristics [11].  

To compensate for some of these factors, several authors prefer to relate the LFMC dynamics to 
Relative Spectral Indices (relSI) [25–28]. The relSI normalize the SI for each pixel based on its values 
within a sufficiently large temporal series. The main goal of this study is to propose an operational 
spatially dynamic LFMC product including an herbaceous and woody layer ready for integration in 
fire behavior models. The product tests different Landsat-5 TM relSI normalized over 10+ year long 
time series. Finally, fire simulations with WFA demonstrate how LFMC impacts fire behavior, burned 
probability (BP) and fire growth. 

2. Methods 

2.1. Study Sites and Landsat-5 TM Data  

This study selected nine chaparral sites for validation with a long Landsat-5 TM time series 
record and concurrent field LFMC sampling data from the National Fuel Moisture Database (NFMD, 
http://www.wfas.net/index.php/national-fuel-moisture-database-moisture-drought-103; last 
accessed 3 April, 2020). The LFMC data collection for the NFMC follows standard protocols, as 
described in Pollet and Brown [29]. Briefly, LFMC is obtained collecting samples at different heights 
on the shrubs and from different individuals [29].  

The sites were in California and Oregon, within three Landsat-5 TM scenes across the Western 
US covering a wide range of environmental gradients (Figure 1; Table 1). Google Earth (Google Inc., 
2013) visual inspection allowed the picking of sampling sites with no disturbance or rapid growth 
during the sampling period, and homogenous shrub cover of at least 1 km2 as location of NFMD sites 
can be off by tens or hundreds of meters. Other site requirements were to have at least 20 Landsat-5 
TM images with <10% cloud cover over at least six years that covered as much as possible of the 
phenological cycle of the species sampled. This work selected only field sampling dates within +6 
days from image acquisition to reduce the impact of LFMC temporal variation between NFMD and 
Landsat-5 TM acquisition. LFMC data of the selected sites covered the whole fire season, from the 
beginning of spring until the end of the fall, although in some cases sampling was extended year-
round. 

Table 1. Description of the Live Fuel Moisture Content (LFMC) sampling sites and their Landsat-5 
TM scene path and row. 

Sites Path Row Latitude 
(N) Longitude(W) Sampling period 

(yyyy/mm/dd) Species # Samples 

Clark 
Motorway, 

Malibu 
41 36 34.0844 118.8625 2001/01/08 2011/06/22 

Big-pod 
buckbrush; 

Chamise 
65 

Glendora 
Rigde 

41 36 34.1653 117.8650 2003/01/29 2011/10/28 
Hoaryleaf 
ceanothus; 
Chamise 

55 

Laurel 
Canyon, Mt 

Olympus 
41 36 34.1247 118.3689 2001/04/09 2011/10/28 Chamise 73 

Trippet Ranch, 
Topanga 

41 36 34.0933 118.5978 2001/02/05 2011/10/28 Chamise 69 

Peach 
Motorway 

41 36 34.3556 118.5347 2005/04/02 2011/10/28 Chamise 50 
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Placerita 
Canyon 

41 36 34.3753 118.4389 2001/05/02 2011/10/28 Chamise 72 

Kinsman 42 34 37.1981 119.4197 2001/09/20 2011/08/23 

Whiteleaf 
Manzanita; 

Big-pod 
buckbrush 

22 

Keeney 42 29 43.9133 117.1783 2000/07/17 2011/08/30 
Wyoming Big 

sagebrush 
39 

Shirttail 42 29 44.53 117.4186 2000/07/24 2011/09/16 
Wyoming Big 

sagebrush 
41 

 
Figure 1. Landsat scenes corresponding to the study sites selected. 

The Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) provided 
orthorectified Landsat-5 TM surface reflectance data at 30 m spatial resolution through the United 
States Geological Survey (USGS) Earth Explorer web site (http://earthexplorer.usgs.gov/; last 
accessed 3 April, 2020). Their radiometric calibration involved the transformation of the digital 
numbers to at-sensor radiance, adjustment to top of atmosphere reflectance and atmospheric 
correction using the 6S radiative transfer model [30]. Landsat-5 TM scenes were clipped to the largest 
possible window containing data for the whole time series. In addition, the satellite overpass varies 
for each image acquisition. Therefore, a mask gave a -9999 value for all dates to the pixels out of the 
overpass in at least one image acquisition in the time series to ensure the same common pixels for all 
images in each scene. Further processing involved a topographic correction to reduce the differences 
in the time series due to sun illumination conditions and terrain. The Sun-Canopy-Sensor Correction 
with the C parameter (SCS+C) normalized reflectance (𝐿௡) for this topographic factor [31] (Equation 
1): 𝐿௡,௕ = 𝐿௕ cos𝛼 cos 𝜃 + 𝐶௕cos 𝑖 + 𝐶௕  (1) 

 
where 𝐿௕ is the reflectance for each Landsat-5 TM band (b); 𝛼 is the terrain slope; 𝜃 is the solar 
zenith angle; 𝑖 is the incidence angle, which is the angle between the normal to the ground and the 
solar zenith; and 𝐶௕ is the quotient between the slope and intercept of the linear regression equation 
between 𝐿௕ and cos 𝑖. 

This study also tested Civco [32], C-Teillet [33] and smoothed C-Teillet [34] topographic 
corrections, but SCS+C worked best (results not shown), improving the relationship between the SI 
and the field LFMC when comparing before and after correcting the topographic effect. The SCS+C 
required a Digital Elevation Model (DEM) to perform the correction. The National Elevation Dataset 
delivered the DEM in grid float format at approximately 10 m spatial resolution 
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(https://www.usgs.gov/core-science-systems/ngp/tnm-delivery/; last accessed 3 April 2020). DEM 
mosaicking, reprojection to UTM 11 N WGS84 and nearest neighbor resampling to 30 m were 
necessary to match each Landsat-5 TM scene. Furthermore, SCS+C applied a different 𝐶௕ parameter 
depending on the vegetation structure: herbaceous, shrub and forest. The 30 m National Land Cover 
from Fry et al. [35] provided the base map to reclassify 71–74 and 81 classes as herbaceous; 51–52 as 
shrubs; 41–43 as forest; and the rest as non-natural vegetation. Finally, a linear regression equation 
between 𝐿௕  and cos 𝑖 for all pixels in each of the four reclassified classes calculated 𝐶௕  for each 
class. 

2.2. Spectral Indices 

LFMC prediction from Landsat-5 TM tested four SI previously used to retrieve LFMC (Table 2). 
The NDVI relates to LFMC only indirectly through changes in leaf pigments. It has successfully 
estimated LFMC, especially for grasslands [13,23]. The NDII predicted LFMC over Mediterranean 
environments [14,23,36]. NDII directly relates to LFMC through spectral changes occurring in the 
shortwave infrared (SWIR) region (band 5 in Landsat-5 TM), because of variability in the vegetation 
water content. The EVI estimated shrub LFMC successfully over chaparral vegetation with AVIRIS 
data [14,15,37]. EVI was originally designed for the MODIS sensor based on additional spectral bands 
than NDVI. Furthermore, it provides better sensitivity to high biomass while minimizing soil and 
atmosphere influences. The VARI estimated LFMC over chaparral [15,22]. VARI is indirectly related 
to LFMC through changes in leaf pigments.  

Table 2. Spectral Indices (SI) selected to retrieve LFMC. 

SI Equation  

Normalized Difference Vegetation Index (NDVI) [38] 
𝜌ேூோ − 𝜌ோ𝜌ேூோ + 𝜌ோ (2) 

Normalized Difference Infrared Index (NDII) [39] 
𝜌ேூோ − 𝜌ௌௐூோ𝜌ேூோ + 𝜌ௌௐூோ (3) 

Enhanced Vegetation Index (EVI) [40] 𝐺 ൬ 𝜌ேூோ − 𝜌ோ𝜌ேூோ + 𝐶ଵ ∗ 𝜌ோ − 𝐶ଶ ∗ 𝜌஻ + 𝐿൰ (4) 

Visible Atmospherically Resistant Index (VARI) [41] 
𝜌ீ − 𝜌ோ𝜌ீ + 𝜌ோ − 𝜌஻ (5) 

ρB, ρG, ρR, ρNIR and ρSWIR = blue, green, red, near infrared and shortwave infrared reflectance, 
respectively; G is a gain factor; C1 and C2 are the coefficients of the aerosol resistance term, and L is a 
soil-adjustment factor. These parameters have a value of 2.5, 6, 7.5 and 1, respectively. 

Computing the relSI compensated differences among pixels in fractional cover, species 
composition, soil background and orientation among other factors in order to predict LFMC [25–28]. 
relSI is calculated as the difference between the SI at a specific time and the minimum SI (SImin) in the 
temporal series for each pixel, divided by the difference between the maximum SI (SImax) in the 
temporal series and SImin. Newnham et al. [27] highlighted the importance of selecting an appropriate 
time interval and criteria to obtain the SImin and SImax. According to their findings, the time interval 
should be long enough to enable capturing the full range of spectral variation, but short enough to 
avoid capturing variation caused by land cover changes. The shortest period for the validation sites 
in Table 1 was six years, whereas the longest was eleven. The time frame covered the entire 
phenological vegetation cycle in all cases. Furthermore, the LEDAPS Landsat-5 TM product 
contained a mask that eliminated any cloud or cloud shadow pixel when searching for SImin and SImax. 
Finally, a similar normalization process from SI to relSI converted the field LFMC data to relative 
LFMC (relLFMC). As a result, minimum and maximum values by site compensated for differences 
in sampling methods and species composition across sites. 

2.3. Landsat TM LFMC Product 

This research applied an empirical method to estimate LFMC or relLFMC through linear 
interpolation from a SI or a relSI. These linear regression models are the traditional approach to relate 
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the spectral information derived from remotely sensed data and field measured LFMC [13,14,22]. 
Since the relEVI best predicted LFMC (see results section), it was the base for the Landsat-5 TM 
herbaceous and woody LFMC product. Pixels classified as shrubs or forest included herbaceous and 
woody LFMC layers whereas herbaceous pixels included only the herbaceous LFMC layer. To 
overcome the limitation of optical remote sensing not measuring the understory layer, a spring 
metaphor extrapolated the understory herbaceous values of the woody pixels from the surrounding 
herbaceous pixels using the “inpaint_nans” tool 
(https://www.mathworks.com/matlabcentral/fileexchange/4551-inpaint-nans, last accessed 3 April, 
2020). This method adjusts a partial differential equation to extrapolate 2-dimesional data with 
springs that connect pixels to their neighbors in all directions. The performance of the method was 
evaluated by comparing a random extraction of 3000 herbaceous relEVI pixel values from April 16th, 
2009 to the extrapolated results at these locations. 

Information on fuel models based on the Scott and Burgan’s [42] fire behavior fuel models 
classification version “LF 2014” with metadata “20161031” at 30 m resolution came from the 
LANDFIRE program. Fuel models classes were grouped into herbaceous, shrubs or forests according 
to their main fire carrier. The relEVI was understood as relLFMC and converted to absolute LFMC 
from the minimum and maximum field measured LFMC sampled in the Jasper Ridge Biological 
Preserve, CA(USA) using 30.0% to 197.2 % for herbaceous, 36.4% to 222.1 % for shrubs and 53.4% to 
164.7% for forests [15]. Other scaling would be possible, but Jasper Ridge is preferred since field 
campaigns in Spring, Summer and Fall were carried out covering the phenological vegetation cycle, 
not only for shrubs, but also for herbaceous vegetation and forest. The nine chaparral sites from the 
NFMD had a minimum value of 43.5% and a maximum of 231.0% for shrubs. Hence, using Jasper 
Ridge data would introduce a small bias. 

2.4. Fire Behavior Modeling with the LFMC Product 

A 1000 by 1000 pixels window within the Landsat-5 TM Path 41 and Row 36 was used to test the 
differences in fire behavior due to LFMC. This site located Northwest of the city of Los Angeles 
includes part of Los Padres National Forest (Upper Left Corner: 119.115W 35.024N; Lower Right 
Corner: 118.781W 34.759N). WFA software was used to carry out the fire behavior simulations [19]. 
WFA provides real-time analysis of wildfire behavior and spread to directly support multi-agency 
wildfire incident management [43]. The semi-empirical fire spread model in WFA uses the Rothermel 
equations to model surface and crown fire behavior [44]. The model estimated how fires spread under 
different LFMC scenarios, keeping equal all other inputs. This is not a common approach in fire risk 
analysis, which usually uses stochastic inputs. However, the goal here was to assess the difference in 
behavior only due to LFMC.  

The simulations calculated fireline intensity, Flame Length (FL) and Rate of Spread (ROS) at the 
30 m pixel level resolution, considering the maximum potential fire behavior in each pixel [45]. In 
addition, WFA predicted the independent spread of 111,559 fires with a duration of eight hours with 
a 90 by 90 m ignition point every three pixels in all directions. The hourly burned area quantified the 
impact of each fire simulation on the landscape. After running all the fire simulations, WFA 
calculated the output BP that represents the amount of times the fires reached each pixel. 

Modeling fire behavior and spread required several spatial-temporal inputs: the DEM already 
used for the topographic correction, Scott and Burgan’s fuel models used to generate the LFMC 
product described above, a constant moderate wind speed at 20 feet of 11 km/h at a 45º direction from 
Northeast to Southwest as well as constant Dead Fuel Moisture Content (DFMC) values of 5%, 7% 
and 9% for 1, 10 and 100 h fuels, respectively.  

Simulations considered four LFMC scenarios: a constant overall median LFMC value of 99% for 
herbaceous, 129% for shrubs and 109% for forest from Jasper Ridge field data; a constant overall tenth 
percentile LFMC value of 30% for herbaceous, 55% for shrubs and 65% for forest also from Jasper 
Ridge field data; and the LFMC product generated with the relEVI from Landsat-5 TM data on 16 
April 2009 and 25 October 2009. The median and tenth percentile were calculated considering the 
minimum and maximum values of all samples collected in Jasper Ridge for each vegetation type [15]. 
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The Landsat-5 TM dates were selected since they would represent two distinct LFMC scenarios, in 
spring and end of the summer/beginning of autumn. Note also that according to Rothermel’s surface 
fire behavior model, herbaceous LFMC is cured at 30% and woody LFMC enters dormancy at 60% 
[42,46]. 

3. Results 

The EVI presented the highest r and the lowest RMSE with the field measured LFMC for five 
out of the nine validation sites (Table 3). When all sites were considered together, a significant drop 
in r and an increase in RMSE was observed, with the highest r value as low as 0.44% and the lowest 
RMSE as high as 33.35 % for EVI. The relationship between LFMC and SI for all sites improved after 
using relLFMC and relSI, increasing r up to 0.69% and decreasing the RMSE to 19% for relEVI, which 
was again the best predictive variable.  

The relEVI was thus used to predict the herbaceous and woody LFMC from Landsat-5 TM data 
on 16th of April and on 25th of October (Figure 2), to analyze fire behavior through WFA simulations. 
The extrapolation algorithm to estimate the understory herbaceous LFMC of the woody pixels was 
tested over a random set of overstory herbaceous pixels. The comparison between their actual 
herbaceous relEVI values and the extrapolated ones yielded r = 0.94 and RMSE = 7.43%. 

Table 3. r and Root Mean Square Error (RMSE) between field measured LFMC/relLFMC and SI/relSI. 
All r are statistically significant (P-value < 0.001). 

      r RMSE (%) 
Site Depen. Var. Indep. Var. NDVI NDII EVI VARI NDVI NDII EVI VARI 

ClarkMotorway,Malibu LFMC SI 0.85 0.77 0.89 0.65 15.39 18.29 13.07 22.05 
Glendora Ridge, Glendora LFMC SI 0.69 0.65 0.80 0.33 19.38 20.30 16.03 25.17 

Laurel Canyon LFMC SI 0.81 0.85 0.87 0.48 15.53 13.95 13.11 23.46 
Trippet Ranch LFMC SI 0.84 0.72 0.77 0.73 26.33 33.80 31.39 33.57 

Peach Motorway LFMC SI 0.87 0.89 0.93 0.79 11.67 10.44 8.72 14.50 
Placerita Canyon LFMC SI 0.80 0.84 0.86 0.52 20.24 18.32 17.30 28.91 

Kinsman LFMC SI 0.66 0.82 0.82 0.61 17.60 13.28 13.40 18.54 
Keeney LFMC SI 0.79 0.64 0.74 0.36 22.02 27.61 24.11 33.58 
Shirttail LFMC SI 0.73 0.67 0.69 0.69 24.48 26.53 26.12 26.23 
All sites LFMC SI 0.22 0.32 0.44 0.35 36.26 35.16 33.35 34.85 
All sites relLFMC SI 0.46 0.52 0.62 0.50 0.24 0.23 0.21 0.23 
All sites LFMC relSI 0.49 0.51 0.57 0.49 32.47 32.00 30.51 32.31 
All sites relLFMC relSI 0.61 0.66 0.69 0.55 0.21 0.20 0.19 0.22 

The average LFMC value based on relEVI for 16th of April 2009 was closer to the constant 
median LFMC map (Figure 2), whereas the one for 25th of October 2009 was closer to the constant 
tenth percentile LFMC map. These constant LFMC values could be used as a baseline for comparison. 
It is evident that this approach cannot capture the spatial variability of LFMC across the landscape as 
the relEVI maps do. For example, herbaceous LFMC for 16th of April on the Northern part of Figure 
2 was generally below the median LFMC map, but the Southern part was above it. Instead, 
herbaceous LFMC for 25th of October was generally like the tenth percentile LFMC map, except for 
the Southwestern part where it was higher. In the case of the woody for 16th of April, the Eastern 
part was higher than the median, but the Western part was lower. In contrast, woody LFMC for 25th 
of October was generally like the tenth percentile LFMC map, but with randomly distributed patches 
having higher LFMC (Figure 2). 
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Figure 2. Herbaceous and woody LFMC products from a constant median and tenth percentile LFMC, 
and from Landsat-5 TM relEVI data on April 16th and on October 25th of 2009 and estimated fire 
behavior for each scenario in terms of ROS and FL. 

The LFMC products from Figure 2 caused differences in the fire simulations performed on WFA 
(Figures 2, 3 and 4). All input variables in the simulations were the same except the herbaceous and 
woody LFMC layers. Despite this, the differences in fire behavior (both ROS and FL; Figure 2), 
average burned area per fire (Figure 3) and BP (Figure 4) were significant and increased with the time 
since ignition. Results based on 16th of April and 25th of October LFMC fell in between the minimum 
value of the tenth percentile and the maximum of the median LFMC (Figure 3). We observed spatial 
differences in terms of ROS and FL among the LFMC products (Figure 1). For instance, the ROS for 
16th of April was higher in the northern part of the study area than in the southern part, whereas this 
pattern was the inverse for other scenarios such as 25th of October, suggesting the importance of 
considering the spatial variability of LFMC in operational environments. These results are consistent 
with the BP outputs (Figure 4), given that the areas with higher BP values also had higher ROS. BP 
maps derived using the tenth percentile and relEVI for the 25th of October, showed similar spatial 
distribution (Figure 4), although higher BP values where obtained for the former which resulted in 
an average difference in burned area greater than 30 ha 8 h after ignition (21% and 36% higher than 
the burned area for the relEVI 25th of October and 16th of April, respectively). Differences in the 
spatial distribution in BP maps were more evident when comparing the relEVI maps for 16th of April 
to the constant median LFMC value. 
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Figure 3. Average burned area after time since ignition for fire simulations and boxplots of the burned 
area 8-hours after ignition in Wildfire Analyst (WFA) with the different LFMC scenarios from Figure 
2. 

 
Figure 4. Burned probability (BP) maps of the fire simulations in WFA with the different LFMC 
scenarios from Figure 2. 

4. Discussion 

Many other studies have estimated LFMC from optical remote sensing [11], including Landsat-
5 TM data [23]. The novelty of the Landsat-5 TM relEVI LFMC product generated in this study is that 
it provides an herbaceous and woody layer that can be integrated into fire behavior models like WFA. 
This integration produces spatial differences in fire behavior (ROS, FL and fireline intensity) and 
subsequently, BP and average burned area, compared to using a constant LFMC value (Figure 4). The 
reason to choose Landsat-5 TM data was its long time series, coinciding with field data in the NFMD 
for validation. However, the application of this approach to Landsat-7 and -8 and Sentinel-2A and -
2B should be possible in order to generate systematic products at 10–30 m spatial resolution. Such 
products will improve those from MODIS-like sensors with >250 m spatial resolution in terms of 
operational adoption [18]. Given its higher temporal resolution, MODIS like sensors could also be 
used for gap filling [47]. However, such a product would require proper sensor inter-calibration to 
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determine the spectral band adjustment factors. This should not only be done over pseudo-invariant 
calibration sites, as diverse studies have demonstrated that these cross-sensor adjustment factors are 
land cover dependent [48,49]. Besides, the compensation of solar illumination due to the irregular 
shape of the terrain of a topographic correction is also necessary.  

Correlations between LFMC and SI in Table 3 were much higher at individual sites than when 
all sites were considered together. This agrees with Roberts et al. [14] results for the Santa Monica 
Mountains, an area enclosed within the Landsat-5 TM scene 41/26 used in this study. Stow et al. [22] 
also found a decrease in correlation between LFMC and VARI for San Diego County using MODIS 
data, when data from different sampling sites were pooled together. The different species sampled, 
time since disturbance, sampling method, time of the year and the variety of environmental factors 
affecting the vegetation of each sampling site can explain the significant drop in regression values 
when all sites were considered together. In addition, it should be considered that LFMC is a function 
of leaf age and leaf chemistry [50,51]. 

As Roberts et al. [14] pointed out, sampling methodology, site quality and plant functional type 
are important factors affecting the relation between the LFMC and the information derived from 
remote sensing, and can significantly vary from one site to another. These factors limit reaching a 
RMSE below 20% here (Table 3) and also in other studies [11]. For example, the NFMD field 
collections might not always be at the exact same location or a sample might not be representative of 
the surrounding LFMC within a pixel, as NFMD samples where not collected with the objective to be 
representative of a 30 m pixel. Specifically, sites in Table 1 did not contain available information on 
the sampling procedure used, the number of individuals sampled, the proportion of twigs/leaves and 
new/old leaves sampled, species proportion in the case of mixed shrublands, or the fractional cover 
for each site. Additionally, phenological differences among the species and sites could have affected 
the correlation values. In fact, SI from two study sites in scene 42/29 (Keeney and Shirttail) showed 
lower values than found in the other two scenes used. Roberts et al. [14] found a linear relationship 
between LFMC values and different SI when LFMC surpassed 60%. Despite also using a linear model 
here, a non-linear relationship worked slightly better for many sites due to the large inter-annual 
variability that spanned over 10 years. 

Data normalization significantly improved the results as the effect of varying vegetation cover 
and type was reduced. These results agree with Stow and Niphadkar [28], who obtained a better 
coefficient of determination for models applying relSI to estimate LFMC using MODIS data. A clear 
improvement in the correlations was observed in Table 3 when LFMC values were also normalized 
by site. The long period of LFMC measurements available for each study site allowed the capture of 
the full range of LFMC variation. This suggests that the normalization of field LFMC values reduces 
the effect of environmental factors affecting field measured LFMC values and thus, to better capture 
the LFMC dynamics of the vegetation. This is a unique aspect of this study, as other studies only 
normalized SI but not LFMC [22,23]. The normalization of field measured LFMC values might 
hamper obtaining the absolute LFMC value for those pixels where no field measurements are 
available. Yet, it should still be possible to detect LFMC anomalies, such as for example when the fuel 
is cured or dormant.  

Out of the four vegetation indices tested, VARI showed the poorest performance. These results 
contrast with those obtained by Stow et al. [22], Roberts et al. [14], Dennison et al. [52] and Casas et 
al. [15] who found VARI as the best performing index to estimate LFMC in similar environments. The 
different spectral and spatial sensor resolutions might explain the differences between these studies 
and results presented here with Landsat-5 TM data. Nevertheless, Roberts et al. [14] found a similar 
performance between NDVI, EVI, NDII and VARI using AVIRIS data with a spatial resolution of 20 
m. Regarding the effect of the spectral resolution, Casas et al. [15] tested multiple band combinations 
with AVIRIS data and showed how LFMC was significantly affected by the band combination 
selected. Translated to broadband sensors, this means that the center wavelength and band-width of 
the sensors can affect the estimation of LFMC, despite being in the same spectral region. 

The NFMD served for validation of the LFMC product over the shrub canopy woody layer, but 
the herbaceous and forest canopy woody layer lacks validation here. Nevertheless, a global validation 



Remote Sens. 2020, 12, 1714 11 of 15 

 

from MODIS demonstrated that relEVI is a reliable LFMC estimator [53]. In addition, many other 
previous studies have also demonstrated that optical remote sensing predicts herbaceous LFMC with 
better accuracy than for shrubs, due to a simpler canopy structure and higher temporal LFMC 
variation [17,18,23]. To the contrary, the forest canopy woody layer shares the space with the 
understory shrub and herbaceous canopy. Their deeper tree root system reduces the temporal 
variation in evergreen forest LFMC. These complexities make the canopy the hardest layer to 
validate, producing poorer accuracy than for shrubs [15,18]. Furthermore, sampling the forest canopy 
is also challenging due to the canopy height, which requires the use of techniques such as a shot 
throw-line launcher [54]. Shorter crop trees without understory produce stronger relationships 
between optical remote sensing and canopy water content [55,56]. This latter variable relates to LFMC 
after accounting for specific leaf area and leaf area index [57]. Another remarkable aspect is that forest 
canopy LFMC (foliar moisture) becomes important for crown fire modeling but not for surface fires 
[58]. 

Extrapolating to the understory herbaceous LFMC on the woody pixels from the surrounding 
herbaceous pixels rendered a strong relationship (r = 0.94) on a random sample, compared to their 
actual herbaceous relEVI values. Nevertheless, further testing is needed to demonstrate how the 
extrapolation algorithm works over a sample set with larger gaps of herbaceous pixels. Moreover, 
the herbaceous LFMC under the woody layer should be slightly higher than when it is the top canopy 
layer, and hence sun exposed. This correction factor remains to be explored.  

Despite these limitations, a continuous sampling from direct satellite observations assures 
capture of the spatial LFMC variability across the landscape. After proper testing on actual fires, this 
spatially dynamic information could be integrated into fire behavior models like WFA. This approach 
should improve fire behavior estimation and progression over using constant LFMC values for each 
vegetation layer or fuel model (Figure 4) as shown in this work. These improvements would reduce 
errors in fire event duration, resulting in better real time fire analyses of the fire progression. 
Furthermore, improved fire simulations considering the spatial effect of LFMC would help in 
enhancing the estimation of important outputs, such as the annual BP and fire behavior for fire risk 
assessment. Products based on extrapolation from field or meteorological data alone should help to 
adjust the systematic relEVI LFMC from direct satellite observations. The NFMD dataset collects 
direct LFMC measurements, but with a limited temporal and spatial coverage. Based on this field 
data, the minimum and maximum thresholds to convert relEVI to LFMC could be modified. 
Meteorological phenological models like Jolly et al. [20] have the advantage of providing hourly 
herbaceous and woody LFMC. The limitation of this method is that it estimates indirectly LFMC from 
a model and requires a large meteorological network for an accurate spatial extrapolation. Another 
complement to optical data is using radar sensors like Sentinel 1 or the NASA-ISRO Synthetic 
Aperture Radar (NISAR), the later to be launched in 2021. Radar is sensitive to the water in whole 
canopy layer rather than the top layer observed from optical data [59]. Therefore, it requires 
untangling between the soil moisture, water in trunks and branches, herbaceous LFMC and woody 
LFMC.  

5. Conclusions 

This study generated spatially dynamic maps of herbaceous and woody LFMC from relEVI 
Landsat-5 TM data that could be integrated in fire behavior simulators like WFA. Before this, it would 
be beneficial to test it on simulations of actual fires. Since optical remote sensing only detects the top 
layer, it requires extrapolating to the understory herbaceous LFMC on the woody pixels from the 
surrounding herbaceous pixel. Landsat-5 TM long time series served for validating the LFMC, over 
the shrub that is the main fire carrier. The LFMC product alone compared to constant LFMC 
significantly impacts the fire spatial distribution in terms of BP and average burned area, when 
simulating fires in WFA with the same values for all other input variables in the simulation. Based 
on this analysis over Landsat-5 TM, a Landsat-7 and -8 and Sentinel-2A and -2B product seems 
feasible. This means a systematic product at 10–30 m spatial resolution that requires proper sensor 
inter-calibration and topographic correction. Such a product would benefit from adjustment with 



Remote Sens. 2020, 12, 1714 12 of 15 

 

field and meteorological data and integration with coarser spatial resolution with higher temporal 
observations like MODIS and radar sensors like upcoming NISAR. 

The evaluation of different SI to estimate LFMC and its dynamics in the Western US concluded 
that EVI generally performs the best, followed by NDII, NDVI and VARI. While all SI presented good 
relationships for each individual sampling site, there was a significant drop when sites were pooled 
together. Normalizing the data improved the results overcoming the effect of varying vegetation 
cover and type on the signal recorded by the sensor. In addition, relative LFMC values account for 
the dynamics rather than the absolute LFMC variation, which can help to detect LFMC anomalies 
and thus, detect when the fuel is cured or dormant. 
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