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EXECUTIVE SUMMARY 
Floods are among the most damaging natural disasters in Australia. Over the last 
40 years, the average annual cost of floods was estimated to be $377 million per 
year. The 2010-2011 floods in Brisbane and South-East Queensland alone resulted 
in 35 confirmed deaths and $2.38 billion damage. The floods in June 2016 in 
Queensland, New South Wales, and Tasmania, resulted in five confirmed 
casualties. The Insurance Council of Australia stated on June 7, 2016 that about 
14,500 claims totalling $56 million have been lodged from across the country. The 
floods in March-April 2017 in Queensland and New South Wales caused five 
confirmed casualties. Furthermore, according to the Insurance Council of 
Australia, 823,560 Queensland homes are still unprepared for flooding (March 11, 
2018).  The floods in North Queensland in January-February 2019 resulted in four 
confirmed fatalities and an estimated total direct cost of 1.3 billion dollars. In 
order to limit the personal and economic damage caused by floods, operational 
water and emergency managers rely on flood forecasting systems.  

These systems consist of a hydrologic and a hydraulic model to predict the extent 
and level of floods. Using observed and predicted rainfall, the hydrologic model 
calculates the amount of water that is flowing through the river network, while 
the hydraulic model computes water depth and velocity in the river and in the 
floodplain. In recent decades, the accuracy and reliability of these flood 
forecasting systems has significantly improved. However, it remains difficult to 
provide accurate and precise flood warnings. This is a result of errors and/or 
uncertainties in model structures, model parameters, input data, and/or 
meteorological forcing (mainly rainfall). The hypothesis of this project is that 
remote sensing data can be used to improve modelled flood forecast skill and 
value. 

More specifically, this project developed optimal ways to constrain and update 
the hydrologic model using remotely sensed soil moisture data. The significance 
of soil moisture is its direct impact on the partitioning of rainfall into surface runoff 
and infiltration. Second, this project proposed an algorithm for the monitoring of 
floods under vegetation. Finally, we investigated optimal ways to use remote 
sensing-derived inundation extent and level to implement and calibrate the 
hydraulic model.  The results of this project enable improved predictions of flow 
depth, extent and velocity in the floodplain. 
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END-USER PROJECT IMPACT STATEMENT 

Norman Mueller, Geoscience Australia, Canberra, ACT. 

Digital Earth Australia (DEA) is working with Monash University to implement its 
flood mapping system in the Open Data Cube code. The intention is to use 
Monash’s code to map water from Sentinel-1 SAR data and incorporate the 
water extents into DEA’s Water Observations from Space (WOfS) product. 
Success of this work will allow the WOfS product to continue mapping water 
during cloudy periods, filling a large gap in the supply of water information to 
several agencies in Australia including the Murray Darling Basin Authority and the 
Commonwealth Environmental Water Office. 

 

Karen Hudson, Chris Leahy, Bureau of Meteorology, Melbourne, VIC. 

The Bureau of Meteorology has taken a keen interest in the work of the Monash 
University team regarding the Bushfire Natural Hazards CRC project "Improving 
flood forecast skill using remote sensing data". The project has clearly 
demonstrated the potential for remote sensing data to assist in real-time flood 
forecasting applications, as well as highlighting some of the challenges. Over the 
past few years, the Bureau of Meteorology has made opportunistic use of 
available satellite-derived flood extent data during flood events, for example use 
of MODIS imagery to help communicate flood extent in tweets and to track flood 
progression in remote areas with little ground data. 
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INTRODUCTION 
Flood forecasting systems are useful tools that are used by operational water and 
emergency managers to reduce the impact of floods. Even though these 
systems have improved during recent decades, further research is needed to 
improve forecasting precision and accuracy. 

The hypothesis of this project is that remote sensing is a helpful tool for operational 
flood forecasting. Consequently, remote sensing data are being utilised in two 
different ways. First, simulated soil moisture profiles from hydrologic models are 
improved through the optimal merging of simulated soil moisture states with 
remotely sensed surface soil moisture levels. This is expected to have a beneficial 
impact on modelled hydrographs. Second, estimated flood inundations and 
water levels from hydraulic models are improved through merging these model 
results with remote sensing-derived observations of flood inundations or water 
levels. This will improve the predictive capability of the hydraulic model. Overall, 
using remote sensing data in flood forecasting will lead to better early warning 
systems, management of floods, and post-processing of flood damages (for 
example for insurance companies). 

In this project, the best methods to merge remote sensing data and hydrologic 
and hydraulic models have been investigated. After selecting the models, 
model-data fusion techniques were implemented and tested using a data base 
that has been developed as part of this project. A list of recommendations on 
how to best use remote sensing data for operational flood forecasting has been 
developed. 
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BACKGROUND 

INTRODUCTION 

The project investigated the following science questions: 

1. How can satellite remote sensing data be best used to improve flood 
forecasting systems? How frequently are satellite acquisitions needed and 
how does this vary; do we need remote sensing data during the flood, or 
can remote sensing data acquired before the flood already provide 
sufficient information? 

2. To what extent can we reduce the uncertainty in the flood predictions? 

TEST SITE SELECTION 

A first step in the project was the identification of two test sites, and the 
acquisition of required data to meet the project objectives.  Criteria used in the 
catchment selection included: 

• Representation of the diversity of Australian hydrologic regimes;  

• The occurrence of floods in the recent past;  

• The significance of the flood impact on communities;  

• The availability of data to apply both hydrologic and hydraulic models;  

• The availability of high resolution and accurate digital elevation data for 
one test site. This test site can be used as benchmark to assess the impact 
on flood forecasts of medium to low accuracy and resolution topographic 
data available at the continental scale. 

MODEL SELECTION 

A second step was the selection of the hydrologic and hydraulic models to be 
used in the study. Criteria were: 

• Availability of the source code;  

• Modularity of the model;  

• Data requirements;  

• Feasibility to incorporate remote sensing data;  

• Ease to make operational;  

• Documented model performance. 

UNCERTAINTY ESTIMATION 

A significantly important issue is the estimation of the uncertainty of the flood 
forecasts, which is the third part of the project. Rainfall forecasts are used in an 
ensemble mode, meaning that not one single value is used for a specific time 
and location, but a number of values. The spread in these ensemble members is 



IMPROVING FLOOD FORECAST SKILL USING REMOTE SENSING DATA – FINAL PROJECT REPORT | REPORT NO. 633.2020 

 10 

a measure of the uncertainty in the predictions. The calibrated hydrologic model 
is applied to each member of the rainfall ensemble, leading to an ensemble of 
hydrologic model discharge values. This will then be used by the hydraulic model, 
resulting in an ensemble of river water levels and flood extents. Similar as for the 
rainfall, the spread in the ensemble will be a measure of the uncertainty in the 
modelled water levels and flood extends. 

MODEL-DATA FUSION 

Uncertainty in the hydrologic model results is reduced through the merging with 
remotely sensed soil water content data and in-situ streamflow observations. 
More specifically, at each time step where an observation is available, a 
weighted average between the hydrologically modelled state variables and the 
observations is made. The weight of the model results and the observations is 
dependent on their level of uncertainty.  Additionally, the errors in the modelled 
inundation extent, level, and velocity have been reduced by using remote 
sensing-derived flood extent and level to implement and calibrate the hydraulic 
model. 

REMOTE SENSING 

This project uses active microwave imagery from Synthetic Aperture Radar (SAR). 
The 24-hour all-weather capability of SAR technology makes it a perfect choice 
for routine flood inundation mapping to support flood management and 
response, for both gauged and ungauged catchments. An algorithm for the 
inversion of SAR imagery into maps of inundation extent has been proposed by 
this project. 

METHOD OPTIMIZATION 

The overall objective of the project was to aid operational flood forecasts 
through the use of remote sensing data.  The analysis completed within this 
project led to the delivery of guidelines for the selection of remote sensing 
observations and their optimal use to implement and constrain hydrologic and 
hydraulic models. 
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RESEARCH APPROACH 

HYDROLOGIC MODEL 

Data collected for this sub-project include gauged rainfall, gauged streamflow, 
potential evapotranspiration (PET), SMOS RS-SM, and RS fractional vegetation 
cover (fc) for January 2010–June 2014. The rainfall data were obtained from the 
Australian Bureau of Meteorology. Streamflow data were obtained from the New 
South Wales Office of Water and Queensland Department Natural Resources 
and Mining. PET was extracted from the Australian Water Availability Project 
(AWAP) monthly PET product. SMOS data were obtained from the “Centre Aval 
de Traitement des Données SMOS” (CATDS), operated for the “Centre National 
d'Etudes Spatiales” (CNES, France) by IFREMER (Brest, France). MODIS vegetation 
cover data were obtained from National Computational Infrastructure (NCI).  
 

The Short-term Water Information Forecast Tool (SWIFT) has consisted of numerous 
versions and since its inception has undergone major overhauls which include 
changes to the programming language. SWIFT can be considered a pre-release 
version and was developed using Fortran primarily for research purposes. A 
subsequent release, SWIFT2, was developed using C++ for ease of operations 
and integration into the BoM Hydrological Forecasting System (HyFS). SWIFT2 is 
commonly referred to as SWIFT. For this report the distinction between SWIFT and 
SWIFT2 will be kept. 

Initial testing of hydrological models and development of data assimilation 
routines was conducted using SWIFT. The conceptual hydrologic models GRHUM 
and GRKAL were built into SWIFT. Eventually GRKAL was selected to be used to 
test Remote Sensing Soil Moisture (RS-SM) assimilation routines due to its 
advantage in propagating surface SM information into the root-zone. A 
schematic diagram of GRKAL was provided in the 2017 annual report. GRKAL has 
now been implemented into SWIFT2 and is available for operational and 
research purposes.  

As part of the literature review (Li et al., 2016) conducted for this sub-project, 
methods to account for bias between SM observations and simulations were 
identified as critical components of further research to incorporate RS SM into 
flood forecasting models. Typically hydrologic modellers attribute all bias to the 
RS SM observation by matching the cumulative distribution function (CDF) of the 
RS SM observation to the CDF of the simulated soil moisture. Conversely, 
calibrating the parameters of the hydrologic model to simulate SM which 
represents the observed RS SM attributes all bias towards the model. 
Unfortunately, when RS SM observations are assimilated into the hydrologic 
model, neither method to account for biases has been able to consistently yield 
improved flood forecasting skill. The prevailing hypothesis is that the accuracy of 
rainfall forcing data hampers the consistent successful implementation of a RS 
SM data assimilation routine. 

The quality control (QC) of rainfall data was shown to vastly improve streamflow 
simulation skill (Liu et al., 2018). However, there were rare occasions in which QC 
of rainfall data led to degraded streamflow simulations, suggesting that the 
process of gauge selection can be optimised. 



IMPROVING FLOOD FORECAST SKILL USING REMOTE SENSING DATA – FINAL PROJECT REPORT | REPORT NO. 633.2020 

 12 

To address the uncertainty in rainfall data being used to force the hydrological 
model a methodology (Wright et al., In preparation) to optimise the rainfall 
gauge weighting for streamflow simulation skill has been developed. Typically 
areal rainfall estimates are developed using the spatial distribution of gauges to 
an area. This methodology weights the rainfall gauges by determining the 
weightings which improve streamflow simulation skill the most. It is hypothesised 
that such a weighting of rainfall gauges is more likely to enable the hydrological 
model to simulate SM consistent with the RS SM. If this can be demonstrated then 
such a configuration is more likely to benefit from the assimilation of RS SM 
observations.  

The ability to improve flood forecast skill by assimilating RS SM observations into 
GRKAL using models forced by traditional areal rainfall estimates and those 
retrieved from the optimization of gauge weights (OGW) methodology were 
compared. A fixed-lag joint ensemble Kalman smoother (EnKS) which 
simultaneously assimilates remotely sensed soil moisture observations and 
streamflow was developed and used. The joint EnKS provides improvements over 
the EnKS and ensemble Kalman filter (EnKF) by assimilation two observations 
types over a fixed window respectively. Translation of the code and testing are 
required to incorporate the joint EnKS into SWIFT 2. 

Using the EnKF and the EnKS to assimilate RS SM observations and or streamflow 
into the GRKAL model a set of real data experiments were conducted to assess 
the impact each configuration had on forecasting skill. The experiments were 
conducted in the Condamine catchment upstream of Warwick. To assess the 
impact on forecasting skill known rainfall observations were used. Consequently 
results demonstrate hindcasting skill which are indicative of forecast skill when 
good rainfall forecasts are made. Figure 1 demonstrates that, prior to data 
assimilation occurring, optimising the rain gauge weighting can improve the 
ability of the hydrological model to forecast streamflow. Further benefits are 
observed when RS SM observations and streamflow observations are used in the 
data assimilation routines. 

It should be noted that these results have been observed for the Warwick 
catchment and, due to rain gauge availability and quality, may not be broadly 
applicable. This could be a topic of further research. 

FIGURE 1: HINDCASTING PERFORMANCE USING TRADITIONAL (LEFT PANEL) AND OPTIMISED (RIGHT PANEL) AREAL RAINFALL ESTIMATES. 
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REMOTE SENSING-DERIVED INUNDATION EXTENT AND LEVEL 

Methods for the retrieval of inundation extent and level from satellite imagery are 
being developed. In particular, this project aims at improving flood detection 
and monitoring capabilities at the continental scale using active microwave 
imagery from synthetic aperture radar (SAR). The 24-hour all-weather capability 
of SAR technology makes it a perfect choice for routine flood inundation 
mapping to support flood management and response. SARs are active systems 
that emit microwave pulses at an oblique angle towards the target. The amount 
of microwave energy scattered off an object is primarily a function of its surface 
texture. Open water has a relatively smooth surface which causes radar 
radiation to be reflected away from the sensor, resulting in low backscatter. 
Rough terrestrial land surfaces, by contrast, reflect the energy in many directions, 
including back towards the sensor, and therefore appear as high backscatter 
zones. These differences allow flood extent to be mapped using a variety of 
techniques. A review is reported in Grimaldi et al. (2016). 

However, a number of event-related and catchment-related factors can alter 
the backscatter characteristics and hinder accurate SAR image interpretations, 
particularly when the inundated areas have vegetation above the water. In 
these areas, the electromagnetic interaction phenomena between 
microwaves, horizontal and vertical surfaces are highly complex and detection 
of flooded vegetation has been identified as one of the biggest challenges for 
accurate flood mapping. Nevertheless, this is a frequent condition in many 
Australian dryland catchments where vegetation is common in the riparian zone. 
Existing image interpretation algorithms make use of detailed field data and 
reference image(s) to implement electromagnetic models or change detection 
techniques. However, field data are rare, and, despite the increasing availability 
of SAR acquisitions, adequate reference image or time series of reference 
images might not be readily available, especially for fine resolution images. To 
contribute to the current state-of-the-art, this project has developed an 
algorithm for automatic flood mapping in vegetated areas which makes use of 
single SAR acquisitions and commonly available ancillary data (i.e. land cover, 
land use, and digital elevation models).  

The backscatter response of dry and flooded vegetation has been investigated 
using eleven SAR images (five COSMOSkyMed images and six Alos Palsar images) 
acquired over the Condamine-Balonne catchment and over the Clarence 
catchment during the flood events in January 2011. The analysis of backscatter 
response from vegetation has focused on the land cover classes defined by the 
National Dynamic Land Cover Dataset of Australia (Lymburner et al., 2011).  This 
investigation has led to the definition of a method to distinguish between dry and 
flooded vegetation.  

The proposed algorithm is described in detail in Grimaldi et al. (2020). The 
following paragraph presents a summary of the main concepts and results; the 
full demonstration, the flow chart showing the computational steps, and 
instructions to collect the ancillary data can be found in the above mentioned 
publication.  Probability binning is used for the statistical analysis of the 
backscatter response of wet and dry vegetation for different land cover types. 
This analysis is then complemented with information on land use, morphology 
and context within a fuzzy logic approach. In a proof of concept study, the 
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algorithm was tested on three fine resolution images acquired during the January 
2011 flood in the Condamine-Balonne catchment. Specifically, the analysed 
images were acquired by the L-band instrument on board ALOS-PALSAR and by 
the X-band instruments on board the COSMOSkyMed constellation. Albeit all the 
images had HH polarization, the use of SAR data retrieved using different 
wavelengths allowed for a preliminary test of the reliability of the proposed 
algorithm for the analysis of SAR images which have different characteristics. The 
SAR-derived flood extent layers were validated using inundation maps derived 
from high resolution (2 to 6 m pixel size) optical images. The optical-derived layers 
were provided by Geoscience Australia and the Queensland Department of 
Natural Resources and Mines, each optical-derived layer had undergone a 
quality control process by the providers: manual editing and use of historical 
information  increased the information content of these layers, especially in areas 
with emerging vegetation. In these case studies, state-of-the-art operational 
interpretation algorithms focusing solely on open water areas led to large 
omission errors with the Producer’s Accuracy (PA) for the class water as low as 
10.1%, 33.3% and 16.5% and the Overall Accuracy (OA) of 77%, 65%, and 75%, 
respectively. The use of probability binning allowed the omission errors to be 
reduced and the PA for the class water to have an increase of +75.2%, +62.2%, 
and +115.1%, respectively. Finally, incorporation of land use, context, and 
morphological information allowed further refinement of the classification thus 
achieving a final OA of 83.7%, 81.5%, and 85.7%, respectively. 

Notwithstanding the encouraging results of the proof of concept study, extensive 
testing is strictly required to investigate the trade-off between the characteristics 
of SAR data acquisitions (i.e. polarization, wavelength, and resolution), 
vegetation cover properties, and the accuracy of the methodology. By using 
both X and L-band acquisitions, the proof of concept study achieved a first 
analysis of the accuracy of the methodology for short and long wavelengths at 
HH polarization. To further analyse the reliability of the proposed methodology, 
the following phase of the project applied the algorithm to intermediate 
wavelengths and different polarizations.More specifically, the dual polarization 
(VV and VH) acquisitions made available free of charge by the 20 m spatial 
resolution C-band Sentinel-1 constellation (launched in 2016 by the European 
Space Agency) were selected for further testing.  For this purpose, the algorithm 
was applied for the analysis of Sentinel-1 images acquired during the 2016-2017 
floods in the Fitzroy catchment (WA).  

VV and VH polarizations were analysed independently. The accuracy of the 
algorithm was evaluated by comparing the SAR-derived water layers with binary 
wet/dry maps retrieved from optical satellite images. More specifically, binary 
wet/dry maps were derived from Landsat and Sentinel-2 images (25 m pixel size) 
by Geoscience Australia. MODIS images (500 m pixel size) were used to 
complement this dataset and the Tasselled Cap Wetness Index was chosen for 
the computation of the MODIS-derived wet/dry maps. Figures 2 shows the SAR 
data, the wet/dry maps derived from the optical data, and the results of the 
analysis of the SAR data.  It must be noted that these optical-derived flood extent 
layers were not subject to quality control or post-processing. Consequently, 
uncertainties and errors are likely to affect these optical-derived layers; an 
example of this issue can be seen in Figure 2B where scattered wet pixels are 
located at a considerable distance from the river network (this issue is highlighted 



IMPROVING FLOOD FORECAST SKILL USING REMOTE SENSING DATA – FINAL PROJECT REPORT | REPORT NO. 633.2020 

 15 

by the white ovals). Moreover, it must be remembered that detection of water 
under vegetation canopies using optical sensors is extremely difficult, especially 
when using medium (25 m pixel size) or low (500 m pixel size) spacial resolution. 
In Figure 2, yellow scribbles were used to facilitate the visual comparison 
between optical-derived (Figures 2B, 2E) and SAR-derived (Figures 2C, 2F) flood 
extent layers. A semi-quantitave analysis of the accuracy of the SAR-derived 
flood extent layers was then completed by focusing on the areas enclosed by 
the yellow scribbles. The results are explained in the next paragraph. 
 
The semi-quantitave analysis of the accuracy of the SAR-derived flood extent 
layers was based on the computation of User’s accuracy, Producer’s accuracy 
for the classes dry and flooded, Overall accuracy and Cohen’s kappa were 
computed for each SAR-derived water layer. Nevertheless, it must be noted that 
this analysis is affected by the above explained lack of accuracy of the optical-
derived layers; consequently, the numerical results must be considered as 
indicative of the algorithm’s performances rather than absolute quantitative 
evalutations. As an example, Table 1 lists the values of the performance metrics 
computed to assess the quality of the flood extent layer derived from the Sentinel 
1A, VV polarization acquisition of February 23rd, 2017. An accurate detection of 
the dry and wet pixles would lead to performance values close to 1. It is here 
noted that the Producer’s accuracy (PA) of the class water (listed in bold blue 
font) sensibly increases when adding the analysis of the flooded vegetation (i.e. 
when considering both FM1-OW and FM1-FV); a further increase of the 
performance metrics is then observed when adding the analysis of the empirical 
cumulative distribution function of the HAND (Height Above Nearest Drainage) 
index and DIST (distance) index to compute FM2.  
A sensitivity analysis of the impact of the algorithm’s parameters, inputs, and 
ancillary data on the accuracy of the results was performed; the results of the 
analysis are summarised below: 

• The algorithm led to larger false alarms when applied to VH polarization 
data than to VV polarization data. 

• The optimal trade-off between false alarms and omission errors for 
different footprints is achieved using slightly different definitions of the 
reference sample of dry vegetation. Use of both HAND index and 
information from Water Observations from Space (Mueller et al., 2016) 
allows the application of probability binning to a larger number of land 
cover classes than the use of the HAND index alone. Nevertheless, use of 
the first strategy can also increase the false alarms compared to the latter. 

• The computation of the empirical cumulative distribution of the values of 
the HAND index for potentially wet areas could remove a slightly larger 
number of false alarms when compared to the use of a fixed HAND 
threshold value.  

• For this catchment, use of the empirical cumulative distribution of the 
values of the DIST index did not improve the accuracy of the analysis; 
consequently, computation of the fuzzy membership function based on 
the DIST index is recommended only in areas with fields subject to flood 
irrigation. 

• The analysis of adjacent footprints (same orbit number) allows using larger 
samples for the analysis of the backscatter response of each land cover 
and leads to more accurate analysis. 
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FIGURE 2 - (A) SAR BACKSCATTER ON FEBRUARY 23RD 2017, VV POLARIZATION; (B) WET/DRY FLOOD EXTENT REFERENCE LAYERS DERIVED FROM 
SENTINEL2 AND MODIS OPTICAL DATA; (C) FUZZY MEMBERSHIP TO THE CLASS WATER COMPUTED USING THE PROPOSED ALGORITHM. (D), (E) (F) SAME 
AS (A), (B), (C) BUT FOR THE SAR ACQUISTION ON FEBRUARY 28TH 2017. THE MODELLED FLOOD EXTENT IN FIGURE (B) WAS COMPUTED USING THE 
HYDRAULI MODEL (SECTION HYDRAULIC MODE), DARK GREEN INDICATES AREAS WITH MODELLED WATER DEPTH HIGHER THAN 10 cm, LIGHT GREEN 
INDICATES AREAS WITH MODELLED WATER DEPTH LOWER THAN 10 cm. 

 

 

 

 

Optical image 
Temporal lag between 

SAR and OPTICAL 
acquisitions (days) 

% SAR footprint 
that could be 

evaluated 

UA 
water UA dry PA 

water PA dry OA Cohen's 
kappa 

FM1-OW 
SENTINE2 L 
17/02/2017 6.5 24.1 0.874 0.963 0.007 1.000 0.963 0.012 

MODIS Terra 
17/02/2017 6.5 29.9 0.126 0.967 0.003 0.999 0.967 0.004 

MODIS Terra 
18/02/2017 5.5 14.5 0.358 0.892 0.002 1.000 0.892 0.003 

MODIS Terra 
23/02/2017 0.5 14.5 0.053 0.996 0.008 0.999 0.995 0.013 

 MODELLED FLOOD   
EXTENT 23/02/2017 

MODIS Terra 
18/02/2017 

SENTINEL2: 17/02/2017 
h 8:25 

Fuzzy Membership to 
the class WATER 

A) B) C) 

D) E) F) 
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LANDSAT 
22/02/2017 1.8 9.8 0.387 0.983 0.011 1.000 0.983 0.021 

   FM1-OW and FM1-FV 
SENTINE2 L 
17/02/2017 6.5 24.1 0.451 0.976 0.363 0.983 0.960 0.382 

MODIS Terra 
17/02/2017 6.5 29.9 0.449 0.982 0.474 0.980 0.964 0.442 

MODIS Terra 
18/02/2017 5.5 14.5 0.690 0.940 0.483 0.974 0.921 0.526 

MODIS Terra 
23/02/2017 0.5 14.5 0.031 0.998 0.517 0.927 0.925 0.050 

LANDSAT 
22/02/2017 1.8 9.8 0.170 0.992 0.552 0.953 0.946 0.239 

   FM2 (HAND and DIST, ecdf) 
SENTINE2 L 
17/02/2017 6.5 24.1 0.479 0.953 0.373 0.969 0.926 0.381 

MODIS Terra 
17/02/2017 6.5 29.9 0.479 0.967 0.476 0.968 0.939 0.445 

MODIS Terra 
18/02/2017 5.5 14.5 0.715 0.908 0.487 0.963 0.887 0.516 

MODIS Terra 
23/02/2017 0.5 14.5 0.032 0.996 0.517 0.894 0.891 0.048 

LANDSAT 
22/02/2017 1.8 9.8 0.177 0.988 0.553 0.933 0.923 0.239 

TABLE 1: EVALUATION OF THE ACCURACY OF THE WATER LAYER DERIVED FROM SENTINEL1A, VV POLARIZATION, FEBRUARY 23RD, 2017. FM1-OW IS THE 
FUZZY MEMBERSHIP TO THE CLASS OPEN WATER; FM1-FV IS THE FUZZY MEMBERSHIP TO THE FLOODED VEGETATION; FM2 REFINES THE COMPUTATION OF 
FM1-OW AND FM1-FV BY ADDING THE ANALYSIS OF THE EMPIRICAL CUMULATIVE DISTRIBUTION FUNCTION (ecdf) OF THE DIST AND HAND INDICES.  

The possibility to improve the accuracy of the proposed algorithm by adding 
further analysis and ancillary datasets was also investigated. More specifically, 
similarly to open water areas, dry bare areas result in low backscatter response 
and can then cause false alarms. Information from regolith data (Geoscience 
Australia, http://pid.geoscience.gov.au/dataset/ga/75626) and fractional 
cover (Geoscience Australia, https://www.ga.gov.au/dea/products/fc) were 
used to identify bare areas. This information was complemented with information 
of soil moisture at the time of acquisition of the SAR data. For this purpose, both 
modelled and remote sensing-derived datasets were tested. More specifically, 
the modelled soil moisture was retrieved from the AWRA (Australian Bureau of 
Meteorology, www.bom.gov.au/water/landscape/); remote sensing-derived 
soil moisture was retrieved from SMAP (SMAP Enhanced L3 Radiometer Global 
Daily 9 km EASE-Grid Soil Moisture, Version 3, NASA) and SMAP-Sentinel1 
(SMAP/Sentinel-1 L2 Radiometer/Radar 1 km Soil Moisture, NASA, ESA). 
Information of surface cover, soil moisture, and backscatter analysis were 
combined to remove false alarms. Figure 3 shows an example of the detection 
of false alarms using either AWRA, or SMAP, orSMAP/Sentinel-1 ancillary dataset 
leading to similar results.  Specifically, the false alarms identified by each one of 
the above listed ancillary dataset are highlighted by red pixels in the panels 3B, 
3D, 3F.  
Albeit further extensive testing is required, the analyses indicated that the 
proposed algorithm can positively contribute to the problem of automatically 
detecting flooded vegetation using readily available ancillary data. 
In order to enable the testing of the proposed methodology, the numerical 
algorithm has been made available via GitHub under Apache 2.0 license at 
https://github.com/GeoscienceAustralia/dea-sar-flood-veg. The GitHub is the 
outcome of the collaboration with Geoscience Australia and it will be primarily 
used by Geoscience Australia to verify the reliability of the algorithm for the 
analysis of Sentinel-1 images acquired over many Australian catchments.   
 

https://github.com/GeoscienceAustralia/dea-sar-flood-veg


IMPROVING FLOOD FORECAST SKILL USING REMOTE SENSING DATA – FINAL PROJECT REPORT | REPORT NO. 633.2020 

 18 

 
A) 

 

B) 

 C) 

 

D) 

 E) 

 

F) 

 
FIGURE 3 -JANUARY 18TH 2017 - (A) WETNESS FROM AWRA MODEL); (C)  SOIL MOISTURE DERIVED FROM SMAP DATA; (E) SOIL MOISTURE DERIVED FROM 
SMAP/SENTINEL1 DATA. (B), (D), (F) FUZZY MEMBERSHIP TO THE CLASS WATER: FM1 IS UNION OF  OPEN WATER AREAS (OW) AND FLOODED VEGETATION 
(FV); THE RED PIXELS INDICATE THE FALSE ALARMS HIGHLIGHTED USING AWRA MODELLED DATA, SMAP OBSERVATIONS, SMAP/SENTINEL1 
OBSERVATIONS, RESPECTIVELY. 

HYDRAULIC MODEL 
The hydraulic model is based on LISFLOOD-FP (Bates et al., 2010) and it uses the 
finite difference method to solve the inertial approximation of the shallow water 
equations. The implementation of the hydraulic model requires a Digital 
Elevation Model (DEM) and information on river bathymetry. The quality of these 
datasets is pivotal for accurate forecasts of flood wave routing and floodplain 
inundation.  
Calibration of a model’s parameters is essential to enable adequate 
representation of flood dynamics both at the local and reach scales. This 
objective is achieved by comparing model results and observations of historical 
flood events. Gauged water level or discharge data at discrete locations along 
the river and remote sensing-derived (RS-D) observations of inundation extent 
and level can be used for this purpose. Gauged data are continuous time series 
representing the lumped response of the catchment to a precipitation event. 
Remote sensing instruments provide spatially distributed observations of 
inundation extent and water level and enable model evaluation at large 
number of locations. Nevertheless, these data are acquired at the time of the 
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satellites overpass. Despite acquisition frequency is likely to increase, just a few 
(or one) observations might be available for a specific event, meaning that 
evaluation of floodplain temporal dynamics could be difficult and affected by 
the acquisition time. 
To add to the existing knowledge, this project investigated optimal ways to use 
RS data to improve the implementation and the calibration of hydraulic flood 
forecasting models. The following paragraphs present the results for each test 
case. 

Clarence catchment (NSW) 
The hydraulic model computes flood wave routing in the river and, when the river 
flow capacity is exceeded, in the floodplain. Bathymetric data are critical for the 
assessment of river flow capacity and, hence, for the accurate prediction of 
floodplain inundation dynamics. However, it is impractical to measure river 
bathymetry along the total river length in large basins, especially considering that 
river geometry can change over time. Consequently, a data-parsimonious 
methodology for the definition of a river bathymetry representation which is 
effective for the implementation of medium to high resolution flood forecasting 
hydraulic models was derived using the Clarence catchment as study site. This 
study was developed using measured bathymetry data sampled during a field 
campaign in November 2015. According to the proposed methodology, 
simplified, yet effective cross section geometries can be defined based on a 
combination of limited field data (with a minimum of three sampling), global 
database, and remote sensing-derived observations of river width. The details of 
the methodology are explained in Grimaldi et al. (2018).  

The hydraulic model was then applied to simulate the flood events in 2011 and 
2013. . The input data were the measured discharge time series at Lilydale; the 
downstream boundary conditions were the measured tidal levels at Yamba. It 
was demonstrated that small uncertainties in the prediction of water level at 
Grafton (i.e. at one gauge station) could result in large errors in the prediction of 
the inundated area (Pauwels et al., 2019). These errors were not highlighted by 
the comparison between modelled and gauged water levels but could be 
detected by the synoptic view offered by RS-derived data. Spatially distributed 
RS-derived flood extent hence provided more robust strategies for the detection 
of model errors and constraint of model parameters than gauged dataset. 
However, gauged time series of water level data allow immediate evaluation of 
the predicted flood wave arrival time. Conversely, RS instruments provide 
information at a snapshot in time and so the existing performance metrics 
generally compare model results and observations at the acquisition time. 
Nevertheless, explicitly differentiating between model parameterizations which 
under predict or over predict the flood wave arrival time is valuable to assess 
models’ predictive skill. To add to the existing state-of-the-art this project 
introduced a novel RS-based framework for the calibration of 2D hydraulic 
models. 

More specifically, the calibration framework was designed to (1) make exclusive 
use of RS-derived observations and consequently enable model calibration in 
ungauged catchments; (2) allow discriminating between under prediction and 
over prediction of floodplain propagation speed; (3) require a limited number of 
model realizations. The latter requirement addressed the major pragmatic 
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challenge affecting the calibration of 2D-hydraulic models being the 
computational burden of each model realization. The large demand of time 
generally hampers the application of frameworks requiring a large number of 
model realizations, to by-pass this problem this project aimed at a rapid, yet 
effective calibration strategy.  
A novel performance metric, the space-time score, was proposed to compare 
modelled and observed waterline (wet/dry interface) and discriminate between 
underestimation and overestimation of floodplain propagation speed. Binary 
performance metrics were used to compare modelled and observed inundation 
extents, model realizations were ranked according to increasing values of the 
CSI (Critical Success Index), FA (False Alarms), (1 − HR) (Hit Rate), |1 − Bias|. The 
space-time-score and the binary performance metrics allowed quantifying the 
capability of different parameter sets to reproduce the observed data.  A novel 
set of river roughness values is then computed to minimise the discrepancy 
between model results and observations. The iterative calibration methodology 
can be summarised as follows: 

1) Initial set of model realizations with uniform river roughness values;  
2) Computation of the performance metrics: 2a) space-time score and 
binary performance metrics; 
3) Computation of novel set of river roughness values. 

Steps 2 and 3 are repeated until there is no significant change in the computed 
river roughness values.  

The 2011 and the 2013 flood events in the Clarence catchment (New South 
Wales) were used as test cases. Available remote sensing data included both 
Synthetic Aperture Radar and optical acquisitions. Gauged data were used as 
an independent validation dataset to verify the accuracy of the remote sensing 
derived calibration. Specifically, two SAR images were used to identify the 
spatially distributed parameter set. Figure 4 shows the results of the calibration 
when using two SAR (CosmoSkyMed images). These images were acquired over 
Grafton and immediately after the flood peak. Panel 4A allows the direct 
comparison between modelled and observed flood extent: the modelled 
wet/dry edges are in agreement with the RS-derived wet/dry boundary points. 
The modelled water depth showed in panel 4A highlights the added value of 
using hydraulic models for floodplain management. The panels 4B,C,D,E allow 
the validation of the RS-derived calibration: modelled water level time series 
predicted by the calibrated model (thick dashed black lines) are compared with 
gauged data (continuous black line); the results of the initial sample of model 
realizations are also shown (coloured lines) to allow a deeper understanding of 
the benefits of the RS-derived calibration. 

   The calibration was completed using two SAR (CosmoSkyMed) images 
acquired over Grafton and immediately after the flood peak. The  investigation 
of the importance of RS acquisition footpring and timing was then achived 
through the analysis of a number of scenarios. These scenario made use of RS 
acquisition in different areas of the catchment and at different stages of the 
flood event and it allowed to demonstratethe importance of the footprint of RS 
acquisitions. RS acquisitions over Grafton during were essential to enable 
adequate flood inundation modelling in the Clarence catchment. Grafton is 
protected by a long levee system and the accurate modelling of the floodplain 
inundation volume in this area is crucial to avoid large errors in the prediction of 
flood wave routing in the downstream area. Both the 2011 and the 2013 floods 
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were valley filling events and model calibration was not possible when using 
acquisitions during the decreasing limb and over the downstream area.  

The proposed framework was designed to minimise the discrepancies between 
model results and RS observations. Consequently, RS accuracy, timing and 
spatial coverage affected the performance of the calibration. The analyses 
developed within this project allowed the delivery of guidelines for the selection 
of RS observations, nevertheless, extensive further testing is essential to investigate 
the impacts of RS features on the effectiveness of the proposed methodology for 
a number of catchments with different morphologies and flooding dynamics.  

 

FIGURE 4 - (A) THE MODELLED WATER DEPTH COMPUTED USING THE CALIBRATED MODEL IS COMPARED WITH RS-DERIVED FLOOD EXTENT AND WET/DRY 
BOUNDARY POINTS; (B),(C),(D),(E) MODELLED AND GAUGED WATER LEVELS; MODELLED WATER LEVEL USING THE INITIAL PARAMETERS SETS (I.E. MODELS 
1 TO 9) AND THE CALIBRATED PARAMETER SET (BLACK, DOTTED LINE). THE VERTICAL LINES INDICATE THE OVERPASS TIME OF THE RS ACQUISITION. 

Condamine-Balonne catchment (NSW)  
High resolution (10-1 to 100 m), high accuracy (10-1 m) DEMs are derived from 
LiDAR data, however these datasets have limited spatial coverage and are 
rarely available. DEMs available at the continental scale were derived from 
satellite missions. Satellite-derived DEMs have medium resolution (101 to 102 m) 
and are affected by uncertainties and errors. This project completed an analysis 
of the accuracy of two satellite-derived DEMs for the representation of river flow 
capacity and floodplain morphology in the Condamine-Balonne catchment. 
These DEMs were the TanDEM-X-derived DEM and the SRTM-derived DEM-H.  
Bathymetric data and transects were sampled during a field campaign in May 
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2016. These field data, LiDAR data, and ground control points were used as 
benchmark. The analysis showed that riparian vegetation can cause large 
uncertainties and errors in both the DEM-H and TanDEM-X dataset; these errors 
often lead to the underestimation of the river flow capacity. The results were 
published in Wang et al. (2018). Moreover, a collaboration with CSIRO-Data61 
(Clayton) led to the development of an automatic, fast algorithm for the 
interpolation of sparse bathymetric data (Hilton et al., 2019). 
The set-up of the hydraulic model of the Condamine-Balonne catchment was 
the completed using the DEM-H. River bathymetry was assessed according to 
the studies completed within this project (Grimaldi et al., 2018; Hilton et al., 2019; 
Wang et al., 2018; unpublished report: Grimaldi et al., Bathymetric field 
campaign of the Balonne river in St. George QLD – data analysis and assessment 
of reservoir volume, prepared for SunWater Ltd, November 2016).  The capability 
of the model set-up to adequately reproduce the flooding behaviour of the 
catchment was analysed using the 2011 flood event as case study.  The input 
data were gauged discharge hydrographs at Cotswold (Condamine River), 
Gilweir (Dogwood Creek), Tabers (Bungil Creek), and Forestry station (Yuleba 
Creek), Cashmere (Maranoa River) (Figure 5). Normal flow conditions were 
imposed at the downstream boundary. 
 

 
FIGURE 5 - CONDAMINE-BALONNE CATCHMENT: INPUT POINTS (RED); GAUGE STATIONS USED FOR MODEL EVALUATION (GREEN). 

 
A sensitivity analysis of the impact of the main parameters on modelled 
inundation dynamics was completed for the purposes of evaluating the set-up 
of the hydraulic model. More specifically, four combinations of uniform values of 
river and floodplain roughness were used to complete the sensitivity analysis. 
Measured discharge time series at Surat, Weribone, and St.George (Figure 5) and 
inundation extent and level derived from nine satellite acquisitons were used as 
evaluation dataset. The list of the remote sensing acquisitions is provided in Table 
2, SAR images are listed in bold. The SAR-derived flood extent layers were 
retrieved using the algorithm developed by this project (Grimaldi et al., 2020). 
Geoscience Australia provided the water extent layers derived from optical 
data.  The comparison between modelled and observed flood extents focused 
on six Areas of Interest, AOI (Figure 6). 
 

 Satellite Acquisition date and time Coverage Comments 
1 LANDSAT (optical) 30/12/2010  h 10   Upstream area   
2 CosmoSkyMed (SAR) 4/01/2011  h 18 Surat  
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3 LANDSAT (optical) 6/01/2011  h 10 All the catchment   
4 ALOS PALSAR (SAR) 7/01/2011   h 23  StGeorge   
5 SPOT5 (optical) 8/01/2011  h 10 All the catchment Clouds 
6 CosmoSkyMed (SAR) 8/01/2011  h 18 StGeorge   
7 

LANDSAT (optical) 14/01/2011  h 10 All the catchment 
“Venetian 

blinds” 
8 ASTER (optical) 14/01/2011  h 10 All the catchment  Clouds 
9 LANDSAT (optical) 15/01/2011  h 10  Upstream area   

TABLE 2:   REMOTE SENSING DATA USED TO EVALUATE AND OPTIMISE THE SET-UP OF THE HYDRAULIC MODEL. 

 
FIGURE 6 - DEFINITION OF THE AREAS OF INTEREST (AOI) FOR THE COMPARISON BETWEEN MODELLED AND OBSERVED FLOOD EXTENTS. 

The Condamine River, the Balonne River up to the Barrackdale Choke, the 
Balonne River downstream of St.George, and the Culgoa River are 
anabranching rivers (i.e. multi-channel rivers composed of two or more 
interconnected channels that enclose floodplain areas). The Balonne River 
between the Barrackdale Choke and St.George is a unicursal river.  It was found 
that adequate representation of river flow capacity allowed the accurate 
representation of flood extent and flood wave arrival time, nevertheless, the 
representation of river shape was of secondary importance. Two satellite-derived 
DEMs were tested for model implementation, more specifically, the DEM-H 
(Geoscience Australia, Gallant et al., 2011) and the Merit-Hydro (Yamazaki et al., 
2019).  It was found that the DEM-H had a more accurate representation of the 
anabranching river system thus enabling a more accurate representation of the 
flood wave arrival time. 
The comparison between modelled and observed gauged data did not allow 
any conclusion on the performances of the model realizations. The comparison 
between modelled and observed inundation extents was achieve by computing 
binary performance metrics for the six AOIs. This comparison identified 
underestimation of the flooded area upstream of the Barrackdale Choke (AOI 3) 
and overestimation of the inundation extent in the downstream area (Table 3). 
These results were substantiated by comparing modelled and remote-sensing 
derived water level and led to hypothesise errors in the representation of terrain 
morphology and river bathymetry at the location of the Barrackdale Choke (AOI 
3). These errors were identified and corrected using a RS-based workflow: a 
schematic of the main steps is shown in Figure 7. 
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TABLE 3:  COMPARISON BETWEEN MODELLED AND RS-DERIVED INUNDATION EXTENT ON JANUARY 6TH 2011(LANDSAT 5 DATA). BIAS VALUES COMPUTED 
FOR DIFFERENT MODEL REALIZATIONS AND FOR THE SIX AREAS OF INTEREST. BIAS<1 INDICATES UNDERESTIMATION OF THE OBSERVED FLOOD EXTENT; 
BIAS>1 INDICATES OVERESTIMATION OF THE OBSERVED FLOOD EXTENT. 

The hydraulic model parameterization leading to highest agreement with RS 
data in the area upstream of the Barrackdale Choke was used to compute the 
modelled input volume to the AOI3. Figure 7A shows the modelled input 
discharge time series at the Barrackdale Choke and the measured discharge 
time series at St.George.  The analysis of these hydrographs highlighted a large 
attenuation of the flood wave; this effect was caused by AOI3. As shown in Figure 
7B, RS acquisitions from LANDSAT 5 and SPOT 5 allowed the assessment of the 
variation of water volume in the AOI3 between Jan 6th 2011 and Jan 8th 2011. The 
modelled storage volume variation in the AOI3 between the acquisition time of 
LANDSAT 5 and SPOT5 was then compared with the RS-derived value. Both the 
RS-derived and the modelled volume variations indicated an increase of storage 
in the AOI3. However, the RS-derived value was sensibly larger (approximately 8 
times larger) than the modelled value thus indicating an overestimation of the 

modelled discharge at the outlet of the Barrackdale Choke. To ameliorate this 
problem,   the numerical code of the hydraulic model was then edited to 
incorporate the modelling of the flow behavior of the Barrackdale Choke. More 
specifically, the equations modelling weir discharge were introduced in the 
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numerical code. The schematics in Figure 7C show the two l geometries which 
were hyphotesised, that is, a compound weir and V-notch weir. For both the 
geometries, the coefficients were retrieved from Engineering Handbook, while 
the geometry was assessed using the DEM-H and RS-derived inundation widths. 
Gauged discharge data at St.George were used here as reference to assess the 
accuracy of the novel model set-up. Figure 8 allows the evaluation of the impact 
of the edited model set-up. This figure compares the measured discharge 
hydrographs at Weribone (upstream of the AOI3) and St.George, and modelled 
discharge hydrographs at the outlet of the Barrackdale Choke. It is shown that 
the flood dynamics predicted by the edited numerical model (green and blue 
lines) can allow more accurate predictions of the timing and value of the flood 
peak at St.George. It is here noted that the total gauged volume at St.George 
includes the volume from two upstream points: Weribone (considered here) and 
Cashmere (Maranoa River). Albeit underestimation of the measured flood peak 
at St.George in Figure 8 was expected, the predicted flood dynamics at the 
outlet of the Barrackdale Choke indicated a higher accuracy of the novel model 
set-up. 

 
FIGURE 8 - MEASURED DISCHARGE HYDROGRAPHS AT WERIBONE (UPSTREAM OF AOI3) AND ST.GEORGE; MODELLED DISCHARGE HYDROGRAPHS AT 
THE OUTPUT OF THE BARRACKDALE CHOCKE. MODELLED DISCHARGE HYDROGRAPHS OBTAINED WHEN USING THE UNCORRECTED MODEL SET-UP (RED, 
DASHED LINE), THE MODEL SET-UPS INCLUDING THE WEIR EQUATIONS (GREEN AND BLUE LINES). 

Fitzroy catchment (WA) 
The hydraulic model of the Fitzroy catchment (WA) was set-up to develop a 
benchmark dataset for the validation of the SAR-derived flood extent layers. 
Moreover, this modelling exercise contributed to the investigation of the use of 
RS data to improve the implementation of the hydraulic model. This project 
hence developed knowledge   which will facilitate the implementation of the 
hydraulic model in many Australian catchments. 
Figure 9A shows the modelled area, the input data were the measured discharge time 
series at Dimond Gorge, Margaret River at Mt. Krauss, Christmas Creek Homestead. 
Normal flow conditions were imposed at the downstream boundary. The modelling of 
the 2016-2017 flood event revealed errors in the representation of the terrain morphology 
at Geikie Gorge. More specifically, inaccuracies in the terrain data led to overestimation 
of the storage area upstream of Geikie Gorge and, consequently, underestimation of 
modelled flood extent and discharge data at Fitzroy Crossing. Figure 9B shows that the 
modelled discharge time series (blue lines) considerably underestimate the measured 
time series (black line). This problem was observed when using both the DEM-H and the 
Merit-DEM-Hydro thus highlighting the need for a methodology to improve model 
implementation in areas of complex morphology. Flood extent layers derived from 
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Landsat data (Water Observations from Space database) and gauged data at Fitzroy 
Crossing and Noonkanbah were used to derive a terrain dataset which is effective for 
the implementation of the hydraulic model. The results of the retrieved model 
implementation are shown in Figures 10.  Figures 10A and 10B allow a visual evaluation of 
the agreement between the inundation extent derived from Sentinel-2 data and the 
modelled flood extent. It is here noted that the optical-derived layer in Figure 10A 
provides relevant information on flood extent. Nevertheless, further processing of the 
optical data would be required to adequately overlay the optical-derived layer on the 
model-derived layer. For instance, the optical-derived water layer shows a vertical line 
on the left side and many isolated pixels far from the river network (these features are 
highlighted by the black ovals). Moreover, optical sensors cannot generally detect water 
underneath trees canopy. Consequently, showing the optical-derived layers next to our 
own results allow a good overall understanding of the information value of the model-
derived layers. Moreover, Figure 10C allows to complement the evaluation of the 
accuracy of the edited model set-up by comparing modelled (light blue line) and 
gauged (black line) discharge hydrograohs. 
 

 

 

 

FIGURE 9 – (A) FITZROY CATCHMENT: MODELLED AREA, GAUGE STATIONS. RED RECTANGLE: EXAMPLE OF FOOTPRINT OF SENTINEL1 DATA. (B) 
MEASURED DISCHARGE HYDROGRAPHS AT FITZROY CROSSING AND MT.KRAUSS (MARGARET RIVER); MODELLED DISCHARGE HYDROGRAPHS AT 
FITZROY CROSSING FOR DIFFERENT PARAMETER VALUES AND THE UNCORRECTED MODEL SET-UP. 

 

FIGURE 10 – (A) FLOOD EXTENT DERIVED FROM SENTINEL2 OPTICAL DATA (THIS LAYER WAS PROVIDED BY GEOSCIENCE AUSTRALIA); (B) MODELLED 
FLOOD EXTENT AT THE ACQUISITION TIME OF SENTINEL2 OPTICAL DATA, DARK GREEN AREAS: THE MODELLED WATER DEPTH IS HIGHER THAN 0.10 cm; 
LIGHT GREEN AREAS: THE MODELLED WATER DEPTH IS LOWER THAN 0.10 cm. (C) MODELLED AND MEASURED DISCHARGE HYDROGRAPHS AT FITZROY 
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CROSSING. THE RESULTS IN (B) AND (C) WERE OBTAINED USING THE CORRECTED MODEL SET-UP. 
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FINDINGS 
This project adds to the current flood monitoring and modelling capabilities by 
providing methodologies for the optimal use of RS observations to monitor flood 
events, constrain the hydrologic model, implement and constrain the hydraulic 
model. The companion document “Guidelines on the optimal use of remote 
sensing data to improve the accuracy of hydrologic and hydraulic models” 
provide comprehensive and detailed recommendations on the selection and 
use of RS observations. The guidelines were generated from the analysis of three 
case studies, which are the Clarence (NSW), the Condamine-Balonne (QLD), 
and the Fitzroy (WA) catchment. Nevertheless, the methodologies and 
guidelines were developed for application to any Australian catchment. This 
document provides a summary of the findings of this project.The guidelines can 
be found at https://www.bnhcrc.com.au/publications/biblio/bnh-7198. 

HYDROLOGIC MODEL 
Leveraging from the experience developed within this project a set of 
recommendations on the choice of performance metrics, multi-objective 
calibration, selection of model and RS SM data sets for forecasting, and the 
assimilation of RS SM observations and streamflow observations are provided for 
hydrologic models.  

Performance metrics 
There is currently not a consensus on the optimal performance metric for 
hydrological flood forecasting. However the often-applied approach 
throughout Australia is to use an unweighted average of metrics which represent 
low, medium, and high flows, and bias is recommended. 

Multi-objective calibration 
Increased accuracy and capability to remotely sense SM may account for the 
increased frequency with which multi-objective calibration studies that use RS 
SM and streamflow data sets are being conducted. By improving the 
hydrological model’s ability to simulate surface layer soil moisture dynamics, 
these approaches typically reduce the capability of models to simulate 
streamflow. This project unveiled a significant exception to this rule. At ungauged 
locations upstream of a gauge, RS SM observations can and should be used to 
improve streamflow simulation and forecasting capability.  

Selection of hydrologic model and RS SM data set 
No two hydrological models or RS SM data sets are alike. To enable hydrologic 
models to benefit most from the assimilation of RS SM observations it is prudent to 
evaluate the compatibility of the model, rainfall time series, and RS SM data set. 
It is suggested that the user do so by checking for white noise in the difference 
between simulated and observed time series.  

Assimilation of RS SM and streamflow 
A joint EnKS routine was developed to assimilate both RS SM and streamflow 
observations into hydrological models. Improved forecasting capability was 
observed for rainfall time series which had been optimised to yield superior 
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streamflow simulation skill. Improvements were not found when traditional areal 
rainfall estimates were used. As such it is recommended that considerable efforts, 
and further research, to improve the quality of rainfall forcing data are made. 
Data assimilation should not be applied to hydrologic models which do not have 
high quality forcing data. 

SELECTION OF REMOTE SENSING OBSERVATIONS 
The experience developed within this project enabled the delivery of a set of 
recommendations on the optimal acquisition time, spatial coverage, and 
accuracy of remote sensing images to be used for the evaluation of hydraulic 
models.  

Acquisition time 
• Remote sensing-derived observations of flood extent and level enable to 

effectively constrain the parameter space of the hydraulic model when the 
observed quantity changes rapidly over time (Grimaldi et al., 2016).  

• Images acquired during the rising limb and up to the flood peak are 
generally more effective for the constraint of the parameter space of the 
hydraulic model.  

Spatial coverage  
• Use of images acquired over the upstream area of the catchment is 

recommended to improve inundation modelling accuracy in the 
downstream areas of the catchment.  

• Generally speaking, the larger the footprint of the observed area, the 
higher the information content, the higher the potential to effectively 
constrain the parameter space of the hydraulic model.  

• In the Clarence catchment, observations of Grafton are essential for model 
calibration. 

• In the Condamine Balonne catchment, timely observations of the 
Barrackdale Choke are essential for accurate floodplain inundation 
modelling in the urban area of St.George.  

• In the Fitzroy catchment, timely observations of the Geikie Gorge are 
essential for the adequate implementation of the hydraulic model.  

• The analysis of the three catchments demonstrated the need for RS 
observations (1) in areas with levee systems; (2) in areas with morphological 
singularities (e.g. creeks, gorges). 

• Areas with morphological singularities can be identified by off-line 
realizations of the hydraulic model (Grimaldi et al., 2019). This identification 
can then be supported and validated using historical database of 
observations of surface water. The recommended database is Water 
Observations from Space (Mueller et al., 2016). 

Accuracy  
• The accuracy of RS-derived inundation extent and level depends on the 

accuracy of the RS observations and on the accuracy of the algorithm for 
the retrieval of inundation extent and layer. 

• Use of SAR data is recommended over optical acquisitions to enable 
surface water detection at night, under clouds, under vegetation. 
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• RS data spatial resolution is the size of the smallest object that can be 
resolved on the ground; the image pixel size quantifies the spatial coverage 
of a pixel in the real world. Generally speaking, the higher the resolution, 
the higher the accuracy. However, the higher the resolution, the lower the 
acquisition frequency, the smaller the spatial extent of the observed area. 
This project demonstrated that RS acquisitions having a spatial resolution of 
20 to 40 m (i.e. medium resolution) are adequate for the purpose of 
evaluating the performances of the hydraulic model for the provision of 
floodplain inundation predictions at the catchment scale. Accurate tuning 
of the hydraulic model in urban areas was out of scope; such an objective 
is expected to require ~1m resolution images. 

• RS-derived water level are retrieved by overlaying RS-derived inundation 
extent layers on a DEM. For this purpose, the use of high-resolution and high-
accuracy LiDAR data is strictly recommended. 

• This project proposed an algorithm for the use of SAR data to detect floods 
in vegetated areas (Grimaldi et al., 2020). It is expected that such an 
algorithm will contribute to improve the accuracy of the SAR-derived 
information of flood extent and level. 

USE OF REMOTE SENSING OBSERVATIONS TO CONSTRAIN THE 
HYDRAULIC MODEL 
The comparison between model results and RS-derived observation enables (i) 
the verification of model implementation; (ii) the calibration of model 
parameters.  

Verification of model implementation 
Inaccurate representation of river flow capacity and of floodplain 
morphological features unavoidably lead to inaccurate predictions of 
inundation dynamics. RS-derived observations can be used to detect and 
correct these inaccuracies:  

• RS-derived water level can be used to identify and correct inaccurate 
representation of river bathymetry. The methodology for the diagnosis 
and correction is explained in Grimaldi et al. (2018). 

• RS-derived inundation extent allows the detection of new flood paths that 
are not incorporated in the DEM (e.g. the SRTM mission was completed in 
2001). Moreover, DEMs may be affected by the inaccurate representation 
of catchment morphological features such as gorges.  

Model calibration 

RS-derived flood extent 
• Analysis of model behaviour at the large scale: the comparison between 

modelled and observed flood extent is recommended for any model 
implementation as it allows to gather an overall understanding of model 
performances and it is important to avoid overfitting problems. 

• Analysis of the model behaviour for critical areas (e.g. levee systems, 
morphological singularities).  

• Use of RS-derived flood extents is effective in large, low slope floodplains. 
• Observed inundation extents derived from acquisitions during the 

decreasing limb of valley filling flood events have limited information 
content. 
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RS-derived flood extent and planar position of wet/dry points. 
• Comparing the modelled and observed planar position of wet/dry points 

allows discriminating between under prediction and over prediction of 
floodplain propagation speed.  

• This analysis is effective in large, low slope floodplains with the exclusion of 
valley filling events. 

RS-derived flood extent and water level at the wet/dry points 
• A LiDAR DEM is strictly required to effectively compare modelled and RS-

derived water levels. 
• This analysis is particularly useful in U-shaped areas and it can provide 

information for valley filling events. However, the use of water level at the 
wet/dry boundary is likely to return spurious results in nearly flat floodplains. 

Key warnings: 
• The capability of RS observations to provide reliable information of 

flooding dynamics is crucial to the success of the calibration process. 
• Use of RS-derived flood extent and of the planar position of wet/dry 

boundary points is strongly recommended in low slope areas, in areas with 
levee systems, and in catchments with morphological singularities (e.g. 
gorges).  

• Use of RS-derived water level is recommended in narrow, V or U-Shaped 
valleys. However, Lidar data are required for this analysis. 

• Critically combining information from multiple acquisitions can help to 
avoid overfitting and equifinality problems and errors stemming from 
uncertainty and errors in RS acquisitions.  

• Conjunct use of gauged data and RS data can support the calibration 
exercise. Nevertheless, it is imperative to remember that gauged data 
informative value can have very limited spatial value. 
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KEY MILESTONES 

MONTH 12 

The remote sensing data inversion algorithm is developed.  

MONTH 18 

A strategy to optimally use remotely sensed soil moisture data in an operational 
setting is developed.  Due to the departure of Dr. Li this deliverable has been 
pushed back to Month 24. 

MONTH 24 

• Effective cross sections are established for the two test sites. 

• A hydrologic forecasting system to dually assimilate soil moisture and 
streamflow measurements is developed.  This deliverable has been 
delayed until Month 30. 

MONTH 30 

Effective digital elevation models are established for the two test sites. 

MONTH 36 

• The hydrologic forecasting system is evaluated in the BoM’s testing 
catchments. 

• The hydrologic-hydraulic flood forecasting system is working for the two 
test sites, optimised using remote sensing data. 
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UTILISATION OUTPUTS 

REMOTE SENSING 

The data inversion algorithm will be used by Geoscience Australia in the Water 
Observations from Space (WOfS) project. 

FLOOD FORECASTING 

• The dual soil moisture/discharge assimilation system will be used by the 
Bureau of Meteorology in their operational flood forecasting system. 

• The framework for the optimal implementation of coupled hydrologic-
hydraulic modelling constrained with RS data will be handed to the end-
users. 

• The implemented hydraulic model for the two test-sites will be handed to 
relevant end-users and stakeholders. 
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UTILISATION AND IMPACT 

SUMMARY 

This project adds to the current flood monitoring and modelling capabilities by 
providing methodologies for the optimal use of RS-SM to constrain the hydrologic 
model, the monitoring of floods using SAR data, the optimal use of RS 
observations to set-up and constrain the hydraulic model. The following 
paragraphs provide a detailed description of each project output.     

Improving hydrological flood forecast skill using RS-SM data 

Output Description 

This sub-project developed algorithms to effectively assimilate RS-SM along with 
streamflow into hydrological models for flood forecasting purposes. These 
forecasts can be delivered to emergency services or coupled to a hydraulic 
model for an enhanced understanding of inundation extent and depth. 

Extent of Use 

• The dual observation calibration routine, rainfall gauge optimization 
routine, single and dual observation EnKS routines can be applied to all 
conceptual hydrological models and not just GRKAL.  

• Whilst the primary purpose is for flood forecasting it is expected that these 
routines can add value to 3-7-day streamflow forecasts. These 3-7-day 
forecasts are typically used to regulate environmental flows, dam 
releases, water allocations and reservoir storage levels. 

Utilisation Potential 

• A robust dual EnKS assimilation routine which includes, optimization of 
rainfall gauge weighting will add value to flood forecasts by improving 
forecast skill and confidence. Greater confidence and forecast skill leads 
to emergency services having more time to react to flood warnings. 

• Currently, the assimilation of RS-SM improves forecast skill for catchments 
with larger times of concentration. As the acquisition of RS-SM data 
becomes increasingly more frequent so too does the ability for RS-SM to 
improve flood forecasting skill in flashier catchments.  

Utilisation Impact 

• The recent inclusion of GRKAL and future inclusions of dual observation 
calibration and assimilation routines along with a rainfall gauge 
optimization routine in SWIFT2 can improve the BoMs capability to forecast 
floods. 
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Utilisation and Impact Evidence 

• The impact of publications resulting from this sub-project within the 
scientific community can be seen in Table 4 

. 

Title Year Scopus 
Citations 

Authors 

Application of remote sensing 
data to constrain operational 
rainfall-driven flood forecasting: A 
review 

2016 30 Li,Y., Grimaldi, 
S.,Walker, J.P., 
Pauwels, V.R.N. 

A comparison of the discrete 
cosine and wavelet transforms for 
hydrologic model input data 
reduction 

2017 5 Wright, A., Walker, 
J.P., Robertson, 
D.E., Pauwels, 
V.R.N. 

Estimating rainfall time series and 
model parameter distributions 
using model data reduction and 
inversion techniques 

2017 6 Wright,A.J., Walker, 
J.P., Pauwels, 
V.R.N. 

Impact of rain gauge quality 
control and interpolation on 
streamflow simulation: An 
application to the warwick 
catchment, Australia 

2018 0 Liu,S., Li, Y., 
Pauwels, V.R.N., 
Walker, J.P. 

Hydrologic model calibration using 
remotely sensed soil moisture and 
discharge measurements: The 
impact on predictions at gauged 
and ungauged locations 

2018 24 Li,Y., Grimaldi, S., 
Pauwels, V.R.N., 
Walker, J.P. 

 

Identification of hydrologic 
models, optimised parameters, 
and rainfall inputs consistent with in 
situ streamflow and rainfall and 
remotely sensed soil moisture 

2018 5 Wright,A.J., Walker, 
J.P., Pauwels, 
V.R.N. 

 

TABLE 4 – PUBLICATIONS AND THEIR IMPACT WITHIN THE SCIENTIFIC COMMUNITY AS MEASURED BY CITATIONS RECORDED BY SCOPUS 

Algorithm for the analysis of SAR data of floods 

Output Description 

This sub-project is developing algorithms for the retrieval of inundation extents 
and water level from SAR images. The web service Water Observations from 
Space, developed and maintained by Geoscience Australia, provides 
information on flood extent based on optical remote sensing data.  The algorithm 
for the detection of floods using SAR data developed in the frame of this research 

https://www-scopus-com.ezproxy.lib.monash.edu.au/record/display.uri?eid=2-s2.0-84974795010&origin=resultslist&sort=plf-f&src=s&sid=6cfd9f4890045c46d7fc21d120230b79&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2847861186300%29&relpos=4&citeCnt=21&searchTerm=
https://www-scopus-com.ezproxy.lib.monash.edu.au/record/display.uri?eid=2-s2.0-84974795010&origin=resultslist&sort=plf-f&src=s&sid=6cfd9f4890045c46d7fc21d120230b79&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2847861186300%29&relpos=4&citeCnt=21&searchTerm=
https://www-scopus-com.ezproxy.lib.monash.edu.au/record/display.uri?eid=2-s2.0-84974795010&origin=resultslist&sort=plf-f&src=s&sid=6cfd9f4890045c46d7fc21d120230b79&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2847861186300%29&relpos=4&citeCnt=21&searchTerm=
https://www-scopus-com.ezproxy.lib.monash.edu.au/record/display.uri?eid=2-s2.0-84974795010&origin=resultslist&sort=plf-f&src=s&sid=6cfd9f4890045c46d7fc21d120230b79&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2847861186300%29&relpos=4&citeCnt=21&searchTerm=
https://www-scopus-com.ezproxy.lib.monash.edu.au/authid/detail.uri?origin=AuthorProfile&authorId=47861186300&zone=
https://www-scopus-com.ezproxy.lib.monash.edu.au/authid/detail.uri?origin=AuthorProfile&authorId=56444579400&zone=
https://www-scopus-com.ezproxy.lib.monash.edu.au/authid/detail.uri?origin=AuthorProfile&authorId=56444579400&zone=
https://www-scopus-com.ezproxy.lib.monash.edu.au/authid/detail.uri?origin=AuthorProfile&authorId=55556606100&zone=
https://www-scopus-com.ezproxy.lib.monash.edu.au/authid/detail.uri?origin=AuthorProfile&authorId=6602152837&zone=
https://www-scopus-com.ezproxy.lib.monash.edu.au/record/display.uri?eid=2-s2.0-85026433453&origin=resultslist&sort=plf-f&src=s&sid=362d068086eb4cbc36563acaac3d3ff9&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2857195239088%29&relpos=4&citeCnt=3&searchTerm=
https://www-scopus-com.ezproxy.lib.monash.edu.au/record/display.uri?eid=2-s2.0-85026433453&origin=resultslist&sort=plf-f&src=s&sid=362d068086eb4cbc36563acaac3d3ff9&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2857195239088%29&relpos=4&citeCnt=3&searchTerm=
https://www-scopus-com.ezproxy.lib.monash.edu.au/record/display.uri?eid=2-s2.0-85026433453&origin=resultslist&sort=plf-f&src=s&sid=362d068086eb4cbc36563acaac3d3ff9&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2857195239088%29&relpos=4&citeCnt=3&searchTerm=
https://www-scopus-com.ezproxy.lib.monash.edu.au/record/display.uri?eid=2-s2.0-85026433453&origin=resultslist&sort=plf-f&src=s&sid=362d068086eb4cbc36563acaac3d3ff9&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2857195239088%29&relpos=4&citeCnt=3&searchTerm=
https://www-scopus-com.ezproxy.lib.monash.edu.au/authid/detail.uri?origin=AuthorProfile&authorId=57195239088&zone=
https://www-scopus-com.ezproxy.lib.monash.edu.au/authid/detail.uri?origin=AuthorProfile&authorId=55556606100&zone=
https://www-scopus-com.ezproxy.lib.monash.edu.au/authid/detail.uri?origin=AuthorProfile&authorId=55556606100&zone=
https://www-scopus-com.ezproxy.lib.monash.edu.au/authid/detail.uri?origin=AuthorProfile&authorId=57193543562&zone=
https://www-scopus-com.ezproxy.lib.monash.edu.au/authid/detail.uri?origin=AuthorProfile&authorId=57193543562&zone=
https://www-scopus-com.ezproxy.lib.monash.edu.au/authid/detail.uri?origin=AuthorProfile&authorId=6602152837&zone=
https://www-scopus-com.ezproxy.lib.monash.edu.au/authid/detail.uri?origin=AuthorProfile&authorId=6602152837&zone=
https://www-scopus-com.ezproxy.lib.monash.edu.au/record/display.uri?eid=2-s2.0-85026501227&origin=resultslist&sort=plf-f&src=s&sid=362d068086eb4cbc36563acaac3d3ff9&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2857195239088%29&relpos=3&citeCnt=6&searchTerm=
https://www-scopus-com.ezproxy.lib.monash.edu.au/record/display.uri?eid=2-s2.0-85026501227&origin=resultslist&sort=plf-f&src=s&sid=362d068086eb4cbc36563acaac3d3ff9&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2857195239088%29&relpos=3&citeCnt=6&searchTerm=
https://www-scopus-com.ezproxy.lib.monash.edu.au/record/display.uri?eid=2-s2.0-85026501227&origin=resultslist&sort=plf-f&src=s&sid=362d068086eb4cbc36563acaac3d3ff9&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2857195239088%29&relpos=3&citeCnt=6&searchTerm=
https://www-scopus-com.ezproxy.lib.monash.edu.au/record/display.uri?eid=2-s2.0-85026501227&origin=resultslist&sort=plf-f&src=s&sid=362d068086eb4cbc36563acaac3d3ff9&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2857195239088%29&relpos=3&citeCnt=6&searchTerm=
https://www-scopus-com.ezproxy.lib.monash.edu.au/authid/detail.uri?origin=AuthorProfile&authorId=57195239088&zone=
https://www-scopus-com.ezproxy.lib.monash.edu.au/authid/detail.uri?origin=AuthorProfile&authorId=55556606100&zone=
https://www-scopus-com.ezproxy.lib.monash.edu.au/authid/detail.uri?origin=AuthorProfile&authorId=55556606100&zone=
https://www-scopus-com.ezproxy.lib.monash.edu.au/authid/detail.uri?origin=AuthorProfile&authorId=6602152837&zone=
https://www-scopus-com.ezproxy.lib.monash.edu.au/authid/detail.uri?origin=AuthorProfile&authorId=6602152837&zone=
https://www-scopus-com.ezproxy.lib.monash.edu.au/record/display.uri?eid=2-s2.0-85043531000&origin=resultslist&sort=plf-f&src=s&sid=6cfd9f4890045c46d7fc21d120230b79&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2847861186300%29&relpos=2&citeCnt=0&searchTerm=
https://www-scopus-com.ezproxy.lib.monash.edu.au/record/display.uri?eid=2-s2.0-85043531000&origin=resultslist&sort=plf-f&src=s&sid=6cfd9f4890045c46d7fc21d120230b79&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2847861186300%29&relpos=2&citeCnt=0&searchTerm=
https://www-scopus-com.ezproxy.lib.monash.edu.au/record/display.uri?eid=2-s2.0-85043531000&origin=resultslist&sort=plf-f&src=s&sid=6cfd9f4890045c46d7fc21d120230b79&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2847861186300%29&relpos=2&citeCnt=0&searchTerm=
https://www-scopus-com.ezproxy.lib.monash.edu.au/record/display.uri?eid=2-s2.0-85043531000&origin=resultslist&sort=plf-f&src=s&sid=6cfd9f4890045c46d7fc21d120230b79&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2847861186300%29&relpos=2&citeCnt=0&searchTerm=
https://www-scopus-com.ezproxy.lib.monash.edu.au/record/display.uri?eid=2-s2.0-85043531000&origin=resultslist&sort=plf-f&src=s&sid=6cfd9f4890045c46d7fc21d120230b79&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2847861186300%29&relpos=2&citeCnt=0&searchTerm=
https://www-scopus-com.ezproxy.lib.monash.edu.au/authid/detail.uri?origin=AuthorProfile&authorId=57201128900&zone=
https://www-scopus-com.ezproxy.lib.monash.edu.au/authid/detail.uri?origin=AuthorProfile&authorId=47861186300&zone=
https://www-scopus-com.ezproxy.lib.monash.edu.au/authid/detail.uri?origin=AuthorProfile&authorId=6602152837&zone=
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https://www-scopus-com.ezproxy.lib.monash.edu.au/record/display.uri?eid=2-s2.0-85040989024&origin=resultslist&sort=plf-f&src=s&sid=6cfd9f4890045c46d7fc21d120230b79&sot=autdocs&sdt=autdocs&sl=18&s=AU-ID%2847861186300%29&relpos=1&citeCnt=10&searchTerm=
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has the objective to complement the current flood monitoring capabilities. 
Consequently, Monash University and Geoscience Australia have investigated 
optimal modalities to incorporate the algorithm for the analysis of SAR data into 
Water Observations from Space 

Extent of Use 

• The algorithm for the retrieval of inundation extents from SAR data will 
complement the current capabilities based on the use of optical sensors. 

• SAR-derived flood extents enable flood monitoring in any catchment 
(gauged and ungauged), during day and night, regardless of the 
atmospheric conditions. 

Utilisation Potential 

• SAR observations enable 24 hours, all-weather, near-real-time monitoring 
of flood events, in both gauged and ungauged catchments. 

• Spatially distributed information on flood extent and level can be derived 
from SAR observations to enable a better understanding of floodplain 
inundation dynamics. 

• When compared to gauged data, SAR-derived flood extent and level 
enable more comprehensive ways to constrain the hydraulic model. This 
will to lead to more accurate prediction of floodplain inundation. 

Utilisation Impact 

• SAR-derived flood extent enables floodplain inundation monitoring at any 
time, in any catchment. 

• SAR-derived flood extent and level disclose opportunities for improved 
hydraulic modelling of floods at the continental scale. 

Utilisation and Impact Evidence 

• A workshop on the use of RS data to improve flood forecast skill was held 
at Geoscience Australia (Canberra) in September 2016 (21st-22nd). 

• The project team was invited to the workshop “Earth observations for 
Water-Related Applications” held in March 2018 (28th-29th) at the 
Australian National University (Canberra). The workshop had the purpose 
to assess the current state of affairs in Australia regarding the use of RS 
observations for water-related purposes. The participants of the 
workshop agreed on a list of recommendations for the optimal use of RS 
data within a broad community of researchers and end-users. 

• A paper on the algorithm for the retrieval of flood extent maps in areas 
with emerging vegetation from single SAR acquisitions has been published 
by Remote Sensing of Environment (Grimaldi et al., 2020). 

• Monash Univeristy and Geoscience Australia had regular meetings to 
discuss (1) the implementation of the algorithm for the analysis of SAR data 
and (2) the analysis the Sentinel-1 data. More specifically, two meetings 
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were hold at Geoscience Australia (Canberra) on May 14th, 2019 and 
December 3rd, 2019; zoom meetings were hold on February 10th, 2020 and 
March 16th, 2020. 

Guidelines for the optimal use of RS-derived observations to 
improve flood extent, level, and velocity predictions 

Output Description 

This sub-project is developing a comprehensive experience on the optimal use 
of RS observations to improve the implementation and calibration of hydraulic 
models for flood forecasts. 

Extent of Use 

• This sub-project will deliver improved hydraulic modelling capabilities for 
two Australian catchments. 

• Albeit this project is focusing on two specific study areas, the 
methodologies being developed make use of dataset available at the 
continental scale and have the potential to be used in a large number of 
Australian catchments.  

• Guidelines for the optimal use of RS observations for the implementation 
and calibration of flood forecasting hydraulic models have been 
developed. 

Utilisation Potential 

• For the two selected study areas, the improved hydraulic modelling 
capabilities have the potential to enable more accurate predictions of 
floodplain inundation dynamics. 

• The guidelines for the optimal use of RS observations for the 
implementation and calibration of flood forecasting hydraulic models has 
the potential to lead to the development of improved floodplain 
inundation prediction tools in many Australian catchments. 

Utilisation Impact 

• RS-constrained hydraulic models allow better understanding and 
modelling of floodplain inundation dynamics thus enabling the prediction 
of water depth and velocity in each point of the valley. 
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Utilisation and Impact Evidence 

• The impact of publications resulting from this sub-project within the 
scientific community can be seen in Table 5. 

 

Title Year Scopus 
Citations 

Authors 

Remote sensing-derived water 
extent and level to constrain 
hydraulic flood forecasting models: 
opportunities and challenges 

2016 38 Grimaldi, S.,Li, Y., 
Pauwels, V.R.N., 
Walker, J.P. 

Effective Representation of River 
Geometry in Hydraulic Flood 
Forecast Models 

2018 8 Grimaldi, S., Li, Y., 
Walker, J.P., 
Pauwels, V.R.N. 

Evaluation of TanDEM-X and DEM-
H digital elevation models over the 
Condamine-Balonne catchment 
(Australia) 

2018 0 Wang, A., 
Grimaldi,S., 
Shaadman,S.,Li, Y., 
Pauwels, V.R.N., 
Walker, J.P. 

Challenges, opportunities and 
pitfalls for coupled 
hydrologic/hydraulic modelling at 
the large scale 

2019  4 Grimaldi, S., 
Schumann, G,J-P., 
Shokri, A., Walker, 
J.P., Pauwels, 
V.R.N. 

River reconstruction using a 
conformal mapping method   

2019 1 Hilton, J.E., 
Grimaldi, S., 
Cohen, R.C.Z.,  
Garg, N., Li, Y., 
Marvanek, S., 
Pauwels, V.R.N., 
Walker, J.P 

Flood mapping under vegetation 
using single SAR acquisitions   

2020 2 Grimaldi, S., Xu, J., 
Li, Y., Pauwels, 
V.R.N., Walker, J.P. 

TABLE 5 – PUBLICATIONS AND THEIR IMPACT WITHIN THE SCIENTIFIC COMMUNITY AS MEASURED BY CITATIONS RECORDED BY SCOPUS. 
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https://www-scopus-com.ezproxy.lib.monash.edu.au/authid/detail.uri?origin=AuthorProfile&authorId=55556606100&zone=
https://www-scopus-com.ezproxy.lib.monash.edu.au/authid/detail.uri?origin=AuthorProfile&authorId=55556606100&zone=
https://www-scopus-com.ezproxy.lib.monash.edu.au/authid/detail.uri?origin=AuthorProfile&authorId=6602152837&zone=
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CONCLUSIONS AND FUTURE OUTLOOK 
The uncertainty in flood predictions is largely dependent on the observation 
quality of key variables, modelling skill and capability, and the quality of 
forecasted forcing data. This project takes advantage of recent increases in 
remote sensing observation skill by developing and detailing improved methods 
to use satellite remote sensing data to improve flood forecasting skill and 
capability. Advancements were made in: 
• Hydrologic modelling, 
• Flood mapping using Synthetic Aperture Radar acquisitions, 
• Hydraulic model implemention, 
• Hydraulic model calibration. 

 
Key conclusions are as follows:  

Use of remote sensing data to improve the accuracy of the hydrologic model 
• Multi-objective calibration using RS SM can improve forecasting 

performance at ungauged locations. 
• Choice in hydrological model, RS SM, and rainfall forcing data will 

significant influence performance. 
• A new methodology to optimise gauge weights for areal rainfall estimation 

was developed. 
• Improved rainfall estimates can significantly improve forecast skill. 
• Limitations and opportunities for further development: data assimilation 

results are not generic; rainfall as an opportunity; rainfall as a challenge. 

Flood mapping using Synthetic Aperture Radar (SAR) acquisitions:  
• This project proposed an algorithm to automatically detect flooded 

vegetation using single SAR acquisitions and readily available ancillary 
data.  

• Further testing is strictly required. 
• Opportunity for further development: use of SAR data for the detection of 

floods in urban areas. 

Use of remote sensing data to improve the implementation of the hydraulic 
model: 
• Remote sensing-derived water level allow the diagnosis and correction of 

errors in the representation of river bathymetry (use of LiDAR DEM is 
imperative). 

• Remote sensing-derived flood extent allow the diagnosis of errors in the 
modelled floodplain inundation volumes, especially in large catchments. 

• Opportunity for further development: remote sensing observations can 
allow the detection of contingencies such as levee breaches. This 
capabaility can enable the near-real time correction of a model’s 
implementation. 

Use of remote sensing data to calibrate the hydraulic model: 
• This project proposed a calibration framework that makes exclusively use 

of RS-derived observations and consequently enables model calibration in 
ungauged catchments. 

• A novel performance metric was introduced to discriminate between 
underprediction and overprediction of floodplain propagation dynamics. 
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• Limitations and opportunities for further development: the accuracy, 
timing, and spatial coverage of the remote sensing observation largely 
impact the effectiveness of the calibration exercise; the testing of a large 
number of case studies is strongly recommended to optimise the 
calibration method for a range of different acquisition times and footprints. 

Challenges and opportunities in coupled hydrologic-hydraulic models at the 
large scale: 
• This project demonstrated that accurate prediction of flood peak values is 

crucial for accurate predictions of floodplain inundation extents and 
volumes.  

• Floodplain inundation uncertainties and errors accumulated in a 
continuous modelling approach. Conversely, discrepancies could be 
reduced by using an event-based approach.  

• Opportunity for further development: assimilation of inundation extents and 
water level in both low and high flow periods may provide a pragmatic 
strategy to improve the accuracy of flood predictions. 

 
To leverage these research findings the next steps would feature (1) coding the 
RS-SM data assimilation algorithm into SWIFT2; (2) the operationalization of the 
algorithm for the analysis of SAR acquisitions. 
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PUBLICATIONS LIST 

PEER REVIEWED JOURNAL ARTICLES  
1. Grimaldi, S., Xu, J., Li, Y., Pauwels, V. R.N, & Walker, J. P.  Flood mapping under vegetation using single SAR 

acquisitions. Remote Sensing of Environment, Volume 237, 2020, 111582, ISSN 0034-4257, 
https://doi.org/10.1016/j.rse.2019.111582  

2. Hilton J.E., Grimaldi S., Cohen R.C.Z., Garg N., Li Y., Marvanek S., Pauwels V.R.N., Walker J.P. River 
Reconstruction Using a Conformal Mapping Method. Enironmental Modelling & Software, Volume 119, 
Pages 197-213, ISSN 1364-8152, https://doi.org/10.1016/j.envsoft.2019.06.006., 2019 

3. Grimaldi, S., Schumann G.J-P., Shokri, A., Walker, J. P., and Pauwels V.R.N.  Challenges, opportunities and 
pitfalls for coupled hydrologic/hydraulic modelling at the large scale. Water Resources Research, 55. 
https://doi.org/10.1029/2018WR024289 , 2019. 

4. Grimaldi, S., Y. Li, J.P. Walker, and V.R.N. Pauwels, Effective Representation of River Geometry in Hydraulic 
Flood Forecast Models, Water Resources Research, 54, doi:10.1002/2017WR021765, 2018. 

5. Wright, A.J., J.P. Walker, and V.R.N. Pauwels, Identification of hydrologic models, parameters and rainfall 
consistent with observed rainfall, streamflow, and remotely sensed soil moisture, Journal of 
Hydrometeorology 19.8, 1305-1320, 2018 . 

6. Li, Y., S. Grimaldi, V.R.N. Pauwels, and J.P. Walker, Hydrologic model calibration using remotely sensed soil 
moisture and discharge measurements: the impact on predictions at gauged and ungauged locations, 
Journal of Hydrology, 557, 897-909, 2018. 

7. Liu, S., Y. Li, V. R. N. Pauwels, and J. P. Walker, Impact of Rain Gauge Quality Control and Interpolation on 
Streamflow Simulation: An Application to the Warwick Catchment, Australia, Frontiers in Earth Science, 
5(114), 2018. 

8. Wright, A.J.,. Walker, J.P., and V.R.N. Pauwels, estimating temporal rainfall and model parameter 
distributions using model data reduction and inversion techniques, Water Resources Research, 53, 
doi:10.1002/2017WR020442, 2017. 

9. Wright, A.J., J.P. Walker, D. Robertson, and V.R.N. Pauwels, A Comparison of the Discrete Cosine and 
Wavelet Transforms for Hydrologic Model Input Data Reduction, Hydrology and Earth System Sciences, 
21(7), 3827-3838, 2017. 

10. Grimaldi, S., Y. Li, V.R.N. Pauwels, and J.P. Walker, Remote sensing-derived water extent and level to 
constrain hydraulic flood forecasting models: opportunities and challenges, Surveys in Geophysics, 37(5), 
977-1034, 2016. 

11. Li, Y., S. Grimaldi, J.P. Walker, and V.R.N. Pauwels, Application of Remote Sensing Data to Constrain 
Operational Rainfall-Driven Flood Forecasting: A Review, Remote Sensing, 8(6), 456, doi:10.3390/rs8060456, 
2016. 

 

JOURNAL ARTICLES IN PREPARATION 
1. Wright, A., Robertson, D.E., Walker, J., Pauwels, V.R.N., 2020. Insights from a new methodology 

to optimize rain gauge weighting for rainfall-runoff models. In preparation. 
2. Grimaldi, S., Wright, A., Walker, J., Pauwels, V., 2020/21. On the use of remote sensing-derived 

waterlines to calibrate hydraulic flood forecasting models. In preparation. 
3. Molari, G., Grimaldi, S., Paron, P., Walker, J., Pauwels, V., Domeneghetti, A., 2020/1. RiBEST – a 

tool for river bathymetry and hydraulic parameters estimation. In preparation. 
 

CONFERENCE PAPERS 
1 Wright A., Grimaldi S., Li Y., Walker J., Pauwels V., 2019. Improving flood forecast skill using remote sensing 

data. In B.N.H.C. Dr John Bates (Ed.), AFAC19 powered by INTERSCHUTZ, Research proceedings from the 
Bushfire and Natural Hazards CRC Research Forum (peer reviewed);  Australian Journal of Emergency 
Management, Monograph No. 4, 2019. Melbourne 
Wang, A., Grimaldi, S., Shaadman, S., Li, Y., Pauwels, V.R.N., and Walker, J. P. Evaluation of TanDEM-X and 
DEM-H digital elevation models over the Condamine-Balonne catchment (Australia). In: Hydrology and 
Water Resources Symposium (HWRS 2018): Water and Communities. Melbourne: Engineers Australia, 2018: 
989-1003. ISBN: 9781925627183, 2018 

2 Nguyen, T.P.C., S. Grimaldi, and V. Pauwels, Use of remote sensing observations for improved understanding 
and modelling of flood waves routing, Oral Presentation at the AFAC Conference, Brisbane, August 30-
September 1, 2016 

3 Zhang, Y., Y. Li, J. Walker, V.R.N. Pauwels, and M. Shahrban, Towards operational hydrological model 
calibration using streamflow and soil moisture measurements, Oral Presentation at MODSIM 2015, 21th 
International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New 
Zealand, Broadbeach, QLD -Australia, November 29- December 4, 2015. 

 

https://doi.org/10.1016/j.rse.2019.111582
https://doi.org/10.1016/j.envsoft.2019.06.006
https://doi.org/10.1029/2018WR024289
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EXTENDED ABSTRACT 
1 Pauwels, Walker, Grimaldi, Wright, Li, Improving flood forecast skill using remote sensing data, Floodplain 

Management Australia National Conference, May 2019. 
 

TECHNICAL REPORTS 
1 Grimaldi S., Pauwels V., Bathymetric field campaign of the Balonne river in St. George (QLD) – data analysis, 

prepared for SunWater Ltd, November 2016 

OTHER 
1 Grimaldi S., Wright A., Walker J., Pauwels V., Verification of flood wave arrival time predictions using remote 

sensing-derived water levels; EGU General Assembly Conference Abstracts 2020. 
2 Wright A., Robertson D.E., Walker J., Pauwels V., Optimizing rainfall gauge weightings to improving 

hydrological modelling skill.; AGU Abstracts 2019. 
3 Grimaldi S., Wright A., Li Y., Walker J., Pauwels V., On the use of remote sensing observations for improved 

modelling of floodplain inundation dynamics; 23rd International Congress on Modelling and Simulation 
(MODSIM2019), Canberra (Australia), 1-6 December, 2019.  

4 Grimaldi, S., Schumann, G. J. P., Shokri, A., Walker, J. P., Pauwels, V. Error propagation in coupled hydrologic‐
hydraulic modelling    of floods at the large scale; 23rd International Congress on Modelling and Simulation 
(MODSIM2019), Canberra (Australia), 1-6 December, 2019.  

5 Grimaldi S., Yuan F., Mueller N., Xu J., Li Y., Pauwels V., Walker J. Surface water detection in areas with 
emerging vegetation using SAR data; 23rd International Congress on Modelling and Simulation 
(MODSIM2019), Canberra (Australia), 1-6 December, 2019.  

6 Grimaldi S., Xu J., Li Y., Walker J., Pauwels V., Flood monitoring under vegetation using single SAR acquisitions; 
EGU General Assembly Conference Abstracts 2019. 

7 Grimaldi S., Wright A., Li Y., Walker J., Pauwels V., Improving flood forecast skill using remote sensing data, 
European Joint Research Centre, April 2019 (invited presentation). 

8 Grimaldi S., Li Y., Walker J., Pauwels V., On the use of remote sensing-derived river width and water level in 
hydraulic flood forecast models. EGU General Assembly Conference Abstracts 2018 (invited presentation) 

9 Li Y., Grimaldi S., Pauwels V., Walker J., Assimilation of remotely sensed soil moisture for flood forecasting: a 
synthetic study; MODSIM 2017. 

10 Grimaldi S., Li Y., Walker J., Pauwels V., Effective representation of river bathymetry in hydraulic flood 
forecasting models; MODSIM 2017 

11 Hilton J., Grimaldi S., Cohen R., Li Y., Pauwels V., Walker J., River reconstruction using orthogonal distance 
maps; MODSIM 2017. 

12 Li Y., Grimaldi S., Pauwels V., Walker J.,  Hydrologic and hydraulic flood forecasting constrained by remote 
sensing data; AGU Fall Meeting Abstracts, 2017. 

13 Wright A.J., Vrugt J.A., Walker J.P., Pauwels V.R.N, (2016). Temporal rainfall estimation using input data 
reduction and model inversion; AGU Fall Meeting Abstracts, 2016. 

14 Grimaldi S., Li Y., Walker J., Pauwels V., Implementation of remote sensing data for flood forecasting; AGU 
Fall Meeting Abstracts, 2016. 
 

https://scholar.google.com.au/scholar?oi=bibs&cluster=17719737504662075972&btnI=1&hl=en
https://scholar.google.com.au/scholar?oi=bibs&cluster=17719737504662075972&btnI=1&hl=en
https://scholar.google.com.au/scholar?oi=bibs&cluster=130537242731553215&btnI=1&hl=en
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