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EXECUTIVE SUMMARY 
Floods are among the most damaging natural disasters in Australia. In order to 
limit the personal and economic damage caused by floods, land and 
emergency managers need to rely on flood forecasting systems. These systems 
consist of a hydrologic model and a hydraulic model. The hydrologic model 
calculates the amount of water that enters the river network, while the hydraulic 
model computes how that water moves throughout the river and floodplain. The 
accuracy and reliability of flood forecasting systems has significantly improved in 
the last decades. However, errors and/or uncertainties in model structures and 
parameters, input data, and/or meteorological forcings often hamper the 
accuracy of predictions. This document confirms that remote sensing data can 
be used to improve the accuracy of hydrologic and hydraulic models and thus 
ultimately improve the flood forecast accuracy.  

More specifically, remotely sensed soil moisture data are used to improve the 
hydrologic forecast skill of ungauged sub-catchment streamflow locations 
through multi-objective calibration. A pragmatic approach to select the optimal 
hydrologic model, optimized rainfall product, and remotely sensed soil product 
is outlined. Routines to assimilate and smooth streamflow and remotely sensed 
soil moisture observations over the length of a unit hydrograph are provided for 
improving forecast capability. Further, remotely sensed inundation extent and 
water level are used to improve the accuracy of the hydraulic model. This 
spatially distributed information is essential for understanding the floodplain 
inundation dynamics, adequately setting-up the hydraulic model and effectively 
constraining its parameters. The research underpinning these guidelines is 
consistent with the findings of ongoing research efforts worldwide and has 
contributed to the development of knowledge and a pragmatic framework for 
application in the Australian context.  

The methodologies presented in these guidelines for optimal use of remotely 
sensed data to improve the predictive skill of flood forecasting models can be 
applied by operational agencies. Moreover, the techniques for the analysis of 
remotely sensed data support and complement the existing capabilities of 
Geoscience Australia, and the hydrologic model assimilation has been 
implemented by the Australian Bureau of Meteorology.   
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END-USER PROJECT IMPACT STATEMENT 

Norman Mueller, Geoscience Australia, Canberra, ACT 

Digital Earth Australia (DEA) is working with Monash University to implement its 
flood mapping system in the Open Data Cube code. The intention is to use 
Monash’s code to map water from Sentinel-1 SAR data and incorporate the 
water extents into DEA’s Water Observations from Space (WOfS) product. 
Success of this work will allow the WOfS product to continue mapping water 
during cloudy periods, filling a large gap in the supply of water information to 
several agencies in Australia including the Murray Darling Basin Authority and the 
Commonwealth Environmental Water Office. 

 

Karen Hudson, Chris Leahy, Bureau of Meteorology, Melbourne, VIC. 

The Bureau of Meteorology has taken a keen interest in the work of the Monash 
University team regarding the Bushfire Natural Hazards CRC project "Improving 
flood forecast skill using remote sensing data". The project has clearly 
demonstrated the potential for remote sensing data to assist in real-time flood 
forecasting applications, as well as highlighting some of the challenges. Over the 
past few years, the Bureau of Meteorology has made opportunistic use of 
available satellite-derived flood extent data during flood events, for example use 
of MODIS imagery to help communicate flood extent in tweets and to track flood 
progression in remote areas with little ground data. 

 



IMPROVING FLOOD FORECAST SKILL USING REMOTE SENSING DATA I REPORT NO. 600.2020 

 8 

 INTRODUCTION 
Floods have dire socio-economic consequences for Australia and much of the 
world. In just the last decade Australia has been the subject of numerous floods 
which have claimed multiple lives and caused damage in excess of a billion 
dollars. The average annual cost of floods over the last 40 years has been 
estimated to be $377 million dollars. Despite this, in March of 2018, the Insurance 
council of Australia declared 823,560 Queensland homes to be unprepared for 
flooding. 

Water and emergency agencies use flood forecasting systems to limit the socio-
economic exposure to floods. Current flood forecasting systems in Australia make 
use of state-of-the-art technology. However, the scientific landscape is 
constantly changing and new opportunities to enhance our flood forecasting 
systems into the future need to be explored. 

These guidelines are based on new research that explored novel ways to 
combine remote sensing data and models to improve flood forecasting 
capability and skill. Key areas include: 

• The use of remotely sensed soil moisture observations to constrain and 
update hydrologic model states, 

• Remotely sensed flood extent mapping and its use to constrain hydraulic 
model estimates of flood extent, depth and velocity. 

Hydrologic flood forecasting models compute the transition of rainfall and runoff 
into streamflow throughout a catchment by simulating key processes. The bulk 
processes represented include evaporation and transpiration of water along 
with the portioning of incident rainfall into surface and sub-surface runoff 
components. Catchment scale measurements of water storage above and 
below ground are scarcely available. Remotely sensed soil moisture observations 
provide hydrological models with additional data that can be used to constrain 
and/or update the model. New remotely sensed soil moisture missions provide a 
promising avenue to improve flood forecasting capability. To provide robust 
results, optimal usage of remotely sensed soil moisture in hydrological flood 
forecasting models is necessary. 

Two-dimensional hydraulic models allow the prediction of water depth and 
velocity everywhere in a floodplain. These models account for flow connectivity 
in the floodplain, and between the floodplain and the river network, thus 
allowing an accurate representation of inundation dynamics at the catchment 
scale. Spatially distributed data are required for the adequate evaluation of a 
model’s predictive performances. The increasing availability of remote sesnsing 
observations of inundation extent and water level provide a synoptic view of the 
flooding dynamics, thus opening opportunities for model verification at a large 
number of locations in the catchment.  

This document provides guidelines for the use of remote sensing data to set-up 
and constrain hydrologic and hydraulic models for riverine flood forecasts in 
unregulated catchments. These guidelines were generated from an analysis of 
three case studies; the Clarence (NSW), the Condamine-Balonne (QLD), and the 
Fitzroy (WA) catchment. Nevertheless, the methodologies and guidelines were 
developed for application to any Australian catchment by incorporating the 
heterogeneity of Australian catchments and datasets available at the 
continental scale.  



IMPROVING FLOOD FORECAST SKILL USING REMOTE SENSING DATA I REPORT NO. 600.2020 

 9 

More specifically, Section 2 provides recommendations for the collection of the 
remote sensing datasets, Section 3 explains the features of the hydrologic and 
hydraulic models, and Section 4 lists guidelines for the use of remote sensing data 
to improve flood forecasting skill. The main sources of uncertainties when using 
remote sensing constrained hydrologic-hydraulic models for flood forecasts and 
the limitations for the application of the proposed guidelines are discussed in 
Section 5. Finally, Section 6 lists the recommended datasets and approaches for 
the case studies analysed within the research project. The guidelines presented 
by this document outline the pragmatic autcomes of an extensive research 
activity; the theoretical details and the full demonstration of the methodologies 
have been presented in the publications listed in Section 7. 
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 DATA COLLECTION 
The following sections detail the datasets required for the set-up, forcing, and 
evaluation of the hydrologic and hydraulic models. Recommendations are 
made based on the availability and quality of data. 

2.1. HYDROLOGIC MODEL 
This section details the datasets required for the implementation, forcing, and 
evaluation of a typical hydrologic model. For the purposes of flood forecasting 
within this document a lumped conceptual rainfall-runoff hydrologic model is 
used. The sub-sections below list recommendations for selection of the datasets 
and provide relevant examples. Table 1 provides a list of datasets that (i) meet 
the minimum requirements and (ii) are freely available under creative commons 
attribution 4.0 license (CC by 4.0).  

2.1.1. Implementation data 
The data sets used throughout this project are outlined in table 1 and described 
in the following sections. 

 Catchment boundaries 

The Australian Geofabric data set details the spatial relationships between 
important hydrological features such as rivers, water bodies, aquifers, and 
monitoring points and can be used to delineate catchment boundaries. 

 Fraction of vegetation cover 

The monthly fraction of vegetation cover aids in the calculation of water 
available for evapotranspiration processes. Consequently, the fraction of 
vegetation plays a role in determining the precipitation available to both 
infiltrate into the soil layers and runoff to form streamflow. As the fraction of 
vegetation generally does not change significantly within a month, the monthly 
data set made available through MODIS is adequate. 

2.1.2. Forcing data 
The successful implementation of any hydrologic model hinges upon the quality 
of forcing data used. The hydrologic model captures the key processes rainfall 
undergoes to become streamflow. Rainfall and potential evapotranspiration 
(PET) form the key data sets that are required and used to represent the 
evapotranspiration process, the partitioning of incident rainfall into surface and 
sub-surface flows, and sub-sequent river flows.  

 Rainfall 

The three main sources of rainfall measurements come from: in-situ gauges, 
ground based weather radars, and satellite-based weather sensors. A robust 
calibration of rainfall-runoff models to historical data provides an essential 
foundation for a flood forecasting model. The calibration of rainfall runoff models 
has typically been conducted using measurements from in-situ gauges. The 
required rain gauge density depends on catchment size and consequently the 
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spatial distribution of rainfall across the catchment. When available, the use of 
radar-based measurements to calibrate the rainfall-runoff model can be 
considered a suitable substitute for catchments with poor in-situ gauge density. 

Regardless of the source of measurement, rainfall observations are prone to 
errors which can manifest for a number of different reasons. Using the Australian 
Water Availability Project (AWAP) Australian Bureau of Meteorology (BoM) 
gridded rainfall data as a benchmark, Robertson et al. (2015)1 developed a 
quality control strategy to detect and remove in-situ rainfall observations which 
are: 

• Anomalously large, 
• Anomalously small, 
• Not associated with the correct time stamp. 

They demonstrated that pre-processing of in-situ rainfall data with the AWAP BoM 
gridded daily rainfall allows for improved runoff simulation skill in both calibration 
and validation periods. 

In-situ rainfall data is commonly used for flood forecasting purposes throughout 
this project and recommended for future operational flood forecasting. The 
AWAP BoM gridded daily rainfall product is recommended for use in quality 
control purposes. 

 Potential Evapotranspiration 

In conjunction with the fraction of vegetation cover, PET rates are necessary to 
determine the partitioning of rainfall into various runoff processes. Since PET 
predominantly influences seasonal water availability, a resolution finer than one 
month is unlikely to provide significant improvements to flood forecasting 
capability. Consequently, the AWAP PET data set is deemed to be more than 
adequate for flod forecasting purposes.  

2.1.3. Evaluation data 
Evaluation of the hydrologic model is typically conducted by calibrating the 
model to streamflow time series data. An independent data set of 
meteorological forcings and observed streamflow is then used to validate the 
calibration of the model. Research conducted as part of this project explored 
methods to improve the model calibration process using remotely sensed soil 
moisture data.  

 Streamflow 

To forecast future flood events, which have similar characteristics to historic flood 
events, continuous rainfall runoff models are typically calibrated to historic 
streamflow records. Historic streamflow records typically estimate streamflow 
quantities based on rating curves, which translate a given water depth to a flow 
volume. Consequently, it is essential that the rating curve is up to date, and given 
practical limitations, provides a reasonable estimate of flood volume. Discharge 
and water level time series data are obtained from the BoM. 

 
1 Robertson, D. E., Bennett, J. C., & Wang, Q. J. (2015.). A strategy for quality controlling hourly 
rainfall observations and its impact on hourly streamflow simulations. 
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 Soil moisture 

Soil moisture data have been used throughout this project to improve rainfall-
runoff models thereof by: 

• Forming an additional data-set to be used in calibration, 

• Improving the understanding of incident rainfall, and 

• Updating model states.  

Soil moisture observations which are made in a way that they are representative 
of catchment soil moisture states can provide detailed information regarding 
antecedent soil moisture conditions and consequently are extremely beneficial. 
In-situ soil moisture observations exhibit good temporal resolution at a variety of 
depths within the soil layer. However, in-situ soil moisture observations commonly 
do not exist or represent the catchment average which is required. Alternatively, 
remotely sensed soil moisture observations can represent the catchment 
average soil moisture, albeit for a near-surface soil layer for a snapshot in time 
every few days. Furthermore, remotely sensed soil moisture observations are 
available for the majority of catchments. In this project the Soil Moisture Ocean 
Salinity (SMOS) remotely sensed soil moisture ascending product obtained from 
Centre Aval de Traitement des Données (CATDS) is used. 

Example of datasets. This project primarily uses SMOS remotely sensed soil 
moisture data. However, depending on the application, location, and time 
period available for calibration this dataset may not be the most useful. The user 
should select a remotely sensed soil moisture product based on reported 
accuracy, application, and period of time for which the data is to be used. Both 
the SMOS and Soil Moisture Active Passive (SMAP) satellites are currently 
observing soil moisture remotely. 
TABLE 1: RECOMMENDED DATASETS FOR THE IMPLEMENTATION AND EVALUATION OF THE 
HYDROLOGIC MODEL 

 Data type Freely available datasets 
throughout Australia 

Features 

Implementation data Australian Hydrologic 
Geofabric 

http://www.bom.gov.au/wa
ter/geofabric/index.shtml 

Spatial relationships 
between important 
hydrological features such 
as rivers, water bodies, 
aquifers, and monitoring 
points 

Fractional cover of 
vegetation 

http://www.auscover.org.au
/datasets/fractional-cover-
modis/ 

500 m resolution, 1-month 
composite. 

Forcing data Rainfall http://www.bom.gov.au/cli
mate/data/ 

In-situ gauged rainfall 
observations at hourly 
intervals. 

Rainfall http://www.bom.gov.au/cli
mate/austmaps/metadata-
daily-rainfall.shtml 

Gridded daily rainfall data. 

PET http://www.csiro.au/awap/ Gridded monthly PET data. 

Evaluation data Streamflow http://www.bom.gov.au/wa
terdata/ 

In-situ gauged water levels 
converted to streamflow at 
hourly intervals. 

Remotely sensed soil 
moisture 

https://www.catds.fr/ Ascending pass level 3 
SMOS soil moisture data.  

http://www.bom.gov.au/water/geofabric/index.shtml
http://www.bom.gov.au/water/geofabric/index.shtml
http://www.auscover.org.au/datasets/fractional-cover-modis/
http://www.auscover.org.au/datasets/fractional-cover-modis/
http://www.auscover.org.au/datasets/fractional-cover-modis/
http://www.bom.gov.au/climate/data/
http://www.bom.gov.au/climate/data/
http://www.bom.gov.au/climate/austmaps/metadata-daily-rainfall.shtml
http://www.bom.gov.au/climate/austmaps/metadata-daily-rainfall.shtml
http://www.bom.gov.au/climate/austmaps/metadata-daily-rainfall.shtml
http://www.csiro.au/awap/
http://www.bom.gov.au/waterdata/
http://www.bom.gov.au/waterdata/
https://www.catds.fr/
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2.2. HYDRAULIC MODEL 
This section details the datasets required for the implementation, forcing 
(boundary conditions), and evaluation of the hydraulic model. The paragraphs 
below list the recommendations for selection of the datasets and provide 
relevant examples. Table 2 provides a list of datasets that (i) meet the minimum 
requirements and (ii) are freely available under creative commons attribution 4.0 
license (CC by 4.0) at the continental scale.  

2.2.1. Implementation data 
Hydraulic model implementation requires a representation of the morphology of 
the floodplain and of the river, and information on land cover. These datasets 
required for model implementation allow the analysis of different flood events 
and scenarios. The updating of these datasets is required only if the catchment 
undergoes relevant morphological and land cover changes. A change is 
defined relevant if the currently used morphological and/or land cover data are 
no longer reliable representations of the catchment conditions. 

 Digital Elevation Model 
A Digital Elevation Model (DEM) is a raster in which each cell value represents its 
elevation. A DEM is hence a representation of the catchment morphology 
including valley slope and flow connectivity in the floodplain and between the 
floodplain and the river network. An accurate DEM is essential for the adequate 
modelling of inundation dynamics. The accuracy of a DEM is determined 
primarily by the resolution of the measurements (that is the distance between 
sampling points), the processing of the original dataset to remove bias and 
artefacts (e.g. vegetation canopies), and the complexity of the observed area. 
Albeit, in broad terms, the higher the resolution, the higher the accuracy. 
Selection of an adequate DEM resolution for the implementation of a hydraulic 
model must account for the following factors:  

• Computational time. The finer the DEM resolution, the higher the number 
of cells used for the representation of the catchment area, the larger the 
computational time and the larger the memory usage. Consequently, it is 
imperative to achieve the optimal trade-off between DEM resolution and 
computational cost. The optimal DEM resolution is the pixel size that 
maintains enough morphological detail for the purpose of the modelling 
exercise while allowing its practical feasibility. 

• Catchment morphology. The pixel size must allow the representation of 
the main catchment morphological features. In large, lowland, nearly flat 
catchments, floodplain features can be adequately represented by a 
pixel size up to 100 m; conversely, steep areas with a complex morphology 
require a finer resolution, with an upper boundary of 30 m. 

• Purpose of the modelling study. Models used for flood forecast and land 
management planning generally require finer resolution than models 
used for scenario analysis under climate change conditions. A fine 
resolution terrain dataset may provide spurious results when the forcing 
data are affected by high uncertainty. 

• Data used for model evaluation. The pixel size of the terrain data should 
be commensurate with the resolution of the observations used for model 
evaluation. Accurate evaluation of model predictions of floodplain 
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inundation extent can be difficult when only coarser observations are 
available (section 2.2.3). 

Example of datasets. DEMs at the continental to global scale are derived from 
satellite measurements and have 101-102 m (order of magnitude difference) 
resolution. Notable examples are the Shuttle Radar Topography Mission (SRTM, 
NASA), the ASTER-DEM (ASTER GDEM, Ministry of Economy, Trade, and Industry of 
Japan in partnership with NASA), and the TanDEM-X DEM (German Aerospace 
Centre). The SRTM data where acquired in 2001 with a 3 arc-sec (~ 90 m) 
resolution. The post-processing of the SRTM-DEM led to terrain datasets widely 
used in hydraulic modelling such as the DEM-H (the Australian SRTM 
Hydrologically Enforced Digital Elevation Model 2), and the Merit Hydro3. Airborne 
LiDAR data can have 10-1 -100 meter resolution, but their spatial coverage is 
limited. The reader is invited to verify the availability of LiDAR data for their area 
of interest using the webservice maintained by Geoscience Australia at 
https://elevation.fsdf.org.au/. A comparison between DEM-H, TanDEM-X DEM, 
LiDAR data, and field measurements and their potential impacts on flood 
modelling in the Condamine-Balonne catchment (QLD) showed that riparian 
vegetation can cause large errors in both the DEM-H and TanDEM-X datasets4  . 

 River bathymetry 
Accurate modelling of river flow dynamics is essential to simulate floodplain 
inundation. Bathymetric data are thus critical to the application of hydraulic 
models. The implementation of hydraulic models for the prediction of floodplain 
inundation requires at least the following information: 

• river network connectivity to adequately simulate the flow paths; 
• river flow capacity to correctly estimate the start of floodplain inundation; 
• river width to incorporate the impacts of geometrical complexity on flood 

wave routing. 

Remote sensing data generally allow the detection of flow paths and of river 
width. The estimation of river flow capacity relies on information of river depth 
and shape.  These latter quantities cannot be systematically retrieved from a 
remote location and require field data. Clearly, it is impractical to measure river 
bathymetry along the total river length, especially in large basins and when 
considering that river geometry can change over time.  

 

 

 

 
2 Gallant, J., Wilson, N., Dowling, T., Read, A., Inskeep, C. 2011. SRTM-derived 1 Second Digital 
Elevation Models Version 1.0. Record 1. Geoscience Australia, Canberra. 
http://pid.geoscience.gov.au/dataset/ga/72759 
3 Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G. H., & Pavelsky, T. M. (2019). MERIT Hydro: 
A High-Resolution Global Hydrography Map Based on Latest Topography Dataset. Water 
Resources Research, 55(6), 5053-5073.  10.1029/2019wr024873 
4 Wang, A., Grimaldi, S., Shaadman, S., Li, Y., Pauwels, V., Walker, J.P., 2018. Evaluation of TanDEM-
X and DEM-H digital elevation models over the Condamine-Balonne catchment (Australia). In, 
Hydrology and Water Resources Symposium (HWRS 2018): Water and Communities (pp. 989-1003). 
Melbourne: Engineers Australia. 

https://elevation.fsdf.org.au/
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The following guidelines were formulated to allow a cost-effective assessment of 
river bathymetry for the implementation of hydraulic flood forecasting models: 

• A rectangular, width-varying shape with uniform longitudinal slope has 
been identified as the most effective simplified geometrical model. River 
width can be derived from remote sensing information. 

• Where river width cannot be systematically retrieved from remote sensing-
data (e.g. less than 30 m wide rivers covered by trees), a parabolic cross 
section shape can be used. 

• For both the rectangular and the parabolic geometries, depth values can 
be assessed using a combination of continental/global studies and limited 
field data (at least three measurements). The limited field data can rely 
on gauging stations or targeted, cost-effective field collections. Figure 1 
provides a graphical summary and the references to the 
continental/global studies required for the implementation of the 
proposed methodology5. In rivers a few hundred meters wide, the RiBEST 
method can be applied. This method requires a DEM as input and it is 
based on the analysis of the geometry of the floodplain for cross sections 
perpendicular to the main river stem. A sensible change of the floodplain 
slope allows the identification of the river banks and the estimation of the 
maximum river depth6, 7. 

Where field data are available, the rapid yet accurate interpolation of field 
samplings can be achieved using a two stage process. First, use of conformal 
mapping allows the development of a coordinate system fitted to the river 
geometry; second, use of a radial interpolation over this coordinate system yields 
to the three-dimensional representation of river bathymetry8. 

 Land Cover information 
Different land cover types (e.g. grassland, bushes, and forests) have a different 
impact on surface flow dynamics. In hydraulic modelling, this effect is mimicked 
by the roughness parameter according to look up tables9,10. Land cover 
information at the catchment scale is routinely derived from optical remote 
sensing data. The following recommendations are provided: 

• Resolution: the pixel size should be smaller than or equal to the pixel size 
of the DEM. 

 
5 Grimaldi, S., Li, Y., Walker, J.P., Pauwels, V.R.N., 2018. Effective Representation of River Geometry 
in Hydraulic Flood Forecast Models. Water Resources Research. 54, 1031-1057 
6 Domeneghetti, A. (2016). On the use of SRTM and altimetry data for flood modeling in data-sparse 
regions. Water Resources Research, 52(4), 2901-2918.  10.1002/2015WR017967 
7 Molari, G., Grimaldi, S., Paron, P., Walker, J., Pauwels, V., Domeneghetti, A., 2020/1. RiBEST – a 
tool for river bathymetry and hydraulic parameters estimation. In preparation 
8 Hilton, J.E., Grimaldi, S., Cohen, R.C.Z., Garg, N., Li, Y., Marvanek, S., Pauwels, V.R.N., Walker, J.P., 
2019. River reconstruction using a conformal mapping method. Environmental Modelling & 
Software. 119, 197-213 
9 Chow, V. (1959). Open-channel Hydraulics. New York (USA): Mc Graw-Hill. 
10  Sadeh, Y.; Cohen, H.; Maman, S.; Blumberg, D.G. Evaluation of Manning’s n Roughness 
Coefficient in Arid Environments by Using SAR Backscatter. Remote Sens. 2018, 10, 150 
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• Time: the land cover dataset should reflect the characteristics of the 
catchment for the selected modelling period. 

• Land use information from local land management agencies might be 
useful to complement RS-derived land cover data (e.g. crops subject to 
flooded irrigation). 
 

 

 

Catchment 
area, A 

The catchment area can be retrieved from near global datasets 
(e.g. HydroSHEDS11) or computed using the Australian 
GEOFABRIC (Australian Bureau of Meteorology). 

   

Discharge 
at bank full, 

Q  

Empirical formulation: Q=αAβ; α and β are provided by studies at 
the near global scale12, and at the continental scale13. 

    

Depth, d; 
width, w, 

 

Depth: empirical formulations  Remote sensing-derived 
width  

d=γQδ; γ and δ are provided by 
studies at the near global 
scale14,15, and at the continental 
scale16,17. 

 
 

River width was derived 
from remote sensing 
data at the near global 
scale18, and at the 
continental scale19. 

FIGURE 1: SCHEMATIC FOR THE ASSESSMENT OF RIVER BATHYMETRY (THE ARROWS INDICATE THE 
CONSEQUENTIAL STEPS)5. 

 

 
11 Lehner, B., Verdin, K., & Jarvis, A. (2008). New Global Hydrography Derived From Spaceborne 
Elevation Data. Eos, Transactions American Geophysical Union, 89(10), 93-94.  
10.1029/2008EO100001 
12 Andreadis, K. M., Schumann, G. J. P., & Pavelsky, T. (2013). A simple global river bankfull width 
and depth database. Water Resources Research, 49(10), 7164-7168.  10.1002/wrcr.20440 
13 Gordon, N. G. (1996). The Hydraulic Geometry of the Acheron River, Victoria, Australia. 
14 Moody, J. A., & Troutman, B. M. (2002). Characterization of the spatial variability of channel 
morphology. Earth Surface Processes and Landforms, 27(12), 1251-1266.  10.1002/esp.403 
15 Andreadis, K. M., Schumann, G. J. P., & Pavelsky, T. (2013). A simple global river bankfull width 
and depth database. Water Resources Research, 49(10), 7164-7168.  10.1002/wrcr.20440 
16 Stewardson, M. (2005). Hydraulic geometry of stream reaches. Journal of Hydrology, 306(1), 97-
111.  http://dx.doi.org/10.1016/j.jhydrol.2004.09.004 
17 De Rose, R. C., Stewardson, M. J., & Harman, C. (2008). Downstream hydraulic geometry of 
rivers in Victoria, Australia. Geomorphology, 99(1), 302-316.  
http://dx.doi.org/10.1016/j.geomorph.2007.11.008 
18 Yamazaki, D., O'Loughlin, F., Trigg, M. A., Miller, Z. F., Pavelsky, T. M., & Bates, P. D. (2014). 
Development of the Global Width Database for Large Rivers. Water Resources Research, 50(4), 
3467-3480.  10.1002/2013WR014664 
19 Hou, J., van Dijk, A. I. J. M., Renzullo, L. J., Vertessy, R. A., & Mueller, N. (2019). 
Hydromorphological attributes for all Australian river reaches derived from Landsat dynamic 
inundation remote sensing. Earth Syst. Sci. Data, 11(3), 1003-1015.  10.5194/essd-11-1003-2019 
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2.2.2. Boundary conditions 
Boundary conditions are required for modelling specific flood events. First, 
boundary conditions define how much water is entering the catchment; this 
information can be provided by discharge gauge stations, rain observations, or 
by the hydrologic model. This type of boundary conditions is often reffered to as 
input conditions. Second, boundary conditions define the flow routing at the 
edges of the computational domain (i.e. at the edges of the DEM). If the river 
mouth is included in the modelled area, the downstream boundary condition is 
given by measured or predicted (e.g. tidal model) water level time series. If the 
river mouth is not modelled, the slope of the downstream valley has to be 
assessed using the DEM to enable the application of normal flow boundary 
conditions. The following points provide recommendations for the selection of 
the datasets used to prepare the boundary conditions: 

• The accuracy of these datsets, with specific regard to the input 
conditions, is crucial for the accuracy of the model (section “Uncertainties 
and limitations”), hence, extreme care must be taken to handle 
inaccuracies and gaps in the measurements. 

• The temporal resolution of the dataset must allow for the representation 
of the relevant features of the time series: rising limb, flood peak, 
decreasing limb, tidal range. This resolution does not impact the model 
computational time; hence, the finest reliable resolution can be used. 

2.2.3. Evaluation data 
Evaluation of floodplain inundation prediction dynamics requires the 
quantitative comparison between model results and observations.  Such a 
quantitative comparison allows the verification of the model implementation 
and/or to calibrate model parameters. Gauged data and high-water marks 
have been traditionally used for this purpose; crowd sourced data could also be 
used in densely populated areas. RS observations have gained extensive interest 
as they allow a synoptic view of large areas and the monitoring of remote 
locations. This section provides guidelines for the selection of the RS observations. 

A) Remote sensing sensor and remote sensing-derived observations. 
• Optical and Synthetic Aperture Radar (SAR) instruments enable the 

mapping of inundation extents. These instruments can provide high to low 
resolution data. Remote sensing data spatial resolution is the size of the 
smallest object that can be resolved on the ground; the image pixel size 
quantifies the spatial coverage of a pixel in the real world. For instance, 
Sentinel-1 SAR data have ~20 m resolution and ~10 m pixel spacing. A 
sensors’ resolution can be fine (~100 m), medium (~101 m), or low (~102 m). 

• Passive microwave and radar altimeter instruments provide useful 
information only for large catchments (>103 m resolution and river width 
larger than 102 m), consequently, use of data from optical and SAR 
instruments is recommended for the purpose of constraining the hydraulic 
model in Australian catchments20. 

 
20 Grimaldi, S., Li, Y., Pauwels, V.R.N., Walker, J.P., 2016. Remote Sensing-Derived Water Extent and 
Level to Constrain Hydraulic Flood Forecasting Models: Opportunities and Challenges. Surveys in 
Geophysics. 37, 977-1034 
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• Optical instruments allow flood monitoring only during day time, in cloud 
free conditions, and in areas without thick tree canopies; conversely, SAR 
instruments are not affected by these limitations. SAR sensors are then to 
be considered as the primary source of information. Optical sensors can 
provide relevant complementary information, nevertheless the user must 
be aware of potential omission errors (clouds, cloud shadows, vegetation 
canopies). Consequently, the user is advised to use optical data only to 
detect omission errors in the model results. 

• SAR and optical sensors are used to derive floodplain inundation extent; 
this remote sensing-derived inundation extent can then be overlaid onto 
a DEM to extract the planar position and elevation of the points at edge 
between the flooded and the dry area (wet/dry boundary points). 

B) Resolution. 
• High resolution sensors (or sensor mode) have a lower acquisition 

frequency and target smaller areas than medium to low resolution sensors. 
Consequently, the use of medium resolution RS data allows to rely on a 
larger number of observations acquired over larger areas.  

• Remote sensing-derived observations are compared with model results. 
The resolution of the hydraulic model is defined by the resolution of the 
terrain implementation data: fine resolution observation data are not 
strictly required to evaluate medium resolution results. 

• Medium to coarse resolution observations can be used to monitor 
floodplain inundation dynamics in large, lowland floodplains; high 
resolution observations are strictly required in urban areas. 

C) Acquisition time.  
• Images acquired during the rising limb and close to the flood peak are 

expected to allow detecting sensible variations of inundation extent and 
level. The use of these observations is recommended for the evaluation of 
floodplain inundation models20, 21, 22.  

• Use of images acquired during the late stages of valley filling events 
require some further consideration. Variations of flood extent can be very 
difficult to detect when a valley is full, meaning that acquisitions at 
different times can provide similar information. In these scenarios, use of 
remote sensing-derived water level could allow the detection of the 
temporal dynamics of the flood event. Nevertheless, adequate estimates 
of remote sensing derived water level require high resolution and high 
accuracy DEMs. 

• The measured or predicted flood hydrograph at the upstream location of 
the catchment can be used to assess the timing of the rising limb and 
flood peak and hence identify the optimal acquisition window.  

D) Spatial coverage. 
• The larger the footprint of the observed area, the higher the information 

content (at a lower spatial resolution, as explained in point B).  

 
21 Pauwels, V., Walker, J., Grimaldi, S., Wright, A., Li, Y., 2020. Improving flood forecast using 
remote sensing data - annual report 2019-2020. Melbourne, in: Bushfire and Natural Hazards CRC. 
22 Dasgupta, A., 2020. Optimizing Flood Extent Assimilation for Improved Flood Inundation Forecasts. 
In. Mumbai: IITB Monash Research Academy. 
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• Use of images acquired over the upstream area of the catchment is 
recommended to improve the inundation modelling accuracy in the 
downstream areas of the catchment. 

• Acquisitions targeting areas where a small variation of discharge/water 
level leads to a large variation of flood extent (thereafter referred to as 
critical areas) are preferred. Examples include: areas protected by levee 
systems, gorges, and large floodplains. 

• Analyses of databases of historical observations of surface water such as 
Water Observations from Space23 can support the identification of these 
critical areas. 

• Analysis of the hydraulic behaviour of the catchment and of the model 
response to different parameter or input time series is an effective 
methodology to identify critical areas and morphological singularities. 
More specifically, it is recommended to complete a sensitivity analysis of 
the impact of different parameters and input time series on the prediction 
of flood extent and levels. The areas with morphological singularities can 
then be identified as the areas where small variations of the parameters’ 
values or small discrepancies in the input datasets result in large variations 
of flood extents and levels. Targeted observations of such areas enable to 
effectively evaluate a model’s performance. For instance, small variation 
of parameter values can lead to large variations in the prediction of flood 
extents in areas with levee systems24.  Moreover, small discrepancies in the 
input flood hydrographs can result in sensibly different predictions of flood 
extents in presence of gorges and natural restrictions25. 

Examples of datasets. A notable example of remote sensing -derived inundation 
layers retrieved from optical data at the continental scale is Water Observations 
from Space; an example of a global dataset is provided at https://global-
surface-water.appspot.com/ 26. A number of algorithms have been proposed for 
the retrieval of flood extents from remote sensing data27. This BNHCRC project 
has focussed on the mapping of floods in areas with emerging vegetation using 
one SAR acquisition and commonly available datasets28, that is, a common 
scenario in Australian applications. The proposed algorithm will be available via 
GitHub: https://github.com/GeoscienceAustralia/dea-sar-flood-veg (under 
development).  

 
23 Mueller, N., Lewis, A., Roberts, D., Ring, S., Melrose, R., Sixsmith, J., . . . Ip, A. (2016). Water 
observations from space: Mapping surface water from 25 years of Landsat imagery across 
Australia. Remote Sensing of Environment, 174, 341-352. http://dx.doi.org/10.1016/j.rse.2015.11.003 
24 Pauwels, V., Walker, J., Grimaldi, S., Wright, A., Li, Y., 2019. Improving flood forecast using 
remote sensing data - annual report 2018-2019. Melbourne, in: Bushfire and Natural Hazards CRC 
25 Grimaldi, S., Schumann, G.J.-P., Shokri, A., Walker, J.P., Pauwels, V.R.N., 2019b. Challenges, 
Opportunities, and Pitfalls for Global Coupled Hydrologic-Hydraulic Modeling of Floods. Water 
Resources Research. 55, 5277-5300 
26 Pekel, J.-F., Cottam, A., Gorelick, N., & Belward, A. S. (2016). High-resolution mapping of global 
surface water and its long-term changes. Nature, 540(7633), 418-422.  Doi: 10.1038/nature20584 
27 Dasgupta, A., Grimaldi, S., Ramsankaran, R.A.A.J., Pauwels, V.R.N., Walker, J.P., 2018. Towards 
operational SAR-based flood mapping using neuro-fuzzy texture-based approaches. Remote 
Sensing of Environment. 215, 313-329 
28 Grimaldi, S., Xu, J., Li, Y., Pauwels, V.R.N., Walker, J.P., 2020. Flood mapping under vegetation 
using single SAR acquisitions. Remote Sensing of Environment. 237, 111582 

https://github.com/GeoscienceAustralia/dea-sar-flood-veg
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TABLE 2: RECOMMENDED DATASETS FOR THE IMPLEMENTATION AND EVALUATION OF THE 
HYDRAULIC MODEL. 

 Data type Freely available datasets at the 
continental scale; reference(s) 

Features 
IM

PL
EM

EN
TA

TIO
N

zr
ill

an
di

t 

Digital 
elevation 
model 

1 second SRTM Derived Hydrological Digital 
Elevation Model (DEM-H)1; Geoscience 
Australia 
https://elevation.fsdf.org.au/; 
http://www.ga.gov.au/scientific-
topics/national-location-
information/digital-elevation-data  

Pixel size: 1arc-sec (~ 30m). 

The DEM-H captures flow 
paths based on SRTM 
elevations and mapped 
stream lines (ANUDEM 
software).  

River width Temporal and spatial river width dynamics, 
flow regime, and river gradient for 1.4 
million Australian river reaches11, Australian 
National University. 
http://wald.anu.edu.au/data_services/dat
a/hydromorphological-attributes-for-all-
australian-river-reaches/  

This dataset was 
developed based on 
surface water recurrence 
information from WOfS 
and GIS-based 
hydrological features from 
the Australian Geofabric.  

Land cover  National Dynamic Land Cover Dataset of 
Australia; Geoscience Australia. 
http://www.ga.gov.au/scientific-
topics/earth-obs/accessing-satellite-
imagery/landcover 

Pixel size: 250 m. 

 

FO
RC

IN
G

 

Discharge 
and water 
level time 
series 

Gauged data: Water data online, 
Australian Bureau of Meteorology. 
http://www.bom.gov.au/waterdata/  
 
Modelled data: hydrological model. 

In-situ gauged water 
levels converted to 
streamflow at hourly 
intervals. 

EV
A

LU
A

TIO
N

 

Flood extent OPTICAL DATA: 
Water Observations from Space (WOfS), 
Geoscience Australia. 
WOfS displays the detected surface water 
from the Australia-wide Landsat satellite 
imagery archive since 1987 to present. 
https://www.ga.gov.au/scientific-
topics/community-safety/flood/wofs 
https://maps.dea.ga.gov.au/  

Pixel size: 25 m. 

Acquisition frequency: 8 
to 16 days. 

 SAR DATA:   

https://github.com/GeoscienceAustralia/d
ea-sar-flood-veg  (under development) 

 

Wet/dry 
boundary 
points 

There are no readily available datasets. 

The retrieval of the remote sensing-derived 
wet/dry boundary points in the Clarence 
catchment has been shown by published 
studies29 , 30 

Recommended when 
high resolution and 
accuracy DEMs are 
available. 

 
29 Pauwels, V., Walker, J., Grimaldi, S., Wright, A., Li, Y., 2020. Improving flood forecast using 
remote sensing data - annual report 2019-2020. Melbourne, in: Bushfire and Natural Hazards CRC. 

30 Mason, D.C., Schumann, G.J.P., Neal, J.C., Garcia-Pintado, J., Bates, P.D., 2012. Automatic near 
real-time selection of flood water levels from high resolution Synthetic Aperture Radar images for 
assimilation into hydraulic models: A case study. Remote Sensing of Environment. 124, 705-716 

https://elevation.fsdf.org.au/
http://www.ga.gov.au/scientific-topics/national-location-information/digital-elevation-data
http://www.ga.gov.au/scientific-topics/national-location-information/digital-elevation-data
http://www.ga.gov.au/scientific-topics/national-location-information/digital-elevation-data
http://wald.anu.edu.au/data_services/data/hydromorphological-attributes-for-all-australian-river-reaches/
http://wald.anu.edu.au/data_services/data/hydromorphological-attributes-for-all-australian-river-reaches/
http://wald.anu.edu.au/data_services/data/hydromorphological-attributes-for-all-australian-river-reaches/
http://www.ga.gov.au/scientific-topics/earth-obs/accessing-satellite-imagery/landcover
http://www.ga.gov.au/scientific-topics/earth-obs/accessing-satellite-imagery/landcover
http://www.ga.gov.au/scientific-topics/earth-obs/accessing-satellite-imagery/landcover
http://www.bom.gov.au/waterdata/
https://www.ga.gov.au/scientific-topics/community-safety/flood/wofs
https://www.ga.gov.au/scientific-topics/community-safety/flood/wofs
https://maps.dea.ga.gov.au/
https://github.com/GeoscienceAustralia/dea-sar-flood-veg
https://github.com/GeoscienceAustralia/dea-sar-flood-veg
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 NUMERICAL MODEL SELECTION 
Both the hydrologic and hydraulic models need to be carefully and correctly 
setup for the value of remote sensing data to be realised. The following sections 
outline possible steps to choose and setup hydrologic and hydraulic models. 

3.1.  HYDROLOGIC MODEL 

3.1.1. Model structure, purpose and limitations 
With a myriad of rainfall-runoff models available it is prudent to select a model 
that meets key requirements. To support the selection of a rainfall-runoff model 
which has the capability to take advantage of remotely sensed soil moisture for 
flood forecasting purposes the following recommendations are made: 

• Use of a continuous model which simulates lumped catchment processes 
such as soil moisture dynamics, surface and sub-surface storage and 
flows, and interactions between PET and the associated water storages. 
It is this distinction between continuous rainfall-runoff models and event-
based rainfall runoff models that makes continuous rainfall-runoff models 
well suited to take advantage of the information that remotely sensed soil 
moisture observations provide.  

• The model should have proven ability to simulate streamflow amongst 
Australian catchments. 

• The model can be used in real time to produce ensemble forecasts. 

• The spatial representation of rainfall should be covered within a sub-
catchment or grid. 
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The dominant processes need to be well represented31. A suitable model that fits 
these recommendations and has been implemented in forming these 
recomendations is the GRKAL variant of GR4J depicted in figure 2. GRKAL is a 
conceptual rainfall-runoff model that is designed to capture the essential surface 
layer soil moisture dynamics necessary to incorporate remotely sensed soil 
moisture observations.  

 

More complex physically based models may simulate rainfall-runoff dynamics 
with greater precision and generate more detailed output. However, as the 
model representation becomes finer and more distributed a larger number of 
parameters need to be calibrated. The computational time becomes 
cumbersome as well. Further, it is not realistic to expect historic streamflow 
records to always exhibit similar characteristics such as the timing, duration and 
peak flow to those which will be observed in future flood events. It is for this reason 
that conceptual or physically based rainfall runoff models are preferred to those 
models which provide little explanation or reasoning for the occurrence of 
events.  
  

 
31  Francois, C., Quesney, A., & Ottlé, C. (2003). Sequential Assimilation of ERS-1 SAR Data into a 

Coupled Land Surface–Hydrological Model Using an Extended Kalman Filter. J. 
Hydrometeorol., 4(2), 473–487. https://doi.org/10.1175/1525-
7541(2003)4<473:SAOESD>2.0.CO;2 

 

Figure 2: a representation of how GRKAL treats key rainfall runoff processes. Adapted from (Francois 
et al., 2003). 
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3.1.2. Model outputs 
The key output from rainfall-runoff models is the streamflow at any given time 
step. This streamflow volume can be converted to a depth in a forecasting 
situation using a rating curve or used to force a hydraulic model. Depending on 
the model, surface layer and root zone soil moisture profiles can also be 
extracted.  

3.2. HYDRAULIC MODEL 

3.2.1. Model structure, purpose, and limitations 
With the large number of hydraulic models available32, it is important to select a 
model that allows the accurate prediction of floodplain inundation dynamics 
and facilitates the comparison between modelled and observed inundation 
extents and level. For this purpose, the following recommendations are made: 

• Use of a 2-dimensional (2-D) model is essential to adequately predict 
flow connectivity in the floodplain and between floodplain areas and 
the river network; 

• The numerical code must adequately solve the shallow water equations 
and hence enforce the conservation of mass and momentum. 

• Simplified formulations of the conservation of momentum, such as the 
diffusive and the inertial formulation, are adequate for the modelling of 
floodplain inundation (where the vertical gradient of flow velocity is 
negligible) and allow a reduced computational time compared to the 
numerical codes solving the full shallow water equations.  

• Raster-based models have a higher practicality as DEMs can be used to 
implement the model without further post-processing and the output 
data have the same structure as the remote sensing observations. 

The above points allow the selection of a model that can be used for the 
prediction of floodplain inundation dynamics. Nevertheless, it is imperative to 
state that such (relatively simple) models cannot be used for the investigation of: 

• tsunamis; 
• dam-breaks; 
• solid transport, erosion, deposition, fluvial geomorphology, landscape 

evolution; 
• bridge, levees, river banks scour; 
• interaction with the groundwater table; 
• manholes, sewage and aqueduct systems; or 
• flow in buildings. 

All the phenomena listed above require more complex (and time consuming) 
numerical models which are capable of solving the Navier-Stoke equations. One 
notable example of a numerical model formulated for the modelling of tsunamis 
and dam-breaks is ANUGA (https://anuga.anu.edu.au/).  One notable example 

 
32 Néelz, S., & Pender, G. (2013). Benchmarking the latest generation of 2D hydraulic 
modelling packages. Environment Agency, Horison House, Deanery Road, Bristol, BS1 
9AH 

https://anuga.anu.edu.au/
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of a numerical model formulated for the modelling of fluvial geomorphology is 
Caesar Lisflood, (https://sourceforge.net/projects/caesar-lisflood/). 

The model used in formulating these guidelines is based on LISFLOOD-FP33 and 
uses the finite difference method to solve the inertial approximation of the 
shallow water equations. This model has proved to be accurate against 
analytical solutions and hydrodynamic models, while also being more 
computationally efficient than diffusive models. Nevertheless, the methodologies 
presented in these guidelines for the comparison between modelled and 
remote-sensing derived inundation extent and level can be applied when using 
any other 2-dimensional hydraulic model. 

3.2.2. Model outputs 
At any computational time step, 2-D hydraulic models compute water depth 
and discharge for each cell of the computational domain. Water levels are 
computed by adding water depth to the DEM elevation. The average cell flow 
velocity is the ratio between the discharge and the flow area (water depth 
multiplied by the cell size). Selection of the output data should be based on the 
following considerations: 

• Scope of the study; e.g. is the maximum flood extent the only prediction 
of interest? 

• Availability of evaluation data; remote sensing-derived acquisitions 
available at discrete (often larger than daily) time intervals. 

• Features of the flood event; in many catchments, the receding phase is 
extremely slow and it can be studied using a few model predictions per 
day. 

 
33 Bates, P. D., Horritt, M. S., & Fewtrell, T. J. (2010). A simple inertial formulation of the shallow 
water equations for efficient two-dimensional flood inundation modelling. Journal of Hydrology, 
387(1–2), 33-45.  http://dx.doi.org/10.1016/j.jhydrol.2010.03.027 
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 USE OF REMOTE SENSING DATA TO IMPROVE 
MODEL FORECAST SKILL 

These guidelines assert that remote sensing data can be been used to: 

• Aid in the calibration of rainfall-runoff models for ungauged locations; 

• Provide a pragmatic basis to choose between combinations of 
hydrologic model and remotely sensed soil moisture product; 

• Update intermediate soil moisture states to improve forecast skill; 

• Enhance performance metrics; 

• Verify and optimise the implementation of the hydraulic model; and 

• Calibrate the parameters of the hydraulic model. 

The rest of this section provides the guidelines for the use of remote sensing data 
to improve the forecasting capability of hydrologic and hydraulic models. 

4.1. HYDROLOGIC MODEL 

4.1.1. Performance metrics 
For streamflow simulation there is no widely regarded performance metric which 
consistently outperforms other performance metrics. The commonly applied 
approach in Australia the use an unweighted average of metrics which 
represent low, medium, and high flows and overall bias34 is recommended.  

4.1.2. Multi-objective calibration 
Typically, rainfall runoff models are calibrated using historical streamflow to 
optimize streamflow simulations. Multi-objective calibration methods have been 
used to find a balance between competing objective functions which rank the 
rainfall-runoff models’ ability to simulate streamflow and soil moisture35. By 
definition, multi-objective calibration will not improve the capability of the model 
to simulate streamflow at gauge locations for which calibration occurs. 

In forming these recomendations, a study to discern the capability of using 
remotely sensed soil moisture in multi-objective calibration scenarios to improve 

 
34 Bennett, J. C., Robertson, D. E., Ward, P. G. D., Hapuarachchi, H. A. P., & Wang, Q. J. (2016). 
Calibrating hourly rainfall-runoff models with daily forcings for streamflow forecasting applications 
in meso-scale catchments. Environ. Model. Softw., 76, 20–36. 
https://doi.org/10.1016/j.envsoft.2015.11.006 
35 Li, Y., Grimaldi, S., Pauwels, V. R. N., & Walker, J. P. (2018). Hydrologic model calibration using 
remotely sensed soil moisture and discharge measurements: The impact on predictions at gauged 
and ungauged locations. J. Hydrol., 557, 897–909. https://doi.org/10.1016/j.jhydrol.2018.01.013 
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streamflow simulation skill in ungauged sub-catchments was conducted36. The 
study catchments and locations of internal gauges are shown in figure 3. 

The GRKAL hydrologic model was setup in a semi-distributed fashion to simulate 
streamflow within the Condamine-Balonne and Clarence River catchments. 
Using a multi-objective calibration approach which utilizes remotely sensed soil 
moisture data for all sub-catchments and only streamflow at the downstream 
gauges, consistent improvements in streamflow simulation skill at internal sub-
catchments was demonstrated. This finding indicates that remotely sensed soil 
moisture can be used to improve flood forecasts for ungauged locations 
upstream of a gauge. 

4.1.3. Choosing between models and remotely sensed soil 
moisture data sets 
A common problem hydrologists face is that different models and remotely 
sensed soil moisture data sets may be more useful in one catchment than 
another. Typically, choices between models are based on familiarity, past 

 
36 Li, Y., Grimaldi, S., Pauwels, V. R. N., & Walker, J. P. (2018). Hydrologic model calibration using 
remotely sensed soil moisture and discharge measurements: The impact on predictions at gauged 
and ungauged locations. J. Hydrol., 557, 897–909. https://doi.org/10.1016/j.jhydrol.2018.01.013 

FIGURE 3: STUDY CATCHMENTS AND GAUGE LOCATIONS USED IN THE MULTI-OBJECTIVE 
CALIBRATION OF GRKAL USING REMOTELY SENSED SOIL MOISTURE AND STREAMFLOW. 
ADAPTED FROM (LI ET AL., 2018). 
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performance, and widespread usage. However, with the growing availability of 
soil moisture products it is prudent that hydrologists choose models that can take 
advantage of such observations and tailor the choice of hydrologic model to 
the characteristics of the catchment.  

In forming these guidelines, a pragmatic approach was developed to aid in the 
decision-making process37. This approach built upon previous research to 
estimate rainfall time series and model parameter distributions using model input 
data reduction methods38. This approach evaluates the innovations of the 
Ensemble Kalman Filter (EnKF) using optimized rainfall products, three 
hydrological models, and two remotely sensed soil moisture products.  When 
rainfall, simulated and observed soil moisture products are in agreement, 
innovations of the EnKF should display properties of white noise. As seen in figure 
4 it is completely realistic for soil moisture simulations obtained from a given 
hydrological model and optimized rainfall product, to exhibit greater similarity to 
one remotely sensed soil moisture product than another. 

A different hydrological model may produce soil moisture simulations with 

greater similarity to an alternative remotely sensed soil moisture product. It is 
therefore recommended that hydrologists remain open to assessing different 
models and products for different catchments. As a rule of thumb, rainfall 
uncertainty should be represented with an ensemble, three hydrological models 
should be tested and two remotely sensed soil moisture products should be 
checked.  

 
37 Wright, A.J., Walker, J. P., & Pauwels, V. R. N. (2018). Identification of hydrologic models, optimized 
parameters, and rainfall inputs consistent with in situ streamflow and rainfall and remotely sensed 
soil moisture. J. Hydrometeorol., 19(8). https://doi.org/10.1175/JHM-D-17-0240.1 
38 Wright, Ashley J., Walker, J. P., & Pauwels, V. R. N. (2017). Estimating rainfall time series and model 
parameter distributions using model data reduction and inversion techniques. Water Resour. Res., 
53(8), 6407–6424. https://doi.org/10.1002/2017WR020442 

FIGURE 4: INNOVATIONS FOR A NUMBER OF HYDROLOGIC MODELS, OPTIMIZED RAINFALL, AND 
REMOTELY SENSED SOIL MOISTURE. ADAPTED FROM (WRIGHT ET AL., 2018). 
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4.1.4. Data assimilation – Warwick and Paddys Flat 
As part of a literature review conducted for developing these guidelines39, 
strategies to improve the capability of rainfall-runoff models forecasting 
capability were outlined. The following two strategies have shown considerable 
potential: 

• Addressing the bias between remotely sensed and modelled soil moisture, 
and 

• Developing an assimilation procedure to utilize soil moisture and 
streamflow data together. 

Biases between simulated and remotely sensed soil moisture have consistently 
been observed. Attempts to address this bias have come in the form of bias 
aware filtering processes, matching the cumulative distribution function (CDF) of 
the remotely sensed soil moisture product to the CDF of the simulated soil 
moisture, and incorporating the remotely sensed soil moisture observations into 
the calibration routine. The latter two approaches reduce the information 
content by attributing all bias to either the simulated or remotely sensed soil 
moisture observation. The quality of rainfall data and potential biases within are 
expected to contribute to biases within the modelled soil moisture. To effectively 
consider potential improvements assimilating remotely sensed soil moisture may 
have on flood forecasts, it is imperative that studies are performed with consistent 
and high-quality rainfall products. Data assimilation approaches which consider 
smoothing and filtering variants and independent and joint assimilation of 
remotely sensed soil moisture and streamflow were compared using the 
traditional CDF matching approach and an approach which optimized rainfall 
gauge weights40. The results can be seen in figure 5. 

 
39 Li, Y., Grimaldi, S., Pauwels, V. R. N., & Walker, J. P. (2018). Hydrologic model calibration using 
remotely sensed soil moisture and discharge measurements: The impact on predictions at gauged 
and ungauged locations. J. Hydrol., 557, 897–909. https://doi.org/10.1016/j.jhydrol.2018.01.013 
40 Wright, A., Robertson, D.E., Walker, J., Pauwels, V.R.N., 2020. Insights from a new methodology to 
optimize rain gauge weighting for rainfall-runoff models. In preparation. 

FIGURE 5: COMPARISON OF DATA ASSIMILATION SETUPS FOR A TRADITIONAL APPROACH AND 
OPTIMIZED RAINFALL APPROACH 
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These results demonstrate that improved rainfall products are likely to lead to 
improvements in remotely sensed soil moisture data assimilation and further 
improvements in flood forecasting skill. It should be noted that since different 
catchments commonly have poorer rainfall gauge density, these 
recommendations may not be generic. 

4.2. HYDRAULIC MODEL 
The comparison between model results and remote sensing-derived 
observations requires the use of adequate performance metrics to quantify the 
agreement between modelled and observed flood extents and wet/dry 
boundary points. The computation of these performance metrics then allows the 
evaluation of a model’s performance and consequently supports the verification 
of model implementation, and the calibration of the parameters. 

4.2.1. Performance metrics 

 Flood extent 
Modelled inundation extent at the acquisition time of the remote sensing 
observation are extracted from the model results (section 3.1.2). Areas with 
modelled water depth higher than or equal to 0.01 m are considered as wet, 
with the remainder of the modelled domain considered as dry. Modelled 
inundation depths up to 0.01 m are excluded from the wet area to eliminate 
spurious numerical results. The use of a raster format for model output allows a 
straightforward comparison with remote sensing-derived inundation layers. 
Modelled and observed layers are divided into discrete categories of wet/dry 
cells (see section 5.3 for a discussion on remote sensing uncertainty and the 
deterministic approach) to build a contingency table which reports the number 
of pixels correctly and incorrectly predicted as wet or dry (Table 3). The 
agreement between modelled and observed inundation extent is then 
quantified using binary performance metrics such as the Critical Success Index, 
False Alarm Rate, Hit Rate, and Bias.  However, each binary performance metric 
is affected by limitations such as the sensitivity to the magnitude of the flood, the 
shape of the valley, and the resolution of the model. Consequently, the 
conjunctive use of a number of performance metrics is recommended as a 
viable solution41. Table 3 reports the most commonly used metrics. Furthermore, 
model realizations can be ranked based on the conjunctive use of the metrics. 
More specifically, each one of the N model realizations is given a relative score 
ranging from 1 (highest agreement with the RS observations) to N (lowest 
agreement with the RS observations). The total score of each model realization 
is given by the sum of the relative scores. Hence, the higher the agreement 
between a model realization and the RS-derived flood extent, the lower the total 
score42.  

 
41 Grimaldi, S., Li, Y., Pauwels, V.R.N., Walker, J.P., 2016. Remote Sensing-Derived Water Extent and 
Level to Constrain Hydraulic Flood Forecasting Models: Opportunities and Challenges. Surveys in 
Geophysics. 37, 977-1034 
42 Pauwels, V., Walker, J., Grimaldi, S., Wright, A., Li, Y., 2020. Improving flood forecast using 
remote sensing data - annual report 2019-2020. Melbourne, in: Bushfire and Natural Hazards CRC. 
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TABLE 3: PERFORMANCE METRICS TO QUANTIFY THE AGREEMENT BETWEEN MODELLED AND 
OBSERVED INUNDATION EXTENT AND WET/DRY POINTS. 
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 Observation wet Observation dry 

Model wet A B 

Model dry C D 
 

Critical Success 
Index (CSI) 

𝐴𝐴
𝐴𝐴 + 𝐵𝐵 + 𝐶𝐶

 Optimal value: 1. 

 

Bias 𝐴𝐴 + 𝐵𝐵
𝐴𝐴 + 𝐶𝐶

 Optimal value: 1; bias>1 
overestimation; bias<1 
underestimation. 

Hit Rate 𝐴𝐴
𝐴𝐴 + 𝐶𝐶

 Optimal value: 1. 

False Alarm 
Rate 

𝐵𝐵
𝐵𝐵 + 𝐷𝐷

 Optimal value: 0. 
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(WLS) 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = 𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑂𝑂𝑂𝑂𝑂𝑂 

or 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 =
𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑂𝑂𝑂𝑂𝑂𝑂,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 

0.5(𝑂𝑂𝑂𝑂𝑂𝑂,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 −  𝑂𝑂𝑂𝑂𝑂𝑂,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) 

𝑊𝑊𝑊𝑊𝑊𝑊 =
∑ �𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑖𝑖2𝑛𝑛
𝑖𝑖=1  

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜
 

𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 

𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 is defined to account for the possibility of 
several observations falling within the same modelled 
cell. 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = 0 if the modelled water level is equal to the 
observed value or at the midpoint of the interval of 
the observed values. 

Optimal value: 0. 

 Wet/dry boundary points  
Remote sensing derived wet/dry boundary points have three coordinates: two 
planar coordinates (Easting and Northing) and one elevation coordinate. The 
complete set of coordinates is used when a high resolution and a high accuracy 
DEM is available. When only low to medium resolution and accuracy DEMs are 
available, only the planar coordinates are used. 

A) Modelled and observed water level of the wet/dry boundary points. 

Modelled water levels are extracted from the model results at the position of 
each remote sensing-derived wet/dry boundary point for the acquisition time of 
the remote sensing data. If a water level observation is located in a dry modelled 
cell, the modelled water level is retrieved from the nearest modelled wet cell. 
The agreement between modelled and observed water levels at the wet/dry 
boundary can be quantified using the RMSE, the point score43 (Table 3), and the 
Student t-test. Moreover, the scatterplot representing the modelled water level 

 
43 Savage, J. T. S., Bates, P., Freer, J., Neal, J., & Aronica, G. (2016). When does spatial resolution 
become spurious in probabilistic flood inundation predictions? Hydrological Processes, 30(13), 
2014-2032.  10.1002/hyp.10749 
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(y-axis) and the observed water level (x-axis) allows the identification of 
overestimation and underestimation errors44. 

B) Modelled and observed planar position of the wet/dry boundary points. 
The planar position of the wet/dry boundary points represents the flood edge. 
The analysis of the planar distance and of the temporal discrepancy between 
the modelled and observed flood edge provides relevant information on the 
model’s capability to represent inundation extent and dynamics45. 

4.2.2. Verification of the model implementation 
Inaccurate representation of the river flow capacity and the floodplain 
morphological features unavoidably lead to inaccurate predictions of 
inundation dynamics. Remote sensing-derived observations can be used to 
detect and correct these inaccuracies:  

• Remote sensing -derived water level can be used to identify and correct 
inaccurate representation of river bathymetry46. River geometry and 
roughness can be estimated through calibration, but different parameter 
sets can often map model predictions to the observed data generating 
an equifinality problem. Without an adequate representation of river 
geometry, the calibrated effective values can lead to spurious 
nonphysical effects47.   

• Remote sensing-derived inundation extent allows the detection of new 
flood paths that are not incorporated in the DEM (e.g. the SRTM mission 
was completed in 2001). Moreover, DEMs may not represent the levee 
systems or be affected by the inaccurate representation of catchment 
morphological features such as gorges48. These inaccuracies can be 
detected by the comparison between modelled and observed 
inundation extent and their impact on floodplain inundation dynamics 
can be introduced via inverse modelling in the catchment49. 

4.2.3. Model calibration  

 Calibration of a 2D hydraulic model using spatially distributed data 
The following considerations must be taken into account when calibrating a 2D 
hydraulic model using spatially distributed data:  

 
44 Grimaldi, S., Li, Y., Walker, J.P., Pauwels, V.R.N., 2018. Effective Representation of River 
Geometry in Hydraulic Flood Forecast Models. Water Resources Research. 54, 1031-1057 
45  Pauwels, V., Walker, J., Grimaldi, S., Wright, A., Li, Y., 2020. Improving flood forecast using 
remote sensing data - annual report 2019-2020. Melbourne, In: Bushfire and Natural Hazards CRC 
 
46 Pauwels, V., Walker, J., Li, Y., Grimaldi, S., Wright, A., 2017. Improving flood forecast skill using 
remote sensing data: annual report 2016-17. Melbourne, in: Bushfire and Natural Hazards CRC. 
47 Grimaldi, S., Li, Y., Walker, J.P., Pauwels, V.R.N., 2018. Effective Representation of River Geometry 
in Hydraulic Flood Forecast Models. Water Resources Research. 54, 1031-1057 
48 Pauwels, V., Walker, J., Grimaldi, S., Wright, A., Li, Y., 2020. Improving flood forecast using remote 
sensing data - annual report 2019-2020. Melbourne, in: Bushfire and Natural Hazards CRC. 
49 Grimaldi, S., Schumann, G.J.-P., Shokri, A., Walker, J.P., Pauwels, V.R.N., 2019b. Challenges, 
Opportunities, and Pitfalls for Global Coupled Hydrologic-Hydraulic Modeling of Floods. Water 
Resources Research. 55, 5277-5300 
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• In 2D hydraulic models, roughness coefficients are considered to be the 
most important parameters controlling the flow characteristics and 
hence are used for model calibration. 

• Roughness values have a two-fold function: they represent surface 
resistance to flow but they are also used as effective parameters to 
account for a large number of uncertainties including errors in input and 
implementation data, spatial discretization, and conceptual 
simplifications.  

• Calibrated roughness values must then be physically plausible but their 
fine tuning might be event-dependent rather than strictly correlated to 
the real land cover. 

• It is recommended to calibrate the model using two events of different 
magnitude.  

• 2D hydraulic models can theoretically admit as many roughness values 
as the number of cells of the computational domain. The number of 
spatially distributed parameters has to be large enough to allow model 
flexibility while avoiding the overfitting and equifinality problem 
stemming from the use of too many parameters. 

• Model calibration should primarily focus on river roughness (spatially 
distributed values along the river reach). Floodplain roughness can be 
assessed using land cover data. 

 Calibration of a 2D hydraulic model using remote sensing data 
 This section provides guidelines on the use remote sensing-derived spatially 
distributed data for the calibration of a 2D hydraulic model. More specifically, 
this section outlines which remote sensing-derived observation is best fitted for a 
specific purpose and for different catchment morphologies.  

A) Remote sensing-derived flood extent 
• Analysis of model behaviour at the large scale: the comparison between 

modelled and observed flood extent is recommended for any model 
implementation as it allows to gather an overall understanding of model 
performances and it is important to avoid overfitting problems. 

• Analysis of the model behaviour for critical areas (section 2.2.3, point D). 
Here, a model exclusion rule based on a specific performance metric 
can be applied; e.g. the False Alarm binary metric can be used to avoid 
prediction errors in areas protected by a levee system.  

• Analysis relying on observed inundation extents are effective in large, 
low slope floodplains. 

• Observed inundation extents derived from acquisitions during the 
decreasing limb of valley filling flood events have limited information 
content; when using such data, model flexibility must be maintained to 
avoid errors.  

B) Remote sensing-derived flood extent and planar position of wet/dry 
points. 

• Comparing the modelled and observed planar position of wet/dry 
points allows discriminating between underprediction and 
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overprediction of inundation extent and flood wave arrival time50,51. It is 
underlined that high resolution DEMs are NOT required when comparing 
the planar position of wet/dry points.  

• This analysis is effective in large, low slope floodplains with the exclusion 
of valley filling events. 

C) Remote sensing-derived flood extent and water level at the wet/dry 
points 

• A fine resolution and high accuracy DEM is strictly required to effectively 
compare modelled and observed water levels. 

• Water level-based measures have a higher sensitivity to roughness 
parameters than binary performance metrics and can more effectively 
constrain the parameter space. 

• This analysis is particularly useful in V-shaped areas and it can provide 
information for valley filling events. However, the use of water level at the 
wet/dry boundary is likely to return spurious results in nearly flat floodplains. 

D) Key warnings: 
• The capability of remote sensing observations to provide reliable 

information of flooding dynamics is crucial to the success of the 
calibration process. 

• The use of remote sensing-derived flood extent and of the planar position 
of wet/dry boundary points is strongly recommended in low slope areas, 
in areas with levee systems, and in catchments with morphological 
singularities (e.g. gorges).  

• The use of remote sensing-derived water level is recommended in narrow, 
V-Shaped valleys. However, the effective use of remote sensing-derived 
water level is bounded by the availability of high-accuracy and fine-
resolution terrain data (i.e. Lidar data). 

• The main obstacles for the routinely and effective use of remote sensing 
acquisitions to constrain the parameter space of a hydraulic model are 
the discrete acquisition time, the (sometimes) partial spatial coverage, 
and the uncertainty and errors in the inundation extent and wet/dry 
boundary points datasets (section 5.3). 

• Critically combining information from multiple acquisitions can help to 
avoid overfitting and equifinality problems and errors stemming from 
uncertainty and errors in remote sensing acquisitions.  

• It is recommended to make use of all the available observations, including 
the coarse-resolution data. Higher weights can be given to fine resolution 
data acquired during the rising limb and over critical areas. 

• The conjunct use of gauged data and remote sensing data support the 
calibration exercise. Nevertheless, it is imperative to remember that 
gauged data informative value can have very limited spatial value52. 

 
50 Pauwels, V., Walker, J., Grimaldi, S., Wright, A., Li, Y., 2020. Improving flood forecast using remote 
sensing data - annual report 2019-2020. Melbourne, in: Bushfire and Natural Hazards CRC. 
51 Grimaldi, S., Wright A., Walker J., V., P., 2020/21. On the use of remote sensing-derived waterlines 
to calibrate hydraulic flood forecasting models. In preparation. 
52 Pauwels, V., Walker, J., Li, Y., Grimaldi, S., Wright, A., 2018. Improving flood forecast using remote 
sensing data - annual report 2017-2018. Melbourne, in: Bushfire and Natural Hazards CRC. 
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The guidelines listed in this document were derived from the analysis of three 
selected case studies, specifically, the Clarence (NSW), the Condamine-Balonne 
(QLD), and the Fitzroy (WA).  The research was conducted with the overarching 
aim to provide guidelines for application to any Australian catchment. For this 
reason, the case studies were specifically selected to represent different flooding 
dynamics. Moreover, all the analysis and methodologies were developed using 
datasets available at the continental scale. Albeit the conceptual findings hold, 
expert judgement is required when transferring the findings of this research to 
other catchments. Finally, the authors acknowledge that other datasets could 
be used to constrain the models but their analysis was not in scope. 
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 UNCERTAINTIES AND LIMITATIONS 

5.1. HYDROLOGIC MODEL 
To evaluate the quality of flow forecasts it is important to determine if changes in 
land-use will significantly alter flow characteristics. This includes large intermittent 
extractions or regulation of water flowing through the catchment. Consequently, 
catchments that are minimally regulated are the focus of this study. The 
guidelines provided in this document can be applied to assist in the merging of 
remote sensing data with hydrologic rainfall-runoff models for the prediction of 
streamflow. 

Topics relevant to flood forecasting, yet outside the scope of this research, were 
not investigated and are outlined as follows: 
- Rainfall forecasting; 
- Post-processing of rainfall forecasts; 
- Impact of land-use changes on flood forecasting; 
- Inclusion of ground or satellite-based rainfall observations; 
- Comparison with event-based rainfall-runoff models. 

Moreover, the following sources of uncertainty must always be considered: 

A) Forcing data uncertainty.  
The prevailing idiom known to all modeller’s garbage in, garbage out 
cannot be avoided. By avoiding adequate quality control of forcing data 
a cascade of errors which nullifies the effectiveness of other modelling 
techniques becomes almost certain. 

B) Model structure uncertainty. 
All models have their limitations and make assumptions. Models which are 
built upon physical concepts still use quasi physical parameters, such as 
roughness, which are conceptually accurate. As such, users should chose 
a model with a structure that is most fit for purpose. Key considerations 
are: 

1. Degree of physical representation for key processes, 
2. Spatial resolution, 
3. Temporal resolution, 
4. Computational requirements. 

C) Model parameter uncertainty. 
Much focus has been paid towards model parameter uncertainty and the 
retrieval of an optimal parameter set. Since acknowledging the concept 
of equifinality, attention has shifted towards methodologies which return 
a parameter distribution that has maximum likelihood of representing the 
governing system given the observations. Such methodologies are 
recommended to incorporate an understanding of model parameter 
uncertainty into hydrological forecasts. 

D) Initial state uncertainty. 
It is common for hydrological systems, as for any system, to consist of 
states, such as groundwater storage, which are used to represent 
intermediate hydrological processes. These states are commonly not able 
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to be measured across a catchment and consequently must be 
estimated upon initiating the model. For models with long hydrological 
records a warmup period which allows the states to reach an equilibrium 
is recommended. Alternatively, when the hydrological record is 
sufficiently short, the application of a warmup period may not be feasible. 
For situations such as this, the value of the initial state can be estimated in 
the calibration process. 

E) Model output uncertainty. 
It is common for hydrological models to provide deterministic outcomes, 
when in fact the uncertainty in the output is the culmination of a variety 
of error sources. In the past, deterministic outputs have been provided as 
a result of large computational requirements for hydrological models 
which impose long processing times. Fortunately, computers now have 
the capacity to run ensembles of hydrological models at the same time. 
Ensembles aim to represent the uncertainty in various processes and are 
becoming an increasingly popular way to represent forecasting 
uncertainty. 

F) Observation data uncertainty. 
Observations are used in to calibrate and update models. The inherent 
uncertainty in these observations contribute towards the total uncertainty 
in the system. Streamflow and remotely sensed soil  moisture observations 
are both used in calibration and updating processes. The key sources of 
uncertainty in streamflow observations that need to be considered are 
the: 

1. The instrumentation used to observe streamflow, 
2. The development of streamflow rating curves, 
3. The changes streamflow rating curves undertake over time. 

Alternatively, the key sources of uncertainty in remotely sensed soil 
moisture observations are the: 

1. Retrieval algorithm, 
2. Quality of validation data set, 
3. Accuracy of the sensor. 

5.2. HYDRAULIC MODEL 
The guidelines provided in this document can be applied to merge remote 
sensing information with a hydraulic model for the prediction of floodplain 
inundation. 

This research did not investigate, as it was not part of the objectives: 
- tsunamis; 
- dam-breaks; 
- solid transport, erosion, deposition, fluvial geomorphology, landscape 

evolution; 
- bridge, levees, river banks scour; 
- interaction with the groundwater table; 
- manholes, sewage and aqueduct systems; 
- flow in buildings; 
- flood monitoring in urban areas. 
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Moreover, the following sources of uncertainty must always be considered: 

A) Remote sensing-derived observations uncertainty.  
The effectiveness of the methodologies explained in these guidelines rely 
on the capability of the RS acquisition to capture the essential features of 
the inundation process. RS-derived observations are inevitably affected 
by uncertainties and errors due to sensor characteristics, atmospheric 
conditions, and land cover. When overlaying a RS-derived flood extent to 
a DEM to retrieve water level at the wet/dry interface, the uncertainty in 
the DEM should also be considered.  The accuracy of the algorithm for 
the retrieval of inundation extent and wet/dry boundary points must also 
be considered. An imperative feature of any protocol for the merging of 
RS data and numerical model is the delivery of results which are 
independent from RS data uncertainty.  

• The use of multiple acquisitions and expert judgement are 
recommended.  

• Probabilistic rather than deterministic analysis allows avoiding 
overfitting and blunders. Practical methodologies developed in the 
literature to account for remote sensing-derived observations 
uncertainty can be used53, 54, 55. 

B) Remote sensing observations discrete temporal coverage. 
Remote sensing acquisitions provide spatially distributed information at a 
snapshot in time. 

C) Implementation data.  

Analysis of the flooding behaviour of the catchment based on a few 
model realizations56 and historical datasets can effectively diagnose 
errors in the terrain data. 

D) Input data. 

Accurate time series of the volume of water entering the catchment are 
crucial to accurate predictions of floodplain inundation (section 5.3). 

 
53 Schumann, G., Pappenberger, F., & Matgen, P. (2008b). Estimating uncertainty associated with 
water stages from a single SAR image. Advances in Water Resources, 31(8), 1038-1047.  
http://dx.doi.org/10.1016/j.advwatres.2008.04.008 
54 Hostache, R., Matgen, P., Schumann, G., Puech, C., Hoffmann, L., & Pfister, L. (2009). Water Level 
Estimation and Reduction of Hydraulic Model Calibration Uncertainties Using Satellite SAR Images 
of Floods. Geoscience and Remote Sensing, IEEE Transactions on, 47(2), 431-441.  
10.1109/TGRS.2008.2008718 
55 Pappenberger, F., Frodsham, K., Beven, K., Romanowicz, R., & Matgen, P. (2007). Fuzzy set 
approach to calibrating distributed flood inundation models using remote sensing observations. 
Hydrol. Earth Syst. Sci., 11(2), 739-752.  10.5194/hess-11-739-2007 
56 Grimaldi, S., Schumann, G.J.-P., Shokri, A., Walker, J.P., Pauwels, V.R.N., 2019. Challenges, 
Opportunities, and Pitfalls for Global Coupled Hydrologic-Hydraulic Modeling of Floods. Water 
Resources Research. 55, 5277-5300 
 

http://dx.doi.org/10.1016/j.advwatres.2008.04.008
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5.3. COUPLING OF THE HYDROLOGIC AND HYDRAULIC 
MODEL 
The following challenges and pitfalls were identified by a study57on the 
implementation of coupled hydrologic-hydraulic models at the large scale:  

• Discrepancies in the simulated and measured flood peak values highly 
affect floodplain inundation. 

• Discharge-driven errors in the prediction of floodplain inundation peaks 
can increase from upstream to downstream. They are accentuated by a 
hydrological regime characterised by long dry spells and high magnitude 
floods and by peculiar morphological features.  

• Discharge-driven errors in the prediction of floodplain inundation can 
accumulate in a continuous hydraulic modelling approach. Conversely, 
discrepancies could be reduced by using an event-based approach for 
the application of the hydraulic model.  

• Based on the points above, it is hypothesized that assimilation of 
inundation extents and water level in both low and high flow periods may 
provide a pragmatic strategy to achieve acceptable skill in continuous 
flood modelling. 

• Targeted acquisition of Lidar/high accuracy DEMs in strategic areas is 
advised. 

 
57 Grimaldi, S., Schumann, G.J.-P., Shokri, A., Walker, J.P., Pauwels, V.R.N., 2019. Challenges, 
Opportunities, and Pitfalls for Global Coupled Hydrologic-Hydraulic Modeling of Floods. Water 
Resources Research. 55, 5277-5300 
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 RESULTS FOR SELECTED CASE STUDIES 

The guidelines listed in this document were generated from the analysis of the 
selected case studies, which are the Clarence (NSW), the Condamine-Balonne 
(QLD), and the Fitzroy (WA) catchment. These case studies were selected to 
represent the heterogeneity of Australian catchments and the analyses relied on 
datasets available at the continental scale.  This section presents the main 
hydrological and morphological characteristics of the selected case studies and 
provides detailed recommendations. The reader is encouraged to compare the 
hydrological and morphological features of their case study with the features 
explained in section 6.1 to infer indications on the appropriate datasets and 
methodologies. Expert judgement is required when transferring the findings of this 
research to other catchments. 

6.1. CASE STUDIES 
Table 4 provides a list of the main morphological and hydrological features of 
the three Australian catchments used as case studies. 
TABLE 4: CASE STUDIES 

 Description CASE STUDY 

Clarence (NSW) Condamine-Balonne 
(QLD) 

 Fitzroy (WA) 

CATCHMENT AREA 22,716 km2 75,370 km2 93,829 km2 

CATCHMENT 
MORPHOLOGY 

Upstream area (up 
to Rogans Bridge): 
U-shaped valley. 
Downstream area: 
large floodplain. 

Large, low slope 
floodplains. 

Upstream area: V-
shaped valley. 
Downstream area: 
large, low slope 
floodplains. 

RIVER NETWORK Unicursal river. Anabranching river 
system. 

Unicursal river. 

FLOODING 
BEHAVIOUR 

Fast moving 
catchment. 
Flood events with 
magnitude larger 
than 5-year ARI 
often last less than 
10 days. This 
catchment is 
subject to valley-
filling events. 

Slow moving 
catchment. Flood 
events can be 
triggered by intense 
precipitation in the 
north-east area 
(Condamine river, 
2011 event) or in the 
north area (Maranoa 
river, 2012 event). 

Slow moving 
catchment. 

Annual rainfall 1111 mm 514 mm  552 mm 

Climate Humid sub-tropical Humid sub-tropical Hot semi-arid 
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6.2. HYDROLOGIC MODEL 
Table 5 presents a summary of the key-findings for the three case studies 
including recommended implementation data and strategy, remote sensing 
data and methodologies used for model verification and calibration.  
TABLE 5: DETAILED GUIDELINES FOR THE THREE CASE STUDIES. 

 Description CASE STUDY 

 

Clarence (NSW) Condamine-Balonne (QLD) 

Im
p

le
m

en
ta

tio
n 

d
a

ta
 

Delineation Australian Hydrologic 
Geofabric  

Australian Hydrologic Geofabric  

Fractional 
cover of 
vegetation 

MODIS MODIS 

Fo
rc

in
g 

d
a

ta
 

Rainfall Streamflow and soil moisture 
simulation and forecasting skill 
are highly dependent upon 
capturing rainfall variability. 
Some sub-catchments have 
adequate gauge density. 
 

Streamflow and soil moisture 
simulation and forecasting skill 
are highly dependent upon 
capturing rainfall variability. 
Only upstream sub-catchments 
have adequate gauge density. 
 

PET AWAP. There is potential for 
finer temporal resolution to 
aid in the assimilation of 
remotely sensed soil moisture. 

AWAP. There is potential for finer 
temporal resolution to aid in the 
assimilation of remotely sensed 
soil moisture. 

Quality control 
rainfall 

AWAP/BoM AWAP/BoM 

Ev
a

lu
a

tio
n 

d
a

ta
 

Remotely 
sensed soil 
moisture 

Remotely sensed soil moisture 
can aid in model selection 
and be used to improve 
forecast skill for internal sub-
catchments. 
SM time series are improved 
through assimilation. The 
impact this has on streamflow 
forecasting highly depends 
on the quality of rainfall 
forcing data. 

Remotely sensed soil moisture 
can aid in model selection and 
be used to improve forecast skill 
for internal sub-catchments. 
SM time series are improved 
through assimilation. The impact 
this has on streamflow 
forecasting highly depends on 
the quality of rainfall forcing 
data. 

 Streamflow Not all flood peaks are 
captured in the rating curve. 
This is likely to impact the 
calibration of the model. 

Not all flood peaks are 
captured in the rating curve. 
This is likely to impact the 
calibration of the model.  
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6.3. HYDRAULIC MODEL 
Table 6 presents a summary of the key-findings for the three case studies 
including recommended implementation data and strategy, remote sensing 
data and methodologies used for model verification and calibration.  
TABLE 6: DETAILED GUIDELINES FOR THE THREE CASE STUDIES. 

 Description CASE STUDY 

 

Clarence (NSW) Condamine-
Balonne (QLD) 

 Fitzroy (WA) 

Im
p

le
m

en
ta

tio
n 

d
a

ta
 

DEM, 
recommended 
minimum resolution. 

30 m  90 m 
 

90 m 
 

River bathymetry, 
minimum 
representation. 

HIGH FLOW: river 
flow capacity and 
river width. 
LOW FLOW: river 
flow capacity, 
river width, and 
river shape. 

River flow capacity 
and river width. 
The DEM-H is 
recommended as it 
allows an accurate 
representation of 
river network 
connectivity. 

River flow 
capacity and river 
width. 

Ev
a

lu
a

tio
n 

d
a

ta
 

Remote sensing 
sensor 

SAR  SAR; 
optical data might 
allow the 
monitoring of the 
downstream area. 

SAR; 
optical data might 
allow the 
monitoring of the 
downstream area. 

 Acquisition time Rising limb to flood 
peak at Grafton 
(important: 2011, 
2013 were valley 
filling events). 

Flood hydrograph 
at Surat, including 
the initial phase of 
the receding limb. 

Flood hydrograph 
at Dimond Gorge, 
including the initial 
phase of the 
receding limb. 

Target area(s) Grafton area 
(levee system). 

Barrackdale Choke; 
St. George. 

Geikie Gorge; 
Fitzroy Crossing. 

Us
e 

of
 R

S-
d

er
iv

ed
 

i
 

Verification of 
model 
implementation 

Elevation of 
wet/dry boundary 
points: diagnosis 
and correction of 
erroneous 
representation of 
river geometry. 

Flood extent: 
detection of 
inaccurate 
modelling of the 
Barrackdale Choke. 

Flood extent: 
detection of 
inaccuracy in the 
terrain dataset 
(Geikie Gorge). 

Model calibration Flood extent and 
planar position of 
the wet/dry 
boundary points. 

Flood extent. Flood extent. 

  



IMPROVING FLOOD FORECAST SKILL USING REMOTE SENSING DATA I REPORT NO. 600.2020 

 42 

 PUBLICATION LIST 

7.1. Peer-reviewed journal articles  
Grimaldi, S., Xu, J., Li, Y., Pauwels, V. R.N, & Walker, J. P.  Flood mapping under vegetation using 
single SAR acquisitions. Remote Sensing of Environment, Volume 237, 2020, 111582, ISSN 0034-4257, 
https://doi.org/10.1016/j.rse.2019.111582  

Hilton J.E., Grimaldi S., Cohen R.C.Z., Garg N., Li Y., Marvanek S., Pauwels V.R.N., Walker J.P. River 
Reconstruction Using a Conformal Mapping Method. Enironmental Modelling & Software, Volume 
119, Pages 197-213, ISSN 1364-8152, https://doi.org/10.1016/j.envsoft.2019.06.006., 2019 

Grimaldi, S., Schumann G.J-P., Shokri, A., Walker, J. P., and Pauwels V.R.N.  Challenges, 
opportunities and pitfalls for coupled hydrologic/hydraulic modelling at the large scale. Water 
Resources Research, 55. https://doi.org/10.1029/2018WR024289 , 2019. 

Grimaldi, S., Y. Li, J.P. Walker, and V.R.N. Pauwels, Effective Representation of River Geometry in 
Hydraulic Flood Forecast Models, Water Resources Research, 54, doi:10.1002/2017WR021765, 2018. 

Wright, A.J., J.P. Walker, and V.R.N. Pauwels, Identification of hydrologic models, parameters and 
rainfall consistent with observed rainfall, streamflow, and remotely sensed soil moisture, Journal of 
Hydrometeorology 19.8, 1305-1320, 2018 . 

Li, Y., S. Grimaldi, V.R.N. Pauwels, and J.P. Walker, Hydrologic model calibration using remotely 
sensed soil moisture and discharge measurements: the impact on predictions at gauged and 
ungauged locations, Journal of Hydrology, 557, 897-909, 2018. 

Liu, S., Y. Li, V. R. N. Pauwels, and J. P. Walker, Impact of Rain Gauge Quality Control and 
Interpolation on Streamflow Simulation: An Application to the Warwick Catchment, Australia, 
Frontiers in Earth Science, 5(114), 2018. 

Dasgupta, A., Grimaldi, S., Ramsankaran, R.A.A.J., Pauwels, V.R.N., Walker, J.P. Towards 
operational SAR-based flood mapping using neuro-fuzzy texture-based approaches. Remote 
Sensing of Environment. 215, 313-329, 2018. 

Wright, A.J., Walker, J.P., and V.R.N. Pauwels, estimating temporal rainfall and model parameter 
distributions using model data reduction and inversion techniques, Water Resources Research, 53, 
doi:10.1002/2017WR020442, 2017. 

Wright, A.J., J.P. Walker, D. Robertson, and V.R.N. Pauwels, A Comparison of the Discrete Cosine 
and Wavelet Transforms for Hydrologic Model Input Data Reduction, Hydrology and Earth System 
Sciences, 21(7), 3827-3838, 2017. 

Grimaldi, S., Y. Li, V.R.N. Pauwels, and J.P. Walker, Remote sensing-derived water extent and level 
to constrain hydraulic flood forecasting models: opportunities and challenges, Surveys in 
Geophysics, 37(5), 977-1034, 2016. 

Li, Y., S. Grimaldi, J.P. Walker, and V.R.N. Pauwels, Application of Remote Sensing Data to Constrain 
Operational Rainfall-Driven Flood Forecasting: A Review, Remote Sensing, 8(6), 456, 
doi:10.3390/rs8060456, 2016. 
 

7.2. Journal articles in preparation 
Wright, A., Robertson, D.E., Walker, J., Pauwels, V.R.N., 2020. Insights from a new methodology to 
optimize rain gauge weighting for rainfall-runoff models. In preparation. 

Grimaldi, S., Wright, A., Walker, J., Pauwels, V., 2020/21. On the use of remote sensing-derived 
waterlines to calibrate hydraulic flood forecasting models. In preparation. 

Molari, G., Grimaldi, S., Paron, P., Walker, J., Pauwels, V., Domeneghetti, A., 2020/1. RiBEST – a tool 
for river bathymetry and hydraulic parameters estimation. In preparation. 

https://doi.org/10.1016/j.rse.2019.111582
https://doi.org/10.1016/j.envsoft.2019.06.006
https://doi.org/10.1029/2018WR024289


IMPROVING FLOOD FORECAST SKILL USING REMOTE SENSING DATA I REPORT NO. 600.2020 

 43 

7.3. Conference papers 
Wang, A., Grimaldi, S., Shaadman, S., Li, Y., Pauwels, V.R.N., and Walker, J. P. Evaluation of TanDEM-
X and DEM-H digital elevation models over the Condamine-Balonne catchment (Australia). In: 
Hydrology and Water Resources Symposium (HWRS 2018): Water and Communities. Melbourne: 
Engineers Australia, 2018: 989-1003. ISBN: 9781925627183, 2018 

Nguyen, T.P.C., S. Grimaldi, and V. Pauwels, Use of remote sensing observations for improved 
understanding and modelling of flood waves routing, Oral Presentation at the AFAC Conference, 
Brisbane, August 30-September 1, 2016 

Zhang, Y., Y. Li, J. Walker, V.R.N. Pauwels, and M. Shahrban, Towards operational hydrological 
model calibration using streamflow and soil moisture measurements, Oral Presentation at MODSIM 
2015, 21th International Congress on Modelling and Simulation. Modelling and Simulation Society 
of Australia and New Zealand, Broadbeach, QLD -Australia, November 29- December 4, 2015. 

7.4. Technical Reports 
Pauwels, V., Walker, J., Grimaldi, S., Wright, A., Li, Y., 2020. Improving flood forecast using remote 
sensing data - annual report 2019-2020. Melbourne, in: Bushfire and Natural Hazards CRC. 

Pauwels, V., Walker, J., Grimaldi, S., Wright, A., Li, Y., 2019. Improving flood forecast using remote 
sensing data - annual report 2018-2019. Melbourne, in: Bushfire and Natural Hazards CRC. 

Pauwels, V., Walker, J., Li, Y., Grimaldi, S., Wright, A., 2018. Improving flood forecast using remote 
sensing data - annual report 2017-2018. Melbourne, in: Bushfire and Natural Hazards CRC. 

Pauwels, V., Walker, J., Li, Y., Grimaldi, S., Wright, A., 2017. Improving flood forecast skill using remote 
sensing data: annual report 2016-17. Melbourne, in: Bushfire and Natural Hazards CRC. 

Grimaldi S., Pauwels V., Bathymetric field campaign of the Balonne River in St. George (QLD) – data 
analysis, prepared for SunWater Ltd, November 2016. 

 

 


	1. INTRODUCTION
	2. DATA COLLECTION
	2.1. HYDROLOGIC MODEL
	2.1.1. Implementation data
	2.1.1.1. Catchment boundaries
	2.1.1.2. Fraction of vegetation cover

	2.1.2. Forcing data
	2.1.2.1. Rainfall
	2.1.2.2. Potential Evapotranspiration

	2.1.3. Evaluation data
	2.1.3.1. Streamflow
	2.1.3.2. Soil moisture


	2.2. HYDRAULIC MODEL
	2.2.1. Implementation data
	2.2.1.1. Digital Elevation Model
	2.2.1.2. River bathymetry
	2.2.1.3. Land Cover information

	2.2.2. Boundary conditions
	2.2.3. Evaluation data


	3. NUMERICAL MODEL SELECTION
	3.1.  HYDROLOGIC MODEL
	3.1.1. Model structure, purpose and limitations
	3.1.2. Model outputs

	3.2. HYDRAULIC MODEL
	3.2.1. Model structure, purpose, and limitations
	3.2.2. Model outputs


	4. USE OF REMOTE SENSING DATA TO IMPROVE MODEL forecast SKILL
	4.1. HYDROLOGIC MODEL
	4.1.1. Performance metrics
	4.1.2. Multi-objective calibration
	4.1.3. Choosing between models and remotely sensed soil moisture data sets
	4.1.4. Data assimilation – Warwick and Paddys Flat

	4.2. HYDRAULIC MODEL
	4.2.1. Performance metrics
	4.2.1.1. Flood extent
	4.2.1.2. Wet/dry boundary points

	4.2.2. Verification of the model implementation
	4.2.3. Model calibration
	4.2.3.1. Calibration of a 2D hydraulic model using spatially distributed data
	4.2.3.2. Calibration of a 2D hydraulic model using remote sensing data



	5. UNCERTAINTIES AND LIMITATIONS
	5.1. HYDROLOGIC MODEL
	5.2. HYDRAULIC MODEL
	5.3. COUPLING OF THE HYDROLOGIC AND HYDRAULIC MODEL

	6. RESULTS FOR SELECTED CASE STUDIES
	6.1. CASE STUDIES
	6.2. HYDROLOGIC MODEL
	6.3. HYDRAULIC MODEL

	7. PUBLICATION LIST
	7.1. Peer-reviewed journal articles
	7.2. Journal articles in preparation
	7.3. Conference papers
	7.4. Technical Reports


