
MITIGATING THE EFFECTS OF SEVERE 
FIRES, FLOODS AND HEATWAVES 
THROUGH THE IMPROVEMENTS OF LAND 
DRYNESS MEASURES AND FORECASTS 
Final project report 

Vinodkumar, Imitaz Dharssi and Paul Fox-Hughes 
Bureau of Meteorology & Bushfire and Natural Hazards CRC 



IMPROVING LAND DRYNESS MEASURES AND FORECASTS – FINAL PROJECT REPORT | REPORT NO. 646.2021 

 1 

 

Version Release history Date 

1.0 Initial release of document 08/022021 

 

© Bushfire and Natural Hazards CRC 2021 

All material in this document, except as identified below, is licensed under the 
Creative Commons Attribution-Non-Commercial 4.0 International Licence. 

Material not licensed under the Creative Commons licence:  
• Department of Industry, Science, Energy and Resources logo 
• Cooperative Research Centres Program logo 
• Bushfire and Natural Hazards CRC logo 
• Any other logos 
• All photographs, graphics and figures 

All content not licenced under the Creative Commons licence is all rights 
reserved. Permission must be sought from the copyright owner to use this 
material. 

 

Disclaimer: 
The Bureau of Meteorology and the Bushfire and Natural Hazards CRC advise that 
the information contained in this publication comprises general statements based 
on scientific research. The reader is advised and needs to be aware that such 
information may be incomplete or unable to be used in any specific situation. No 
reliance or actions must therefore be made on that information without seeking 
prior expert professional, scientific and technical advice. To the extent permitted 
by law, the Bureau of Meteorology and the Bushfire and Natural Hazards CRC 
(including its employees and consultants) exclude all liability to any person for any 
consequences, including but not limited to all losses, damages, costs, expenses 
and any other compensation, arising directly or indirectly from using this 
publication (in part or in whole) and any information or material contained in it. 

Publisher: 
Bushfire and Natural Hazards CRC 

February 2021 

Citation: Kumar V, Dharssi I, Fox-Hughes P (2021) Mitigating the effects of severe 
fire, floods and heatwaves through the improvements of land dryness measures 
and forecasts - final project report, Bushfire and Natural Hazards CRC, 
Melbourne.  

Cover: Dry Earth. Source: pxhere (https://pxhere.com/en/photo/561747) 

https://pxhere.com/en/photo/561747


IMPROVING LAND DRYNESS MEASURES AND FORECASTS – FINAL PROJECT REPORT | REPORT NO. 646.2021 

 3 

TABLE OF CONTENTS 

ACKNOWLEDGMENTS 4 

EXECUTIVE SUMMARY 5 

END-USER PROJECT IMPACT STATEMENT 9 

PRODUCT USER TESTIMONIALS 10 

INTRODUCTION 11 

BACKGROUND 13 

RESEARCH APPROACH 14 
Development and validation of JASMIN system 14 
Calibration of JASMIN 17 
Downscaling of JASMIN 19 
Exploring the LFMC-SM relationship 25 

FINDINGS 30 
Development and validation of JASMIN system 30 
Calibration of JASMIN 33 
Downscaling of JASMIN 37 
Exploring LFMC-SM relationship 39 

KEY MILESTONES 43 

UTILISATION AND IMPACT 44 
Summary 44 
JASMIN 44 

CONCLUSION 46 
Next steps 47 

PUBLICATIONS LIST 48 
Peer-reviewed journal articles 48 
Conference papers 48 
Technical reports 48 

TEAM MEMBERS 49 
Research team 49 
End-users 49 

REFERENCES 50 
 



IMPROVING LAND DRYNESS MEASURES AND FORECASTS – FINAL PROJECT REPORT | REPORT NO. 646.2021 

 4 

ACKNOWLEDGMENTS 
The support of the Commonwealth of Australia through the Bushfire and Natural 
Hazards Cooperative Research Centre program is acknowledged. We thank our 
end-users for their support and encouragement throughout the project period. 
We acknowledge our colleagues in the Bureau, particularly in the Earth System 
Modelling program, who helped us with various aspects of our project. We would 
especially like to place our gratitude on record to (not in any particular order) 
Pete Steinle, Beth Ebert, Jeff Kepert, John Bally (now at AFAC), Andrew Frost, 
Evan Morgan, Chun-Hsu Su, Robert Smalley, Huqiang Zhang, Monika Krysta, 
Shaun Cooper, Robin Bowen, Duan Beckett, Wenming Lu and Milton Woods for 
their support at various times for the successful completion of the project. We are 
also grateful to our colleagues Chun-Hsu Su and Nathan Eizenberg for providing 
atmospheric reanalysis data. The authors thank CSIRO for CosmOz data, 
University of Melbourne and Monash University for OzNet observations and TERN-
OzFlux facility for OzFlux data. We also thank EUMETSAT, CATDS and NASA for 
ASCAT, SMOS and MODIS FRP data respectively. We are grateful to Dr Marta 
Yebra of Australian National University for the live fuel moisture content dataset. 



IMPROVING LAND DRYNESS MEASURES AND FORECASTS – FINAL PROJECT REPORT | REPORT NO. 646.2021 

 5 

EXECUTIVE SUMMARY 
This Bushfire and Natural Hazards CRC project, titled Mitigating the effects of 
severe fires, floods and heatwaves through the improvements of land dryness 
measures and forecasts, was a partnership with the Bureau of Meteorology, and 
examined the use of detailed land surface models, satellite measurements and 
ground-based observations for the monitoring and prediction of landscape 
dryness. This project addresses a fundamental limitation in our ability to prepare 
for fires, floods and heatwaves and is directly linked to pre-event planning as well 
as forecasting of events. The research conducted in the present project solely 
focuses on the application of soil and land dryness/moisture in the context of fire 
danger and fire management practices. The lack of focus on flood and 
heatwave is circumstantial. The research priorities were set and driven by the 
requirements of the project end-users, all of them from various fire management 
agencies across Australia. Hence, the end-use interest was solely on the 
application of the research in fire management. Nevertheless, it is worth pointing 
that there is a substantial amount of research literature which establishes the 
importance of soil moisture in flood and heatwave prediction and applications. 

Currently, landscape dryness for fire management is estimated in Australia using 
simple empirical models developed in the 1960s. The most prominent of those 
used in Australia are the Keetch-Byram Drought Index (KBDI) and the Soil Dryness 
Index (SDI). An initial study performed as part of this project suggested that 
analyses of soil moisture can be improved by using physics-based land surface 
models, remote sensing measurements and data assimilation.  

JASMIN prototype  

To address this, the present project developed a standalone prototype land 
surface modelling system, called Joint UK Land Environment Simulator based 
Australian Soil Moisture Information (JASMIN) to produce daily soil moisture 
analyses at 5km resolution and 4 soil layers. Verification against ground-based 
soil moisture observations shows that this prototype system is significantly more 
skilful than both KBDI and SDI.  

Though JASMIN can supplement many applications that require accurate soil 
moisture estimates, the biggest beneficiary of this new system will be the fire 
agencies. The soil moisture estimate from the new system provides a robust 
alternative to the methods currently used in fire prediction. This is evident from 
the verifications performed against in situ measurements. KBDI and SDI show 
large errors over regions where they are used operationally. KBDI, for example, 
has a large wet bias over southern regions that could undermine fire danger 
ratings. The JASMIN system can produce reliable soil moisture information over a 
wide range of land-use types, which potentially extends its applicability to other 
fields as well. Also, JASMIN is shown to have good skill for both surface and deep 
soil horizons. 

JASMIN calibration  

To promote an effective adoption of JASMIN in current operational practices, 
calibration methods were applied to the native JASMIN soil moisture datasets. 
The key aim of these methods was to calibrate JASMIN outputs in units of moisture 
excess to moisture deficit values that range from 0–200, as required by McArthur's 
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Forest Fire Danger Index (FFDI; McArthur, 1967). The calibration offers a simple, 
faster and cost-effective way to make significant upgrades to the existing 
operational systems used by fire and other environmental agencies.  

The calibration methods applied were minimum-maximum matching, mean-
variance matching, and cumulative distribution function matching. The selection 
of these calibration methods was based on the potential end-user requirement, 
whether that is to simply replace the legacy systems with a new product with 
high skill (e.g., minimum-maximum method), or to replace the existing system that 
captures the temporal variations better while preserving the climatology of the 
older system (e.g., mean-variance and cumulative distribution function 
matching). The latter could be useful if existing operating systems are already 
tuned to offset the bias in the current soil moisture deficit methods.  

Improving high spatial resolution mapping 

This project also aimed to improve applications such as fire danger mapping that 
may require soil moisture information at higher spatial resolution due to the large 
spatial variability of soil moisture in the landscape. A common practice to 
overcome such a problem is to employ downscaling methods to increase the 
spatial scale of the product. Recent advances in optical remote sensing have 
allowed researchers to use different remote sensing products that reflect soil 
moisture variability as ancillary information. A method based on a “universal 
triangle” concept is used in several previous studies, which establishes a 
relationship between soil moisture, vegetation index, and surface radiant 
temperature from optical remote sensing. This project applied three downscaling 
methodologies: two based on regression and one based on a physics-based 
approach.  

Results from the downscaling methodologies indicate that it is feasible to improve 
the spatial resolution of JASMIN using all three disaggregating algorithms and 
preserve the general large-scale spatial structure seen in JASMIN soil moisture 
estimates. However, the seasonal means obtained at 1 km show that each 
product displays characteristic soil moisture spatial variability at fine scales. 
Results from the comparison with ground-based soil moisture measurements 
indicate that there is no significant degradation of the bias in the three methods 
when moving to higher spatial resolution. 

Predicting live fuel moisture content 

Prediction of the moisture status in live fuels is an important gap in current fire 
management practices which, if filled, can potentially be useful for spatial and 
temporal assessment of landscape dryness. The final objective of the project was 
thus to explore the relationship between soil moisture and live fuel moisture 
content (LFMC) using the datasets from JASMIN and Australian Flammability 
Monitoring System (AFMS), respectively. The analysis carried out indicates that 
soil moisture is a leading indicator of LFMC. This project developed a simple yet 
skilful model to predict live fuel moisture content for the whole of Australia.  

The key variable is the 0-350 mm layer soil moisture derived from the JASMIN 
system. The modelling strategy pursued consists of a linear combination of two 
sub-models: one to capture the annual cycle and one to capture the daily 
variations. A time function represents the LFMC annual cycle model. The daily 
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deviations in LFMC are captured by using a linear regression model with 14-day 
lagged daily deviations in soil moisture as the input. The daily changes in soil 
moisture are computed by deviations from its annual cycle.  

When evaluated over 60 sites, the approach returned an average R2 of 0.64 with 
normalised root mean square error values of <25% at all sites. As researchers were 
employing a gridded soil moisture product, this strategy facilitates the 
reconstruction of past events, as well as data gap filling. The lag of 14 days implies 
a lead time of 14 days for predicting the LFMC. This has significant operational 
implications, as daily variations in LFMC can be predicted using soil moisture 
information from JASMIN on a national scale.  

JASMIN is currently run as a prototype research system, with soil moisture analysis 
done only near-real-time. However, JASMIN can be extended to produce both 
real-time analysis and forecasts. The prognostic mode can provide soil moisture 
forecasts for up to 10 days. This means a maximum lead time of 24 days can be 
achieved by utilising soil moisture forecasts. 

JASMIN utilisation 

A key focus of the project from its inception was to create pathways for easier 
utilisation of the project deliverables. This is reflected in both the scientific and 
technical approaches adopted in this project. For example, the calibration of 
JASMIN to KBDI and SDI was done to facilitate the ready utilisation of JASMIN in 
the existing operational system. A total of 8 calibrated JASMIN soil dryness 
products were developed and made available through the Bureau of 
Meteorology's THREDDS server. The JASMIN soil moisture in volumetric units at 4 
layers are also provided via the THREDDS server for interested parties to evaluate. 
The volumetric soil moisture fields from the top two JASMIN layers (0-100 mm and 
100-350 mm) are available via AFMS as well.  

The datasets on both THREDDS and AFMS are updated near-real-time. There is a 
continuing interest in the end-user community in utilising JASMIN for various fire 
management applications. In that respect, JASMIN has been assessed in the 
Western Australian Department of Biodiversity, Conservation and Attractions 
study on tall wet forest fuel availability. Tasmania Parks and Wildlife has also been 
using JASMIN as a decision-support tool to restrict the use of open fires in national 
parks. Also, JASMIN data were updated specifically to assist with Tasmanian 
decision-making for 2018-19 seasonal bushfire assessment workshop and 
preseason consultative committee on fire weather. 

The JASMIN system can produce reliable soil moisture estimates over a wide 
range of land-use types and can support many applications that require 
accurate soil moisture information. However, there is still scope for improvements 
to the JASMIN system, whether it be the skill or the scale.  

An immediate focus could be the use of data assimilation techniques to improve 
the skill of JASMIN. Data assimilation allows uncertainties in land surface model 
soil moisture to be offset to some extent by routinely updating the hydrological 
conditions using the information provided by observations on state variables 
used by land surface models. The assimilation of satellite observations is shown to 
improve the model soil moisture state. In that respect, the use of NASA's land 
information system (LIS) is being evaluated at the Bureau. The LIS is a complex 
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framework that uses extensible interfaces to allow the incorporation of new 
domains, land surface models, land surface parameters, meteorological inputs, 
data assimilation and optimisation algorithms. The extensible nature of these 
interfaces, and the component style specifications of the system, allow rapid 
prototyping and development of new applications. The JASMIN system can be 
incorporated within LIS to facilitate the assimilation of various observation types. 
Further, it can be leveraged to run JASMIN with an enhanced spatial resolution, 
desirably at 1 km. 
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END-USER PROJECT IMPACT STATEMENT 

Mark Chladil, Fire Management Planning Officer, Tasmania Fire Service, TAS 

This project sought to provide an improved characterisation of soil moisture to 
better inform forecasting of fires, floods and heatwaves as well as assisting the 
management of planned fires and bushfires. The approach is well suited to the 
current observational and forecasting systems and has applicability to a wide 
range of surface cover types and climates and JASMIN has already been shown 
to give reliable soil moisture estimates for multiple levels at relatively fine scale. I 
have been using the Mount Soil Dryness Index (SDI) for close to 40 years and it 
was gratifying that the research showed that the Mount SDI was superior to the 
Keetch-Byram Drought Index (KBDI). This verified the work done by Tony Mount in 
the late ‘60s and through the ‘70s to build on the work of John Keetch and 
George Byram to account for evaporative losses from forests and better 
represent the hydrology and thus improve fuel moisture information. The 
researchers have also provided calibration of JASMIN volumetric output to both 
SDI and KBDI to allow end-users such as fire managers to see and think about the 
ways the numbers change through time for their areas of interest. The influence 
of soil moisture on live fuel moisture has been explored so that JASMIN is able to 
provide information on this minor and generally overlooked fuel fraction. 
Thankfully JASMIN has been developed with the capacity to be readily 
downscaled (to the kilometre level!) and to use the improving land surface 
models, especially NASA’s Land Information System (LIS) so the both the skill and 
scale of JASMIN will continue to improve as these other models are themselves 
improved. This has been a long road and the researchers and project managers 
have delivered good outcomes and a way forward. Of course, much can be 
done in the way of additional research and development, but the bigger 
challenge now is for agencies to bring JASMIN into their practices and to exploit 
the additional data richness and finer spatial scales. 
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PRODUCT USER TESTIMONIALS 

David Taylor, Parks and Wildlife Service, Department of Primary Industry, Parks, Water 
and Environment, TAS 

We use the outputs of this project in both in our Planned Burn and Bushfire 
Operations. In planned burn operations it used to assist in identifying potential 
areas of concerns for organic soil combustion and in bushfire preparedness it is 
used to identifying areas for potential holdover fires that could occur during 
active lightning periods in which we can direct patrols and or spotter flights. 
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INTRODUCTION 
Good estimates of landscape dryness underpin fire danger rating, fire behaviour 
models, flood prediction and landslip warning. Soil dryness also strongly 
influences heatwave development by driving the transfer of solar heating from 
the soil surface into air. Fire intensity, spread rate, and ignition are very sensitive 
to the fuel dryness, which is strongly linked to soil moisture content. For example, 
Nolan et al. (2016) highlighted clear thresholds of fuel moisture content linked 
with wildfire occurrences in forests and woodlands. Gellie et al. (2010) showed 
that the occurrence of large destructive fires corresponds to very large soil 
moisture deficit (SMD) values. Estimates and forecasts of fuel and/or soil moisture 
(SM) are used to assess wildfire risks and to warn of developing fire danger. SM 
products are also an essential ingredient for forecasting river flows on seasonal 
scales (one to three months), which is very much in demand by water managers 
and reservoir operators. 

 Modern, state of the art land surface models (LSMs) calculates landscape 
dryness with greater sophistication and account for details such as soil texture, 
solar insolation, root depth, vegetation type and stomatal resistance. The 
Australian Community Climate and Earth System Simulator (ACCESS) model has 
four soil layers. The topmost layer from the surface to 100 mm is critical for the 
exchange of moisture between the soil and forest litter fuels. The deepest layer 
extends down to 3 metres.  

Currently, landscape dryness is estimated using very crude models developed in 
the 1960s. The most prominent of those used in Australia are the Keetch-Byram 
Drought Index (KBDI; Keetch and Byram, 1968) developed by the US Forest 
Service, and the related Soil Dryness Index (SDI; Mount, 1972) developed by 
Forestry Tasmania.  These simple empirical SM models are designed for easy hand 
calculation once per day for a small number of points across the landscape. 
These empirical calculators do not work effectively in drier environments, which 
are typical in the Australian landscape and are predicted to become more 
widespread as the climate changes. They do not consider different soil types, 
slope, aspect, and many other factors. They are poor drivers of the fire models 
used by fire agencies and the Bureau of Meteorology to manage and warn for 
dangerous fire conditions as the science is outdated and has been verified as 
not effective in fire spread prediction. 

This project addresses a fundamental limitation in our ability to prepare for fires, 
floods and heatwaves and is directly linked to pre-event planning as well as 
forecasting of events.  Both aspects are core elements of a resilient community. 
The outputs of this project can improve Australia’s ability to manage extreme 
events by developing a state of the art, world’s best practice in SM analysis that 
makes use of many different sources of observations and cutting-edge land 
surface modelling and data assimilation. The research examines the use of 
detailed land surface models, remotely sensed satellite measurements and 
ground-based observations for the monitoring and prediction of landscape 
dryness. 

 There are few in-situ observations of SM. However, several new satellite systems 
have been launched that can provide information about surface SM. The 
advantage of these satellite systems is that they provide national coverage on a 
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daily timescale. Advanced land data assimilation schemes can be used to blend 
the satellite measurements with model forecasts. 

The potential benefits of this project are: 

• More accurate, detailed, and confident estimates and forecasts of SM, 
and hence an expectation of more accurate predictions of fire risk, flood 
forecasting, landslip warning and heatwave events. 

• The research can potentially benefit landscape and fire management 
applications including assessments for fuel reduction burns. 

• Benefits extend to water resource management, dam catchment 
monitoring and function of dams in flood mitigation. 

• Datasets of landscape dryness can support a wide range of other 
research in fire, flood, and heatwave prediction. 
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BACKGROUND 
The KBDI and SDI are found to have limited skill in estimating SM, particularly in 
shallow soil layers (Vinodkumar et al., 2017). The dependency of fire potential on 
moisture in a layer of soil may change with seasons (Haines et al., 1976). A good 
SM estimation system should, therefore, work throughout the seasons and should 
not depend upon a fixed depth of soil horizon (like KBDI and SDI) to indicate fire 
danger. A model system employing a multi-layer soil model is suggested to be 
the best solution (Haines et al., 1976). Land surface modelling is an emerging 
technology that could potentially fill this gap. LSMs are capable of estimating soil 
moisture at different layers and more systematically than empirical methods. 

A prototype high-resolution SM information system based on Joint UK Land 
Environment Simulator (JULES; Best et al., 2011) LSM to estimate SM has been 
developed (Dharssi and Vinodkumar, 2017). This system is called the JULES based 
Australian Soil Moisture Information (JASMIN) and estimates SM at a spatial 
resolution of 5 km. JASMIN provides information at four soil layers, with a 100 mm 
thick surface layer and a soil column of 3 m thickness to represent the root-zone. 
Verification against ground-based SM observations shows that this prototype 
system is significantly better than the simple KBDI and SDI models currently used 
operationally (Dharssi and Vinodkumar, 2017). 

The main achievements of the project include: 

1. Production of a historical dataset of the KBDI and SDI at 5 km horizontal 
resolution using analyses of rainfall and maximum temperature.  

2. Inter-comparison of traditional soil dryness models (KBDI, SDI) with soil 
moisture/dryness from:  

a) Numerical Weather Prediction models (ACCESS and others).  

b) Satellite-based measures of landscape dryness. 

c) Ground-based SM observations. 

3. Development, production, and validation of the JASMIN system. 

4. Calibration of JASMIN SM for utilization in current operational fire 
prediction systems. 

5. Release of historical JASMIN datasets and near-real-time updates 
through the Australian Flammability Monitoring System and Bureau's 
THREDDS server.  

6. Downscaling of JASMIN SM from 5 km to 1 km spatial resolution. 

7. Development of a simple LFMC predictive model based on SM. 
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RESEARCH APPROACH 
The main research components of the project and the scientific approaches 
undertaken in each component are described below.  

DEVELOPMENT AND VALIDATION OF JASMIN SYSTEM 

JASMIN system 
Land surface modelling has become a great tool in continually estimating SM at 
large scales, where mapping with the use of in-situ observations becomes non-
feasible. Land surface models (LSMs) represent processes which regulate the 
exchanges of water and energy through the soil-plant-atmosphere continuum. 
There is a lack of an operational, high-resolution land surface modelling system 
for Australia that can analyse various components of the surface energy and 
water balance. The analyses of energy and water balance produced by 
operational numerical weather prediction (NWP) are at a low resolution (~18 
km). Further, land surface products from NWP may have limited skill due to the 
large uncertainties that exist in NWP forcing, especially precipitation. There are 
operational water balance models run by the Bureau of Meteorology (BoM) that 
can provide estimates of SM at a higher resolution. However, most of these 
models are designed and calibrated towards some very specific applications 
(e.g. streamflow and catchment water balance assessment). Moreover, the 
energy balance in these hydrological models is simplified. These factors could 
limit their ability to simulate an accurate estimate of SM, especially at top layers. 
In light of the lack of a comprehensive system to analyse SM in particular and 
land surface variables in general, a stand-alone high-resolution land surface 
modelling system was developed. 

The land surface in JASMIN/JULES is divided into grids, and each grid box is 
divided further into fractions of different surface types (called tiles) to represent 
land cover heterogeneity. Nine surface tiles are defined: five plant functional 
types (PFTs) – broad-leaf trees, needle-leaf trees, C3 grasses, C4 grasses, and 
shrubs; and four non-vegetation types - urban, inland water, bare soil, and ice. A 
multi-layer soil profile can be defined for each grid box, where the soil is vertically 
homogeneous. The change in total soil moisture content (SMC) within each soil 
layer from the previous time step is based on the evapotranspiration (ET) 
extracted directly from the layer by plant roots, the diffusive water flux flowing in 
from the layer above, and the diffusive flux flowing out to the layer below (Cox 
et al., 1999). The SM tendency is based on a finite difference approximation of 
Richards's equation and Darcy's law. JULES has an option to use the soil hydraulic 
models of either Brooks and Corey (1964) or van Genuchten (1980). JASMIN uses 
the van Genuchten soil hydraulic model to define the relationship between SM 
and soil hydraulic conductivity. Transpiration by plants extracts soil water directly 
from the soil layers via the plant roots while bare soil evaporation extracts soil 
water from the topmost soil layer only. The ability of plants to access water from 
each soil layer is determined by the root density distribution and SM availability. 
The SM availability is a function of SM and soil texture. ET is modelled using a 
modified Penman/Monteith equation coupled to a photosynthesis/surface 
conductance model. JULES use ancillary information on land cover types, 
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vegetation heights, soil texture, soil albedo, soil hydraulic and thermal properties, 
leaf area index (LAI) etc. The LAI ancillary information is seasonally varying 
whereas vegetation properties like height, land cover etc. are static. JULES 
provides numerous variables describing the state of the land-surface in terms of 
water, energy, and carbon fluxes as outputs. 

The JASMIN system covers the whole of Australia at a spatial resolution of 5 km. 
The system runs with an hourly time step and output is stored at every third 
timestep. The soil column in JASMIN is 3 m deep and is divided into four layers of 
0.1, 0.35, 0.65 and 2 m thickness successively from the surface. A canopy height 
dataset derived from space-borne light detection and ranging (LIDAR) 
instrument (Simard et al., 2011) is used for an accurate representation of tree 
heights in Australia. The tree height ancillaries are found to have a significant 
impact on model results (Dharssi et al., 2015). 

The physical processes in LSMs are driven by meteorological data, and the 
frequencies by which the state variables are updated correspond to the 
temporal resolution of provided meteorological fields. The air temperature, 
specific humidity, wind speed and surface pressure data required by JASMIN is 
obtained from BoM's Mesoscale Surface Analysis System (MSAS; Glowacki et al., 
2012). MSAS performs hourly analyses of atmospheric pressure at mean sea level, 
potential temperature, 2 m dew point temperature, and 10 m wind components 
on a ~4 km grid. This data is converted and re-gridded to drive JASMIN. The MSAS 
data is available from 2007 onwards and is on-going with near-real-time (NRT) 
updates. The downward surface shortwave radiation required by JULES is 
provided by an hourly product developed in the Bureau of Meteorology based 
on measurements from the Himawari geostationary meteorological satellites. This 
product is available at a spatial resolution of 5 km. The downward surface 
longwave radiation data is obtained from the Bureau of Meteorology's 
operational regional NWP model (Puri et al. 2013. The NWP data is available in 
NRT, 6-hourly at a resolution of 12 km. The precipitation data used to drive JASMIN 
is obtained from BoM's Australian Water Availability Project (AWAP; Jones et al. 
2009) product. AWAP is an in-situ observation-based product and provides daily 
analyses of rainfall at a spatial resolution of ~5km. The Tropical Rainfall Measuring 
Mission (TRMM; Huffman et al. 2007) data is used to disaggregate AWAP rainfall 
to 3-hourly values. The TRMM data is also used to fill spatial gaps in the AWAP 
data. 

Verification metrics 
All the ground-based verification and evaluation in the present project was 
conducted over the well-known CosmOz (Hawdon et al., 2014), OzNet (Smith et 
al., 2012) and OzFlux (Beringer et al., 2016) SM networks in Australia (Figure 1). The 
three networks together comprise of about 60 sites spanning across the whole 
country and sample the climatic zones and vegetation types typical of the 
Australian landscape.  
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FIGURE 1. LOCATION OF IN-SITU OBSERVATIONS. THE REGION SHADED BY YELLOW REPRESENTS THE MURRUMBIDGEE CATCHMENT.  

For verification conducted throughout the project, we adopted two popular 
schools of thoughts found in the literature. The first assumes an exact 
correspondence between SM from ground-based point observations and 
coarser model/satellite products. This approach is based on the temporal stability 
argument (Brocca et al., 2014), where it is assumed that the large fraction of SM 
spatial variability is time-invariant. The common metrics used in such studies, i.e., 
Pearson’s product-moment correlation (R), unbiased root mean square 
difference (ubRMSD) and bias are calculated. The scores are computed for all 
stations and the whole period were comparing data overlaps. Only scores for 
significant correlations with p-values < 0.001 are presented. The equations for 
each of the above-mentioned metrics are given below. 

R =
1
N∑ (Θ�model

i −Θ�model
�����������N

i=1 )(Θ�insitu
i −Θ�ınsıtu����������)

σmodelσin situ
    (1) 

RMSD = �1
N
∑ (Θ�insitui − Θ�modeli )2N
i=1     (2) 

Bias =  1
N
∑ (Θ�insitui − Θ�modeli )N
i=1     (3) 

ubRMSD =  √RMSD2 − Bias2     (4) 

where 𝛩𝛩� is the SM and σ is the standard deviation. 

To calculate correlations with seasonal effects removed, we compute the 
anomalies for each dataset using: 

𝛩𝛩�𝑎𝑎𝑎𝑎 = Θ� − 𝛩𝛩�𝑎𝑎𝑎𝑎       (5) 
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𝛩𝛩�𝑎𝑎𝑎𝑎 is the mean and is calculated over a 31-day sliding window. Fisher's 
transformation is applied to calculate the average correlation (Corey et al., 
1998). 

The second school of thought argues that the assumption of ground-based 
observation as “truth” is problematic, as they are imperfect due to their 
measurement errors and possibly have a support scale different to that required 
for the application in question. A host of SM verification studies have hence used 
a technique called Triple collocation (TC; Stoffelen, 1998) where none of the 
comparing datasets is treated as “truth”. TC also has the advantage of not 
requiring the rescaling step, which may bias the error estimates (Yilmaz & Crow, 
2013). TC estimates the random error variances of three collocated datasets 
which represent the same geophysical variable. These “triplets” are assumed to 
be mutually independent and their errors uncorrelated with each other and with 
the target geophysical variable. SM products from in situ observation, satellite 
remote sensing and land surface model are generally used triplets to compute 
TC statistics. TC has been used widely in SM verification studies (e.g. Dorigo et al., 
2010; Miralles et al., 2010). McColl et al. (2014) extended the TC method to 
estimate the correlation coefficient of each measurement system to the 
unknown target variable. They called this approach Extended Triple Collocation 
(ETC). In the present study, we use the ETC method to estimate both correlations 
and error variances of each dataset. The error standard deviation for ETC is given 
by: 

𝜎𝜎𝜀𝜀 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡�𝑄𝑄11 −

𝑄𝑄12𝑄𝑄13
𝑄𝑄23

�𝑄𝑄22 −
𝑄𝑄12𝑄𝑄23
𝑄𝑄13

�𝑄𝑄33 −
𝑄𝑄13𝑄𝑄23
𝑄𝑄12 ⎦

⎥
⎥
⎥
⎥
⎥
⎤

     (6) 

Here Qij is the covariance between time series i and j. The correlation coefficient 
between truth “t” and estimate X is given by: 

𝜌𝜌𝑡𝑡,𝑋𝑋 = ±

⎣
⎢
⎢
⎢
⎢
⎢
⎡ �𝑄𝑄12𝑄𝑄13

𝑄𝑄11𝑄𝑄23

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑄𝑄13𝑄𝑄23)�𝑄𝑄12𝑄𝑄23
𝑄𝑄22𝑄𝑄13

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑄𝑄12𝑄𝑄23)�𝑄𝑄13𝑄𝑄23
𝑄𝑄33𝑄𝑄12⎦

⎥
⎥
⎥
⎥
⎥
⎤

   (7) 

where the ρt,X is correct up to a sign ambiguity. 

CALIBRATION OF JASMIN 

The JULES LSM simulates SM in units of mass per unit area (kg m-2). However, the 
drought factor (DF) calculations in FFDI requires SM deficit values specified in a 
range between 0 – 200. Hence the use of appropriate rescaling techniques is 
required to use JASMIN SM in the current operational DF calculations. The 
calibration exercise is an important step towards faster adoption of JASMIN 
product for operational use. Considering the significant resources required to 
adopt any new source of information in operations, the calibration provides an 
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opportunity to make a significant improvement to the existing system with the 
least effort. The present study applied four rescaling methods to scale JASMIN SM 
to SMD values that range from 0 – 200. The scaling methods evaluated here are 
the minimum-maximum matching, mean-variance matching and cumulative 
distribution function (CDF) matching. Each of these methods is detailed below. 

Rescaling methods 

Minimum-maximum matching 

The first approach involves rescaling JASMIN time series to match its minimum 
(𝛩𝛩min) and maximum (𝛩𝛩max) to those of SMD in FFDI (𝜗𝜗min = 0, 𝜗𝜗max = 200). 

𝛩𝛩� =  𝜗𝜗𝑚𝑚𝑚𝑚𝑚𝑚 + (𝛩𝛩 − 𝛩𝛩𝑚𝑚𝑚𝑚𝑚𝑚)(𝜗𝜗𝑚𝑚𝑚𝑚𝑚𝑚−𝜗𝜗𝑚𝑚𝑚𝑚𝑚𝑚
𝛩𝛩𝑚𝑚𝑚𝑚𝑚𝑚−𝛩𝛩𝑚𝑚𝑚𝑚𝑚𝑚

)   (8) 

This is mathematically equivalent to the approach by Albergel et al. (2012) and 
Vinodkumar et al. (2017), where they normalised SM data sets to a standard 
range 0 – 1. We refer to this approach as minimum-maximum (MM) matching. 

Mean-variance matching 

In the second approach, JASMIN data (𝛩𝛩) is normalised (𝛩𝛩�) to have the same 
mean (μ) and variance (σ2) as the reference (KBDI/SDI) data (𝜗𝜗). This is achieved 
through, 

𝛩𝛩� = 𝜇𝜇𝜗𝜗 + 𝜎𝜎𝜗𝜗
𝜎𝜎𝛩𝛩

(𝛩𝛩 − 𝜇𝜇𝛩𝛩)     (9) 

We denote this method as the μ - σ matching. 

CDF matching 

 

 

 

 

 

 

 

 

 

 

 

 

 
FIGURE 2. CDF MATCHING OVER RIGGS CREEK, QLD. (A) TIME SERIES OF KBDI (RED LINE) AND JASMIN (DASHED BLACK LINE) MATCHED TO KBDI SCALE. 
(B) CDF OF JASMIN SM IN VOLUMETRIC UNITS. (C) CDF OF KBDI (RED LINE) AND MATCHED JASMIN SMD (DASHED BLACK LINE).  
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The cumulative distribution function (CDF) matching (Reichle & Koster, 2004) is a 
nonlinear method that matches higher-order statistical moments of the 
distributions in addition to the mean and variance. The CDF characterises the 
cumulative probability of a continuous random variable (X) up to a specific value 
(x). That is, 

𝐹𝐹(𝑥𝑥) = Pr[𝑋𝑋 ≤ 𝑥𝑥]     (10) 

In CDF matching, the two datasets are ranked first and an operator, which is the 
best fit, is calculated. The ranking of datasets is performed on both temporal and 
spatial samples. The first is referred to as temporal CDF matching (tCDF) and the 
latter as spatial CDF matching (sCDF). The operator for tCDF is a ninth order 
polynomial fit of ranked JASMIN SM values to ranked KBDI/SDI values. The 
operator in tCDF is derived using the training data sets extending from 1st January 
2010 to 31st December 2015. The best fit in sCDF is calculated using daily values 
over the entire JASMIN domain (-45o S to -10o S; 112o E to 154o E). The operator in 
sCDF is a cubic spline fit of ranked JASMIN SM values to ranked KBDI/SDI values. 
The sCDF technique is widely used in image processing where the contrast of an 
image is adjusted to a reference image.  

Figure 2 shows an example of the CDF matching procedure for a time series over 
one location. The red line in Figure 2a depicts the KBDI and the black line 
represents JASMIN matched to KBDI. The black line in Figure 2b shows the CDF of 
JASMIN SM in volumetric units. Figure 2c shows the CDF of KBDI (red line) and 
matched JASMIN SMD (dashed black line). 

DOWNSCALING OF JASMIN 

Though JASMIN provides accurate SM information at high spatial resolution, it is 
at a coarser scale than is ideal for fire and other environmental applications. A 
common practice to overcome such a problem is to employ downscaling 
methods to increase the spatial scale of the product. Downscaling methods 
establish a functional relationship between SM and associated feature variables 
(e.g., topography, land-use, land surface temperature), whose spatial 
distribution can more readily be measured. The downscaling methods generally 
differ in the type of auxiliary input data (e.g., optical/thermal data, 
elevation/slope, soil attributes) and the characteristics of the disaggregation 
method (i.e., physics-based, or statistical). One of the most common and early 
frameworks used in SM downscaling is the use of landscape indices, especially 
terrain indices, to downscale the coarser-resolution SM data. However, the 
downscaling methods using terrain attributes often establish relationships by 
using extensive in-situ observations. Such methods are found to be catchment-
specific, restricting their applicability to smaller spatial scales (Busch et al., 2012; 
Werbylo and Niemann, 2014). 
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FIGURE 3. THE TS-VI FEATURE SPACE 

Recent advances in optical remote sensing have allowed researchers to use 
different remote sensing products that reflect SM variability as ancillary 
information. A method based on “universal triangle” concept is used in several 
studies where a relationship between SM, vegetation index (VI) and surface 
radiant temperature (Ts) from optical remote sensing sensors is established. The 
universal triangle concept arises from the emergence of a triangular or 
trapezoidal shape when VI and Ts measures taken from heterogeneous areas 
are plotted in two-dimensional feature space – forming a Ts/VI scatterplot (Figure 
3). Of the different land surface parameters, NDVI and LST are the most widely 
used. Theoretical and experimental studies have demonstrated the relationship 
between surface SM, NDVI and LST for a given region under specific climatic 
conditions and land surface types. This method is used by several studies to 
downscale microwave remote sensing retrievals of SM (Peng et al., 2017). 

Three algorithms based on the triangle concept to improve the spatial resolution 
of the JASMIN product from 5 km to 1 km were investigated. The selected 
algorithms are applied using the thermal and optical infrared data from the 
MODIS instrument. The rationale for choosing these algorithms is: (a) they can be 
applied at a continental scale, (b) input data is readily available, and (c) they 
have been tested and documented over Australian regions. The study applied 
a step-by-step approach, where the algorithm identified as the simplest is 
implemented, tested and evaluated first, before moving to the next algorithm to 
explore skill that can be potentially be gained. In that respect, we started with 
the multiple linear regression method discussed in Piles et al (2011). To investigate 
whether the skill of the multiple linear regression method can be improved further 
by regularization, we employed the Least Absolute Shrinkage and Selection 
Operator (LASSO; Tibshirani, 1996) regression using the same feature variables 
used in the multiple linear regression method. Further, a more theoretically based 
method, in the form of "Disaggregation based on Physical And Theoretical scale 
Change" (DisPATCh; Merlin et al., 2012) was tested to identify any potential gain 
in the skill that could be achieved. 
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Downscaling methods 

Multiple linear regression 

The triangle concept has been used to develop a linking model that relates 
JASMIN SM data to MODIS derived NDVI and LST datasets. The linking model, in 
this case, is a multiple linear regression method which uses NDVI and LST data as 
the feature variables. Their relationship with SM can generally be expressed 
through a regression formula such as: 

𝑆𝑆𝑆𝑆ℎ𝑟𝑟𝑟𝑟𝑟𝑟 = ∑ ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑖𝑖𝐿𝐿𝐿𝐿𝐿𝐿𝑗𝑗𝑛𝑛
𝑗𝑗=0

𝑛𝑛
𝑖𝑖=0    (11) 

Piles et al. (2011) effectively used a second-order polynomial function to define 
the linking model between the LANDSAT surface radiant temperature/NDVI 
features and airborne SM estimates. The surface radiant temperature and NDVI 
were normalised to reduce the dependence of each parameter on ambient 
conditions. A similar approach was adopted here. However, the quadratic 
function used in our study was selected only after experimenting with linking 
models of various order, ranging from first to ninth order. We carried out these 
experiments over a test domain in south-eastern Australia, comprising the 
Murrumbidgee catchment, for the year 2010. The results were then compared 
against OzNet observations. It is found that the quadratic function provided the 
best estimate among all functions examined. The linking model used in the 
present study can be written as: 

𝑆𝑆𝑆𝑆ℎ𝑟𝑟𝑟𝑟𝑟𝑟 =  𝑎𝑎00 + 𝑎𝑎01𝑇𝑇𝑛𝑛 + 𝑎𝑎10𝑓𝑓𝑣𝑣 + 𝑎𝑎11𝑇𝑇𝑛𝑛𝑓𝑓𝑣𝑣 + 𝑎𝑎02𝑇𝑇𝑛𝑛2 + 𝑎𝑎20𝑓𝑓𝑣𝑣2 (12) 

Here, Tn stands for normalised LST (Eqn. 13) and fv is the fractional vegetation 
cover defined as (Eqn. 14). Tn and fv are calculated after masking cloud affected 
and land-water pixels from respective datasets.  

𝑇𝑇𝑛𝑛 = � 𝑇𝑇𝑠𝑠−𝑇𝑇𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚

𝑇𝑇𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚�
ℎ𝑟𝑟𝑟𝑟𝑟𝑟

       (13) 

𝑓𝑓𝑣𝑣 =  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚
𝑁𝑁𝑁𝑁𝑁𝑁𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚

       (14) 

Tsmax and Tsmin are the maximum and minimum LST values for a day and region 
under study. Similarly, NDVImax and NDVImin are the maximum and minimum NDVI 
values for a day and region after masking the cloud and water pixels. 

LASSO regression 

The LASSO (Tibshirani, 1996) is an extension to the linear regression technique, 
where the regression coefficients are optimally reduced (shrinkage). In some 
cases, the regression coefficients are even reduced to zero, thereby ignoring a 
feature (selection). LASSO minimises the residual sum of squares as in classical 
linear regression, but the determination of regression coefficients is constrained 
by the sum of the absolute values of the coefficients being as small as possible. 
This is achieved by defining a regularization parameter (λ) in the cost function 
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(Eqn. 15) that determines the influence of the classical least square contribution 
(first term in the right-hand side of Eqn. 15) relative to the sum of modulus of the 
coefficients (second term on the right-hand side of Eqn. 15). 

𝐽𝐽(𝛽𝛽𝑘𝑘) = 1
𝑁𝑁
∑ (𝑌𝑌𝑛𝑛 − ∑ 𝛽𝛽𝑘𝑘𝑋𝑋𝑘𝑘,𝑛𝑛𝑘𝑘 )2 + 𝜆𝜆∑ |𝛽𝛽𝑘𝑘|𝑘𝑘
𝑁𝑁
𝑛𝑛=1    (15) 

The LASSO technique applied in the present study also uses normalised LST and 
NDVI features to derive the linking model. To estimate the optimal regularization 
parameter (λ), experiments were conducted on a training dataset covering 
south-east Australia, spanning the whole year of 2010. Based on the subjective 
evaluation and the objective verification against in-situ observations from OzNet 
network (results not shown for brevity), a value of 80 was selected for λ. 

DisPATCh 

The DisPATCh method is categorised as physically based as it links the land 
surface temperature data with surface SM through the soil evaporation process. 
The development of the DisPATCh method can be found in Merlin et al. (2005) 
and Merlin et al. (2008). The DisPATCh method in this study uses SEE concept to 
model the sub-pixel spatial variability of surface SM. The advantage of using SEE 
is that it is much more directly linked to remote sensing and a SEE model can be 
readily developed in conjunction with land surface temperature and surface SM. 
The disaggregation method in DisPATCh can be written as: 

𝑆𝑆𝑆𝑆ℎ𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑆𝑆𝑆𝑆𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + � 𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

�
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

. �𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑟𝑟𝑟𝑟𝑟𝑟 − ⟨𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑟𝑟𝑟𝑟𝑟𝑟⟩𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙������������������ (16) 

S Mhres is the 1km downscaled SM, and SMlres is the coarse-scale JASMIN SM. Here, 
we upscaled the JASMIN SM to 50 km resolution by averaging. This is to construct 
an accurate Ts-VI space, which is otherwise impossible in a 5 km resolution 
JASMIN grid, which encompasses only 25 MODIS LST pixels. From now on, coarse-
scale JASMIN grid in DisPATCh refers to the 50 km resolution grid. SEEhres is the 
MODIS-derived soil evaporative efficiency and ⟨𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑟𝑟𝑟𝑟𝑟𝑟⟩𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙����������������� it's average within a 
JASMIN grid. ∂SM/∂SEE is the partial derivative of SM to SEE evaluated at the 
coarser scale. Here, a linear model was used to define the sensitivity of SM to SEE, 
as this is found to be a good approximation at kilometre scales (Merlin et al., 
2013). 

MODIS derived SEE is expressed as a linear function of MODIS-derived soil 
temperature (Ts) and is given as: 

𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑟𝑟𝑟𝑟𝑟𝑟 = �𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑚𝑚𝑎𝑎𝑎𝑎−𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑚𝑚𝑚𝑚𝑚𝑚�
ℎ𝑟𝑟𝑟𝑟𝑟𝑟

     (17) 

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 are the soil skin temperature at SEE=0 and SEE=1 respectively. The 
MODIS land surface temperature is linearly decomposed into soil temperature 
and vegetation temperature based on the Ts-VI feature space. The soil 
temperature is expressed as: 

𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = �𝑇𝑇𝐿𝐿𝐿𝐿−𝑓𝑓𝑟𝑟.𝑇𝑇𝑣𝑣
1−𝑓𝑓𝑟𝑟

�
ℎ𝑟𝑟𝑟𝑟𝑟𝑟

       (18) 
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TLS is the MODIS LST, fr is the fractional vegetation and Tv is the vegetation 
temperature. The fractional vegetation cover is given as: 

𝑓𝑓𝑟𝑟 =  𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑣𝑣𝑣𝑣𝑣𝑣−𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

       (19) 

NDVIsoil is the NDVI corresponding to bare soil, and NDVIveg is the NDVI 
corresponding to full-cover vegetation. For the present study, NDVIsoil and NDVIveg 
values are set to 0.10 and 0.80, respectively. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4. ESTIMATION OF VEGETATION TEMPERATURE USING THE "HOURGLASS" APPROACH. POLYGON DEFINED IN THE LAND SURFACE TEMPERATURE-
FRACTIONAL VEGETATION COVER SPACE CONTAINS FOUR DISTINCT ZONES A, B, C, AND D. IN ZONE A (SOIL DOMINATED AREA), THE ESTIMATED 
VEGETATION TEMPERATURE IS CONSTANT, LEADING TO OPTIMAL SENSITIVITY OF ESTIMATED SOIL TEMPERATURE TO SURFACE SM. IN ZONE D, THE 
ESTIMATED SOIL TEMPERATURE IS CONSTANT WITH NO SENSITIVITY TO SURFACE SM. IN ZONE B AND C (MIXED SURFACE), THE SURFACE TEMPERATURE IS 
BOTH CONTROLLED BY SOIL EVAPORATION AND VEGETATION TRANSPIRATION WITH INTERMEDIATE (AVERAGE) SENSITIVITY OF ESTIMATED SOIL 
TEMPERATURE TO SURFACE SM. 

The vegetation temperature was estimated using the "hourglass" approach 
described in Moran et al. (1994) and Merlin et al. (2012). By plotting the diagonals 
of the Ts-VI quadrilateral for each coarse-scale grid, four areas are distinguished 
in the feature space defined by surface temperature and fractional vegetation 
cover (Figure 2). In zone A, LST is mainly controlled by soil evaporation leading to 
optimal sensitivity of LST to surface SM. In zone D, LST is mainly controlled by 
vegetation transpiration with no sensitivity to surface SM. In zones B and C, LST is 
controlled by both soil evaporation and vegetation transpiration with 
intermediate sensitivity to surface SM. Based on this understanding, vegetation 
temperature was estimated for each zone as: 

𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 𝐴𝐴:  𝑇𝑇𝑣𝑣 = 𝑇𝑇𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚+𝑇𝑇𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

2
       (20) 

𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 𝐵𝐵:  𝑇𝑇𝑣𝑣 =
�𝑇𝑇𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚�𝑆𝑆𝑆𝑆𝑆𝑆=0+𝑇𝑇𝑣𝑣

𝑚𝑚𝑚𝑚𝑚𝑚

2
      (21) 

𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 𝐶𝐶:  𝑇𝑇𝑣𝑣 = 𝑇𝑇𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚+[𝑇𝑇𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚]𝑆𝑆𝑆𝑆𝑆𝑆=1
2

      (22) 
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𝑍𝑍𝑍𝑍𝑍𝑍𝑍𝑍 𝐷𝐷:  𝑇𝑇𝑣𝑣 =
�𝑇𝑇𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚�𝑆𝑆𝑆𝑆𝑆𝑆=0+[𝑇𝑇𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚]𝑆𝑆𝑆𝑆𝑆𝑆=1

2
     (23) 
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IGURE 5. ESTIMATION OF TEMPERATURE END MEMBERS. 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚, 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚, 𝑇𝑇𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 AND 𝑇𝑇𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 ARE ESTIMATED FROM THE SURFACE TEMPERATURE-FRACTIONAL 
VEGETATION COVER SPACE AND THE SURFACE TEMPERATURE-SURFACE ALBEDO SPACE WITHIN A GIVEN, UPSCALED JASMIN PIXEL. THE GREEN DOT 
REPRESENTS THE MODIS PIXEL WITH THE MAXIMUM ALBEDO. THIS PIXEL HAS A FRACTIONAL VEGETATION COVER LESS THAN 0.5, AND HENCE 𝑇𝑇𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 IS SET 
TO 𝑇𝑇𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚. 

𝑇𝑇𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑇𝑇𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 being the vegetation temperature at the minimum and maximum 
water stress, respectively. End-members 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚, 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚, 𝑇𝑇𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑇𝑇𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 are estimated 
at 1 km resolution by combining the spatial information provided by the LST-fr and 
the LST-albedo feature space developed using the MODIS data within each 
coarser JASMIN grid point (Figure 3). Here, 𝑇𝑇𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 is set to the minimum MODIS LST 
within each coarse-scale JASMIN grid. 𝑇𝑇𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 is set to the LST of the MODIS pixel 
with the maximum albedo value (Figure 3). If fr < 0.5 for the corresponding MODIS 
pixel, the vegetation 𝑇𝑇𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 is set to 𝑇𝑇𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚. The above condition is set to increase 
the robustness of the determination approach, particularly for the JASMIN grids 
where all surface conditions are not met. 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 is calculated by extrapolating 
along the wet soil edge at fr = 0. The wet soil edge is defined as the line passing 
through (SEE = 1, 𝑇𝑇𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚) and through the data point such that all the data points 
with fr < 0.5 are located above the wet soil edge (Figure 3). 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 is estimated by 
extrapolating along the dry soil edge at fr = 0. The dry soil edge is defined as the 
line passing through (SEE = 1, 𝑇𝑇𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚) and through the data point such that all the 
data points with fr < 0.5 are located below the dry soil edge. 
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FIGURE 6. CALIBRATION OF DISPATCH SOIL PARAMETER. THE UPPER PANEL SHOWS THE COMPARISON OF IN-SITU SM (BLACK LINE) AGAINST 
DOWNSCALED SM OBTAINED BY APPLYING THE MEAN SOIL PARAMETER VALUE (BROWN LINE). THE LOWER PANEL DEPICTS THE SAME, EXCEPT THAT 
DOWNSCALED SM IS OBTAINED BY APPLYING THE MINIMUM SOIL PARAMETER VALUE.  

A key factor in the performance of the DisPATCh algorithm is the correct 
calibration of the model depicting the relationship between SM and SEE. Here, a 
linear model was selected to estimate the SM sensitivity to SEE. This sensitivity is 
often referred to as SM parameter (SMp) in DisPATCh literature. The model is 
calibrated from daily SEE and SM estimates at low resolution. In studies applying 
DisPATCh to disaggregate microwave SM retrievals, calibrated values of the SMP 
were obtained by averaging estimates over multiple images collated over a few 
days (e.g.: Merlin et al., 2010). In the present study, daily sensitivity parameter is 
calculated using the MODIS and JASMIN datasets spanning the whole year of 
2010. However, during the calibration phase, it was found that averaging of the 
daily SMp led to large parameter values which introduced random errors in the 
downscaled SM, thereby reducing the temporal skill of the product. This is 
demonstrated through the comparison against ground observations from OzNet-
Yanco site 9 (Figure 6a). Choosing the minimum parameter value rather than the 
mean is found to reduce these random errors (Figure 6b). Hence, in the present 
study, the calibrated parameter values are set to the minimum of SMp values at 
each grid point from the 2010 time series. 

EXPLORING THE LFMC-SM RELATIONSHIP 

Live fuel moisture content is a key factor that contributes to the flammability of 
vegetation in ecosystems (Anderson, 1970, Yebra et al., 2018). Prediction of live 
fuel moisture content is inherently a very difficult problem since it is modulated 
by the complex physiological, phenological and ecological processes 
characteristic of the plant species. SM is one of the key variables that is known to 
influence plant water use. Recently, a new live fuel moisture content near-real-
time product has been developed for Australia using a radiative transfer model 
inversion technique on the MODerate Resolution Imaging Spectroradiometer 
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reflectance data (Yebra et al., 2018). This live fuel moisture content product forms 
the basis of the Australian Flammability Monitoring System (AFMS). The AFMS 
LFMC product has a temporal resolution of 4 days and a spatial resolution of 
500m. The study brought together the AFMS-LFMC and JASMIN SM products to 
conduct preliminary research on the live fuel moisture content–soil moisture 
relationship on a national scale. This study also suggests an approach that may 
be constructive in advancing the ability to predict live fuel moisture content 
reliably to potentially support fire management applications. 

Our approach was to first evaluate the relationship between the two variables 
at selected locations which sample the climatic zones and vegetation types 
typical of the Australian landscape. In that respect, we analysed the datasets 
over CosmOz, OzFlux and OzNet SM networks.  Another reason to select these 
locations is the demonstrated skill of JASMIN at these sites (Vinodkumar and 
Dharssi, 2019). From our analysis, we identified that SMC from the 0-350 mm profile 
(SMC0-350mm) provides the best skill in terms of the correlation with LFMC. The SMC0-

350mm displays a strong relationship with the LFMC at different land cover types. 
One possible reason for this larger degree of agreement is that both the SMC0-

350mm and LFMC exhibit strong seasonality. The deeper layers may not always 
display the strong seasonality exhibited by the shallower layers. Besides, the 
deeper layers may miss the short-term variations associated with individual 
weather events to which the plants and shallow soil profiles respond. Also, the 
upper and deeper soil layers can be disconnected in land surface models due 
to uncertainties in the parameterizations. This may result in deeper layers 
exhibiting little seasonality, rendering them less useful to predict seasonal LFMC 
changes. 

The data used in the present study covers January 2010 to June 2020 period. To 
test the predictive model on the national scale adequately we reserve the data 
corresponding to the years 2012 and 2020 from the training dataset for validation 
purposes. The remaining data is used to construct the model. 

LFMC predictive model 
The study constructed a simple model for predicting LFMC using the gridded 
JASMIN SM product. We selected the 0-350 mm profile from JASMIN to model 
LFMC. The LFMC, in general, is influenced by a variety of factors other than SM 
availability, including plant physiology and ET (Qi et al. 2012). This possibly 
explains the somewhat different annual cycles exhibited by LFMC to SMC0-350mm 
(Figure 7). Hence, it is important to address some of these factors implicitly to 
derive a skilful model for LFMC based on SM. We adopt a modelling strategy 
similar to that discussed in Fovell et al. (2015), where it is hypothesised that LFMC 
departures from its annual cycle can be predicted with SM departures from its 
own annual cycle. Thus, the LFMC is predicted using a linear combination of an 
annual cycle model and a model to predict daily deviations from the annual 
cycle.  
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FIGURE 7. OBSERVED  (DOTTED LINES) AND MODELLED (CONTINUOUS LINE) ANNUAL CYCLES OVER A) ROBSON CREEK, QUEENSLAND, AND B) 
TUMBARUMBA, NEW SOUTH WALES FOR LFMC (BROWN LINE) AND SMC0-35CM (BLUE LINE). THE ROBSON CREEK SITE IS LOCATED IN A TROPICAL 
RAINFOREST ECOSYSTEM IN THE NORTH-EASTERN QUEENSLAND AND THE TUMBARUMBA SITE IS LOCATED IN THE WET SCLEROPHYLL, BAGO STATE FOREST 
IN SOUTH-EASTERN NEW SOUTH WALES. 

The LFMC data is about 10 times finer resolution than the JASMIN data. To 
develop the predictive model, the LFMC data is upscaled to 5 km resolution by 
taking an average of the LFMC values that are encompassed within each 
JASMIN pixel. The annual model for both LFMC and SM is based on a Fourier 
cosine series approximated to the 12th harmonics, where day-of-the-year is used 
as the predictor variable. The daily deviation in LFMC from its annual cycle are 
computed using an ordinary least square regression model with the lagged, 
residual (deviation from the annual mean) SM as the independent variable. The 
predictive model can be written as: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  𝛼𝛼 + ∑ 𝛽𝛽𝑛𝑛cos (𝑛𝑛 𝜋𝜋𝜋𝜋
𝐿𝐿

)12
𝑛𝑛=1 + 𝛾𝛾𝑆𝑆𝑆́𝑆𝑙𝑙𝑙𝑙𝑙𝑙   (24) 

The  'α' term represents the intercept of both the Fourier series and the ordinary 
least square functions combined. 'β' is the slope of the ordinary least square 
model, D is the day of the year, L is the total number of days in a year 
(approximated to 366) and 𝑆𝑆𝑆́𝑆𝑙𝑙𝑙𝑙𝑙𝑙 is the lagged, daily SM deviations from its 
annual cycle. The model parameters change with location (grid points) except 
for the lag. A constant lag of 14 days is selected which helps to keep the 
predictive model simple without penalising the model skill.  

The Fourier cosine series based annual cycle model (Equation 1) is found to be 
capable of estimating fairly odd-shaped annual cycles in both datasets, an 
example of which is shown in Figure 7 for the Robson tropical rainforest site (Figure 
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7a) and the Tumbarumba wet-sclerophyll site in New South Wales (Figure 7b). 
When the AFMS LFMC time series is compared to the annual model for the full 
data period, a sizable 51.8% of the reference series' variance is captured by the 
annual model, where the value represents the average for the 60 stations 
examined (see Supplementary Table 1). Similarly, for the SMC0-35cm, the average 
variance that can be explained by the annual model is found to be 44.8%. The 
SMC0-35cm departures are generally found to have good agreement with the 
LFMC departures 

The SM departures are generally found to have good agreement with the LFMC 
departures. This is illustrated in Figure 8, where a direct comparison is facilitated 
by superimposing the two residual time series over Baldry in New South Wales. 
However, it is readily apparent that there is a systematic phase difference 
between the two residual time series. A lag-correlation analysis for the residuals 
returned the highest correlation of 0.72 for a lag of 22 days over Baldry. This result 
further suggests that LFMC is responding directly and strongly to SMC0-350mm 
changes and the lag signifies the combined time taken for the rainfall received 
at the surface to percolate through the 0-350 mm layer and the subsequent 
water uptake process by the plant to occur. The lag between the two residual 
time series is found to vary from location to location. The mean (median) lag for 
grassland, woodland, forestland, and cropland are 14 (14), 15 (0), 10 (0) and 12 
(16) respectively. The corresponding lag-correlation values are 0.65 (0.65), 0.42 
(0.45), 0.27 (0.25), and 0.55 (0.56). The extremely short lag over a few of the 
forestland and woodland sites can be anomalous and may indicate a data 
representativeness issue. The noise in the data can possibly influence the 
accurate determination of the lag. It is found that the correlation does not vary 
significantly from one day to the next (not shown here for brevity).  

 

 
 

 

 

 

 

 

 

FIGURE 8. RESIDUAL TIME SERIES OF SMC0-350MM (RED LINE) AND LFMC (BLACK BROKEN LINE) BALDRY IN THE STATE OF NEW SOUTH WALES, AUSTRALIA 
(COORDINATES: 32.8710OS,148.5260OE). BALDRY SITE IS A MIX OF PASTURE AND REFORESTED WOODLAND. THE GREY SOLID LINE CORRESPONDING TO 
THE LFMC SHIFTED BACKWARD FOR 22 DAYS. 

The site averaged (median) lag obtained was 13 (14) days. The daily departures 
of the 14-day lagged SMC0-35cm is found to provide a reasonable linear 
relationship with the LFMC residual time series at all locations and is hence 
selected to construct the model. The daily deviations in LFMC are thus predicted 
using that in 14-day lagged SMC0-35cm, where the daily departures are calculated 
by removing the respective annual cycles from each dataset. A constant lag of 
14-days helps to keep the predictive model simple. The annual cycle is 
calculated using the Fourier based model described above and in equation 24. 
Separate ordinary least square regression models with the residual 14-day 
lagged SMC0-35cm as the independent variable to predict daily changes in LFMC 
is developed for each location. The final predictive model is thus constructed 
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using a linear combination of two sub-models - the Fourier series-based model to 
predict the annual cycle and the ordinary least square regression model to 
estimate the daily variations. As mentioned earlier, the model parameters are 
computed for each grid point due to the spatial variability in LFMC and SM. 
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FINDINGS 

DEVELOPMENT AND VALIDATION OF JASMIN SYSTEM 

There is evidence that KBDI and SDI perform poorly in predicting near-surface SM 
(Vinodkumar and Dharssi, 2017; Holgate et al., 2017). This is critical from a fire 
prediction standpoint, given the relationship between moisture states in forest 
litter and surface soil (Hatton et al. 1988). SM from land surface models within a 
numerical weather prediction system can provide more accurate estimates than 
that from the above indices (Vinodkumar et al., 2017). In Australia, the SM 
analyses from operational NWP systems run by the Bureau of Meteorology are 
coarse in resolution (~ 18 km), and the skill can be limited by large uncertainties 
that exist in NWP forcing - especially precipitation. Hence, JASMIN, a prototype, 
high resolution, offline land surface modelling system has been developed by the 
Bureau of Meteorology (Dharssi and Vinodkumar, 2017). 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 9. SCATTER PLOTS DEPICTING A) CORRELATION, B) UNBIASED RMSD, C) BIAS AND D) ANOMALY CORRELATION. THE Y-AXIS SHOWS THE SKILL 
SCORES OF JASMIN SOIL WETNESS AGAINST IN-SITU OBSERVATION. THE X-AXIS CORRESPONDS TO THE SKILL SCORES OF THE OTHER THREE MODELS 
(AWRA-L, KBDI AND SDI) AGAINST IN-SITU OBSERVATIONS. EACH COLOUR REPRESENTS A MODEL TYPE DEPICTED ON THE X-AXIS (I.E., AWRA, KBDI AND 
SDI). EACH SYMBOL REPRESENTS AN OBSERVATION NETWORK TYPE. THE RED LINE IS FOR MERE REFERENCE. 

A systematic validation of JASMIN using in-situ data was conducted to support 
the development and utilization of JASMIN for application in operational fire 
prediction and risk management practices in Australia. The need for a spatially 
and temporally extensive ground-truthing of JASMIN is addressed by using three 
large-scale SM networks. This study also complements the traditional ground-
truthing methodologies with a relatively new validation technique called 
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extended triple collocation (results not shown). The study also utilised SM from 
AWRA-L version 5.0 (Frost et al., 2016), KBDI and SDI models for comparison and 
benchmarking. The AWRA-L model has since been updated to version 6.0 with 
improvements to model structure and physics (Frost et al., 2018). The JASMIN SM 
used in the present study is valid at 00 UTC. All spatial data collocation to in-situ 
locations is done using the nearest neighbour method. KBDI and SDI values are 
converted to SMC by subtracting the values from their respective maximum. To 
enable a fair comparison, all SM products and indices are converted to soil 
wetness (normalised between [0, 1]) using their maximum and minimum values 
from respective long time series. Such normalization has been done by many 
other SM verification studies (e.g., Brocca et al., 2011). However, this rescaling 
approach is sensitive to outliers in observations and hence a careful visual 
inspection is performed to remove any erroneous measurements. 

Figure 9 represents the skill scores of JASMIN plotted against that of the other 
three models (i.e., AWRA-L, KBDI and SDI) for shallow layer observations from the 
three ground-based networks. The skill scores presented are correlations (Figure 
9a), ubRMSD (Figure 9b), bias (Figure 9c) and anomaly correlations (Figure 9d). 
JASMIN generally exhibits a stronger correlation compared to the other three 
models (Figure 9a). This is especially true over CosmOz and OzNet networks. The 
median correlation for JASMIN obtained against CosmOz, OzNet and OzFlux are 
0.85, 0.81 and 0.78 respectively (Table 1). JASMIN consistently displays a strong 
positive correlation over CosmOz sites where R > 0.60 at all sites. Out of the total 
45 sites in OzNet network, JASMIN displays R > 0.60 for all except 4 sites. For OzFlux, 
JASMIN captures the temporal patterns well for 19 sites out of 21, with R > 0.60 at 
all these sites. Only Warra (0.43) and Samford (0.48) exhibit a weak correlation (R 
< 0.6). AWRA-L and KBDI exhibit a larger scatter in correlations compared to SDI. 
Most of the poor temporal correlations exhibited by AWRA-L are over the OzNet 
and OzFlux sites. We use the top 0 – 0.1 m soil profile from AWRA-L for comparison 
against OzNet & OzFlux. The poor performance of AWRA-L in capturing shallow 
SM dynamics may be due to the fact the surface energy balance terms in the 
AWRA-L are simplified when compared to JULES LSM. AWRA-L is specifically 
designed and calibrated to capture runoff dynamics (Frost et al., 2015). AWRA-L 
over CosmOz sites performs better compared to the other two networks. This is 
because AWRA-L 0 – 1 m profile was used for verification against CosmOz. It is 
noted that the AWRA-L 0 – 1 m profile agrees better with CosmOz observations 
compared to the 0 - 0.1 m profile (not shown). We chose the deeper profile from 
AWRA-L since the CosmOz observational depths are usually greater than 0.1 m. 
KBDI shows a relatively better performance over OzFlux compared to OzNet and 
CosmOz. A majority of OzFlux sites are situated in high rainfall regions, and some 
among them are in the tropics. KBDI is known to perform well in regions with a 
warm climate and higher annual rainfall totals (Spano et al., 2006). This is typical 
of the region (south-eastern US) for which KBDI was designed and calibrated. 
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Network CosmOz OzFlux OzNet 

Model R Bias ubRMSD Ran R Bias ubRMSD Ran R Bias ubRMSD Ran 

AWRA-L 0.78 0.02 0.14 0.59 0.57 0.20 0.20 0.57 0.60 0.27 0.20 0.70 

JASMIN 0.85 -0.10 0.13 0.68 0.78 -0.07 0.16 0.68 0.81 0.02 0.17 0.78 

KBDI 0.65 -0.24 0.21 0.47 0.78 -0.18 0.19 0.56 0.59 -0.23 0.25 0.61 

SDI 0.77 -0.09 0.17 0.55 0.79 -0.12 0.18 0.62 0.68 -0.07 0.19 0.67 

TABLE 1. THE MEDIA SKILL SCORES FOR EACH MODEL ACROSS THE THREE OBSERVATION NETWORKS. THE BEST SCORE FOR EACH NETWROK IS GIVEN AS 
BOLD NUMBERS. 

The lower ubRMSD in JASMIN compared to the other three models is represented 
by the general clustering of points below the reference line in the respective 
scatter plot (Figure 9b). This indicates that the amplitude of short-term variations 
in observed soil wetness is well captured by JASMIN compared to the other three 
models. The poor ubRMSD scores generally correspond to sites with poor 
temporal correlations in all models. The closer agreement of JASMIN to observe 
amplitudes are reflected by the lowest median scores of ubRMSD across all 
networks (Table 1). KBDI generally show large deviations from observation (Figure 
9b). KBDI has the largest median ubRMSD values for CosmOz and OzNet networks 
(Table 1). However, for OzFlux, AWRA-L has the lowest skill in terms of ubRMSD 
(0.20) closely followed by KBDI (0.19). 

AWRA-L generally has a large dry bias in the simulated surface layer soil wetness 
compared to observations. This is evident in their comparisons over OzFlux and 
OzNet observation networks (Table 1). This is also highlighted in the scatter plots 
(Figure 9c). KBDI, in general, show a wet bias. This is reported in earlier studies as 
well (Vinodkumar et al., 2017). KBDI models ET as an inverse natural exponential 
function of mean annual rainfall in the denominator. This leads to lower ET rates 
in regions of smaller annual rainfall totals. These lower ET rates are found to 
introduce wet bias in SM simulated by KBDI. SDI also shows a wet bias, but 
relatively small compared to KBDI. SDI biases are comparable to that in JASMIN 
(Figure 9c). The assumption of ET as a linear regression function of maximum 
temperature in SDI may have helped to reduce the wet bias seen in KBDI, on 
which it is based (Finkele et al., 2006).  

The anomaly correlations for each model to observations from three networks 
are shown in Figure 9d. The ability of the model to capture the short-term 
fluctuations in observations is quantified by the anomaly correlation metric. The 
moisture fluctuations in the shallow soil layer are influenced by weather events 
and radiative forcing. It is worth noting here that all models considered in the 
present study are driven by the same precipitation analysis (AWAP). Hence the 
difference in fluctuations characterised by each model cannot be due to the 
difference in rainfall amounts for a particular event in the driving data. These 
differences, however, can be due to how each model represents surface energy 
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and water balance processes. JASMIN is found to have a relatively higher 
anomaly correlation when compared to AWRA-L, KBDI and SDI (Table 1). Given 
the complexity of physical processes that govern surface SM dynamics, these 
results indicate a robust modelling approach in JULES LSM. The governing 
complex physical processes also explain the low skill in KBDI and SDI. For example, 
both of these models do not consider the majority of physical factors like soil type, 
vegetation type, or terrain aspect which affect SM. Further, no information on 
atmospheric controls of ET like net radiation, wind speed, relative humidity is 
used. 

The comparison of the new JASMIN system against the current operational KBDI 
and SDI methods through verification against in-situ SM observations reveals 
some encouraging results. JASMIN has better skill than KBDI and SDI models in 
capturing the high-frequency moisture fluctuations observed in the shallow soil 
layer. The high skill of JASMIN is maintained over different land use/land cover 
classes, two geographic zones (tropics and extra-tropics), and also during dry 
and wet seasons. Since the moisture fluctuations in both litter and shallow soil 
layer are influenced by weather events and radiative forcing, the shallow soil 
layer can be considered as a good representation of the litter layer. Having a 
good skill in simulating shallow soil layer wetness is critical as it is suggested that 
during spring, moisture at the surface and extreme upper layer largely 
determines the condition of the available forest fuels. The modest representation 
of litter layer SM in KBDI and SDI partly reflects the limitation of empirical ET 
estimation methods in them. These formulations are designed and calibrated for 
a particular region and cannot be applied for a vast landmass like Australia 
whose climate significantly vary in space. The lack of information on atmospheric 
controls of ET, like net radiation, wind speed, relative humidity may introduce 
errors, particularly biases in the estimates of these models. 

CALIBRATION OF JASMIN 

The calibration exercise was conducted to illustrate the effective adoption of 
JASMIN in current operational practices by applying simple calibration methods. 
We apply the calibration methodology to convert native JASMIN SMC available 
in kg m-2 to SM deficit values specified in a range between 0–200 mm, as required 
by FFDI. The calibration offers a simple, faster, and cost-effective way to make 
significant upgrades to the existing operational systems used by fire and other 
environmental agencies. The calibration methods applied here are minimum-
maximum matching, mean-variance matching and cumulative distribution 
function matching. The calibrated products are evaluated against observations 
using Pearson’s product-moment correlation and extended triple collocation 
methods (Vinodkumar and Dharssi, 2019). A qualitative evaluation of the 
traditional indices and JASMIN rescaled products against Moderate resolution 
Imaging Spectro-radiometer (MODIS) fire radiative power (FRP) data is also 
carried out. 
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Pearson’s correlation analysis 

In situ network 
Correlation Anomaly correlation 

KBDI MM μ – σ sCDF tCDF KBDI MM μ – σ sCDF tCDF 

0-350 mm profile 

CosmOz 

(surface) 
-0.69 -0.84 -0.82 -0.76 -0.79 -0.47 -0.66 -0.61 -0.50 -0.59 

OzFlux 

(surface) 
-0.75 -0.80 -0.80 -0.73 -0.79 -0.58 -0.70 -0.68 -0.57 -0.66 

OzFlux 

(root zone) 
-0.86 -0.85 -0.85 -0.78 -0.85 -0.65 -0.63 -0.63 -0.49 -0.62 

0-1 m profile 

CosmOz 

(surface) 
-0.69 -0.73 -0.70 -0.65 -0.67 -0.47 -0.57 -0.55 -0.48 -0.54 

OzFlux 

(surface) 
-0.75 -0.74 -0.73 -0.60 -0.71 -0.58 -0.64 -0.61 -0.51 -0.60 

OzFlux 

(root zone) 
-0.86 -0.82 -0.82 -0.65 -0.82 -0.65 -0.63 -0.62 -0.48 -0.60 

TABLE 2. PEARSON’S PRODUCT-MOMENT CORRELATIONS OF KBDI AND JASMIN BASED SMD PRODUCTS AGAINST IN-SITU SM OBSERVATIONS. THE VALUES 
REPRESENT A NETWORK AVERAGE. 

Pearson’s product-moment correlation against in situ SM observations. The 
period of verification is 4 years, from 2012 – 2015. Measurements used here 
comprise 21 sites from OzFlux network and 11 from CosmOz network. Only sites 
with at least a year of valid data are selected for calculating correlations. Scores 
are only presented for sites with significant correlation with p-values < 0.001. For 
the sake of brevity, only results corresponding to KBDI are presented. 

Table 2 depicts the Pearson’s product-moment correlation for KBDI and 
corresponding four rescaled JASMIN products from both 0 – 350 mm and 0 – 1 m 
model soil profiles. The values represent a network average. The negative values 
indicate that the model fields are in deficit form whereas observations are given 
as SMCs. For the CosmOz network, the highest correlations for both full (-0.84) and 
anomaly (-0.66) time series are obtained for MM product based on 0 – 350 mm 
model soil profile. KBDI correlations against CosmOz for full and anomaly time 
series are -0.69 and -0.47 respectively. The correlations of JASMIN products 
decrease when the 0 – 1 m soil profile is used. This is because CosmOz 
observations represent shallow layer SM where observation depths are usually 
below 400 mm. The comparison of JASMIN product rescaled to KBDI and OzFlux 
surface and root zone observations also indicate that the rescaling is done on 
JASMIN product from the 0 – 350 mm profile in general yield a higher correlation 
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than that from a 1 m profile. About 42% of the deep layer observations in OzFlux 
have probes located at 500 mm. Only 16% of total sites have probes located at 
1 m. This possibly made the 0 – 350 mm model profile more representative of 
observations than the 1 m profile. The highest correlation against OzFlux surface 
observations is -0.80 and are obtained for both MM and μ-σ methods which use 
0 – 350 mm soil profile. The largest anomaly correlation of -0.70 is also obtained 
for the MM method. For OzFlux root-zone observations, MM matching method 
and μ-σ methods that use the 0 – 350 mm model profile deliver the highest 
correlation for both full (-0.85) anomaly time series (-0.63). 

Correlations for both full and anomaly time series from all JASMIN products, 
except sCDF, are generally higher than that of KBDI. The MM, μ-σ and tCDF 
methods give similar correlations for all observation networks. Since MM and μ-σ 
matching are effectively linear transformation methods, they both preserve the 
correlations in the original data and hence provide similar results. The tCDF 
matching technique is a non-linear method and corrects the mismatch in 
seasonality, statistical mode between KBDI and the JASMIN product. This may 
cause JASMIN to lose some of the skill over sites where KBDI does not perform 
well. This is possibly reflected in the comparison against CosmOz where tCDF has 
a lower correlation than MM and μ-σ methods. The improved skill of tCDF in root 
zone also underlines this as KBDI has a good temporal correlation with 
observations. The tCDF matching consistently gives a higher correlation than the 
sCDF matching technique. It is noted that the sCDF matching introduces noise in 
the rescaled outputs, possibly arising from lack of sufficient spatial samples from 
a single day to characterise the complete dynamic range of two products. 

Evaluation against fire radiative power data 

Following Holmes et al (2016), a subjective evaluation of soil dryness products 
against Moderate resolution Imaging Spectro-radiometer (MODIS) fire radiative 
power (FRP) data are presented in this section. FRP estimates are available with 
every active fire pixel reported in the MOD14 and MYD14 fire products derived 
from the MODIS instrument onboard Terra and Aqua satellites (Giglio et al., 2003). 
The MODIS FRP retrieval is based on the relationship between the emitted fire 
energy and infrared brightness temperature estimates in the 4 μm region 
(Kaufman et al., 1998). The algorithm is valid for FRP retrievals of fires with flaming 
temperatures greater than 600 K and occupying a pixel fraction less than 0.1 
(Wooster et al., 2003). The FRP is given in a unit of megawatts (MW) per pixel. 
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FIGURE 10. SCATTER PLOT DEPICTING MODIS FRP PRODUCT AGAINST A) KBDI, JASMIN RESCALED USING B) MM METHOD, C) Μ–Σ METHOD AND, D) 
TEMPORAL CDF MATCHING METHOD. JASMIN PRODUCTS CORRESPOND TO 0.35 M MODEL SOIL PROFILE. THE DATASETS SPAN FROM JANUARY 2012 
TO FEBRUARY 2013 AND COVERT THE WHOLE OF AUSTRALIA. 

Figure 10 depict scatter plots of MODIS FRP against KBDI and JASMIN products 
rescaled to KBDI using various methods. The KBDI display wet soils with dryness 
values < 100 mm for some fires with intensity > 2000 MW. The shift towards a drier 
soil in JASMIN MM rescaled product (Figure 10b) makes these large intensity fires 
attributable to higher SMDs. Results from the scatter plot for the μ–σ method 
(figure 10c) are quite different from those of the MM method. Most of the high-
intensity fires in μ–σ method occur at SMD values between 50 – 180. This is also 
true for JASMIN product rescaled using both spatial (not shown for brevity) and 
temporal CDF matching (Figure 10d).  

One of the advantages of using the μ-σ and tCDF techniques is that they 
preserve the climatology of the traditional SMD data. The differences are then, 
mainly due to random variations. This may be critical for some users, who already 
have their systems tuned towards the climatology of KBDI or SDI. It is not known 
whether the FFDI calculations are tuned to offset the bias in the traditional 
indices. Hence, it may be that the usability of these new datasets is solely reliant 
on improvement to correlations and not to other factors such as bias. In that 
case, MM and μ-σ methods present the best possible options. Temporal 
correlations in the raw JASMIN dataset are preserved in these two methods due 
to the linear nature of transformations. Otherwise, the errors from each rescaling 
method may become important and an accurate estimation of errors can 
conceivably contribute to a more realistic and reliable FFDI. 
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The similarity in scatter plots of KBDI and the corresponding μ–σ and tCDF 
products underline the similar seasonality in these datasets. The shift towards a 
drier soil in the MM method produces a scenario where FRP increases somewhat 
exponentially with SMD. The large FRP values now coincide with drier soils in the 
MM method. Holmes et al. (2016) using a SM proxy noted that the large MODIS 
FRP values coincide with very dry soils. The scatter plot of the original indices 
shows that higher FRP values occur over wet soils as well as dry soils. Generally, 
large intense fires are associated with sufficiently dry live fuels and larger dead 
fuels. The drying of these large fuel loads is associated with prolonged drought 
and hence large SMD. In that respect, it could be argued that the drier soils in 
the MM method corresponding to large FRP values present a more realistic 
scenario. This drier soil m in the MM method also results in elevated FFDI values. 

DOWNSCALING OF JASMIN 

The downscaling study explored the applicability of some of the universal triangle 
concept-based methods to downscale JASMIN SM from 5 km to 1 km spatial 
resolution. Specifically, the multiple linear regression method discussed in Piles et 
al. (2011) and the DisPATCh method discussed in Molero et al. (2016) were 
implemented and evaluated. The main reason for selecting these methods was 
that they have been tested and documented to derive SM information at 1 km 
spatial resolution over Australian regions. Further, the input data used in these 
methods are readily available. To investigate whether the skill of the multiple 
linear regression method can be improved further by regularization, we 
implemented the LASSO regression using the same feature variables used in the 
multiple linear regression method. The downscaling algorithms are only applied 
to the top JASMIN soil layer (0-100 mm). One of the main factors controlling the 
shape of Ts-VI scatter is the surface SM. Studies have shown that the combined 
use of optical and thermal infrared data can be used to derive moisture 
estimates for the top 50 mm soil layer (e.g., Sandholt et al., 2002, Stisen et al., 
2008). Even though there is a mismatch in scales regarding the soil column each 
method represents, the topmost soil layer in JASMIN is a good approximation to 
that the Ts-VI method represents. 

Results from the downscaling methodologies indicate that it is feasible to improve 
the spatial resolution of JASMIN using all three disaggregating algorithms and 
preserve the general large-scale spatial structure seen in JASMIN SM estimates 
(Figure 11). However, the seasonal means obtained at 1 km shows that each 
product displays characteristic SM spatial variability at fine scales. Results from 
the comparison with ground-based SM measurements indicate that there is no 
significant degradation of the bias in the three methods when moving to higher 
spatial resolution (Figure 12). However, the regression methods degrade the 
temporal correlations and the ubRMSD scores. The DisPATCh method produces 
the best skill among the three algorithms tested here, and the skill scores from 
DisPATCh are comparable to those of the original JASMIN time series. 
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FIGURE 11. SEASONAL AVERAGE VOLUMETRIC SM FOR SOUTHERN-HEMISPHERE AUTUMN (MARCH – APRIL) FROM (A) JASMIN AT 5 KM RESOLUTION, (B) 
MULTIPLE LINEAR REGRESSION METHOD AT 1 KM, (C) LASSO REGRESSION METHOD AT 1 KM RESOLUTION, AND (D) DISPATCH AT 1 KM RESOLUTION. 

The low skill observed in regression methods possibly resulted from the large 
random errors attributable to the methods or uncertainties in the feature 
variables. It is worth noting that even the minimum and maximum limits applied 
to calculate the normalised LST and NDVI datasets (feature variables in the 
regression method) can introduce uncertainties in the downscaled SM output. 
Further research is required to identify and minimise some of the uncertainties 
associated with both MODIS LST and NDVI datasets and to provide robust quality 
control. 

Uncertainties in the MODIS input datasets have an important influence on the 
DisPATCh results as well, in addition to the uncertainties arising from the model 
assumptions and calibrations. It is found that calibration has a significant 
influence on the DisPATCh model behaviour. Further research is needed to 
calibrate the model so that the spatial variability in SM is accurately captured. 
One aspect of DisPATCh that needs to be revisited is the modelling of SM 
sensitivity to the soil evaporative efficiency. The model in the present study was 
chosen for its simplicity and its ability to represent the general behaviour of soil 
evaporative efficiency over the full range of SM. However, studies have shown 
that the SM sensitivity to soil evaporative efficiency can be non-linear and 
influenced by various factors including atmospheric demand, soil texture etc. It 
is important to note that the DisPATCh algorithm is evolving and will continue to 
do so. Further work is required to test and evaluate the new ideas that will be 
developed concerning DisPATCh and will be a focus of future research. 
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FIGURE 12. THE SKILL OF SM PRODUCTS OVER VARIOUS LAND COVER TYPES: A) PEARSON’S CORRELATION, B) UNBIASED RMSD, C) BIAS, AND D) 
ANOMALY CORRELATION. THE GROUPING IS DONE BASED ON THE LAND COVER TYPE OF THE OBSERVING SITE. THE OUTLIERS ARE MARKED AS 
DIAMONDS. THE ORANGE BOXES REPRESENT MULTIPLE LINEAR REGRESSION METHOD, LIGHT KHAKI COLOUR REPRESENTS LASSO METHOD, THE GREEN 
BOXES REPRESENT DISPATCH AND THE MAGENTA COLOURED BOXES REPRESENT THE ORIGINAL JASMIN PRODUCT AT 5 KM RESOLUTION. 

EXPLORING LFMC-SM RELATIONSHIP 

In this component of the project, we explored the relationship between live fuel 
moisture content and SMC on a national scale. The two variables represent 
landscape dryness at different strata and the latter can be a good indicator of 
the former (Fovell et al., 2015, Qi et al., 2012). Remote sensing techniques now 
allow sampling LFMC at a continental scale more regularly, which is impractical 
using the traditional, manual methods. However, temporal, and spatial gaps in 
remote sensing data exist, mainly due to satellite return time and cloud cover. 
Further, as mentioned earlier, a critical gap exists in predicting the moisture status 
of live fuels over periods of weeks to seasons. Our study is a first step towards 
addressing the limitations of remote sensing techniques in estimating LFMC and 
developing a predictive model that can be incorporated into future operational 
applications. The study made use of readily available gridded LFMC and SM 
products from the AFMS and JASMIN systems to identify the functional 
relationship between SM and LFMC. 

Our approach is to first evaluate the relationship between the two variables at 
selected locations which sample the climatic zones and vegetation types typical 
of the Australian landscape. In that respect, we analyse the datasets over 
CosmOz, OzFlux and OzNet. A lag-correlation analysis is conducted between 
LFMC and SM from all the native JASMIN layers and the combination of layers 
that can be rationally derived using the four native soil profiles. The results 
presented in Figure 13 depicts the maximum lag-correlation and the 
corresponding lag (in days) for each site. The skill scores are segregated into four 
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broad land cover types. The land cover classification is made based on the 
information from in-situ locations. The results indicate that the strength of the 
relationship between LFMC and SM varies from site to site. The observed variation 
in the correlation can be caused by a variety of factors, including spatial 
variability in plant type, physiology and morphology, climate, soil properties and 
depth. The range in lag time indicates that there is a significant difference in the 
physical processes happening at each location, from the transport of water 
through the soil from the surface to the root-zone and the eventual uptake of 
moisture by plants. 

 The study aims to develop a simple model to explain the relationship 
between LFMC and SM. In that respect, we prefer to use a single SM profile as 
the predictor for LFMC. From our analysis, we identify that SMC from the 0-350 
mm profile (SMC0-350mm) provides the best skill in terms of the correlation with 
LFMC. The SMC0-350mm displays a strong relationship with the LFMC at different 
land cover types. One possible reason for this larger degree of agreement is that 
both the SMC0-350mm and LFMC exhibit strong seasonality. The deeper layers may 
not always display the strong seasonality exhibited by the shallower layers. 
Besides, the deeper layers may miss the short-term variations associated with 
individual weather events to which the plants and shallow soil profiles respond. 
Also, the upper and deeper soil layers can be disconnected in land surface 
models due to uncertainties in the parameterizations. This may result in deeper 
layers exhibiting little seasonality, rendering them less useful to predict seasonal 
LFMC changes. This also gives rise to artificial correlations at a longer time lag, as 
evident from the box and whisker plots for the 1-3 m profile (Figure 13). 

In general, a strong linear relationship (R>0.5) is found between the LFMC and 
SMC0-350mm, except for forested locations (Figure 13, light green boxes). The 
average lag-correlation observed for grasslands, woodlands, forestlands and 
croplands between LFMC and SMC0-350mm are 0.73, 0.69, 0.43 and 0.57, 
respectively. The corresponding average lag is 14.28, 64.54, 218.91 and 16.85 
days. The forested sites generally display a higher correlation to the thicker, 0-3 
m soil profile. This is likely a consequence of the deeper roots typical of over-story 
forest canopies which can draw water from a much thicker soil profile than the 
0-350 mm layer. However, the skill lost by using the 0-350 mm profile instead of 
the 0-3 m is not overly large and the difference in mean correlation is only 0.02. 

 
 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 13. BOX AND WHISKER PLOT REPRESETING A) LAG-CORRELATION AND B) LAG IN DAYS BETWEEN LFMC AND SM FROM VARIOUS JASMIN NATIVE 
AND DERIVED LAYERS. THE GROUPING IS DONE BASED ON THE LAND COVER TYPE OF THE OBSERVING SITE/ THE OUTLIERS ARE MARKED AS DIAMONDS. 
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LFMC predictive model 

The predictive model returned an average R2 of 0.70 and an RMSD of 14.1% over 
the 60 sites for the training period. The fit varies with location and the R2 obtained 
ranges from 0.21 to 0.89. There are only 11 sites with an R2 < 0.5 out of the total 
60. This is quite encouraging given the simplicity of the modelling approach used 
here. A variety of reasons could cause the lack of fit observed at a specific 
location including, but not limited to, data representativity, LFMC and SM model 
parameter uncertainty, driving and ancillary data errors, and LFMC and SM 
model physics limitations. An example of a site where the model fit is reasonably 
good is the Cumberland Plain site (33.6152oS, 150.7236oE) in central New South 
Wales (Figure 14a). The R2 obtained at this site is 0.62 with an NRMSD of 13%. The 
mean ± standard deviation obtained from the AFMS time series over 
Cumberland Plain is 108.26%±25%. The corresponding value for the predictive 
model is 107.99%±19.87%. 

One of the locations where there is a distinct lack of fit between the modelled 
and AFMS LFMC is over the Warra site (coordinates: 43.0950oS, 146.6545oE) in 
southern Tasmania (Figure 14b). The Warra site is located in a wet Eucalyptus 
forest and is situated in a temperate climate zone. The R2 and NRMSD obtained 
over Warra are 0.25 and the NRMSD 13.2% respectively. The sample mean ± 
standard deviation values for AFMS and modelled LFMC obtained are 
111.45%±9.71% and 111.5%±4.83% respectively. That is, the variance in the AFMS 
dataset is about 4 times that in the modelled one. A repercussion of this high 
noise in the AFMS dataset is that it can influence the quality of the annual cycle 
estimated by the model. It is observed that the sites where the AFMS LFMC are 
very noisy have a poor model fit. In the case of Warra, the annual model could 
only capture 24% variance in the AFMS time series. Compared to this, the annual 
model over Cumberland Plains captured 36% of the variance in the AFMS LFMC 
time series. Further, on the wetter side of the distribution (i.e., first quadrant of the 
residual scatter plot), the AFMS LFMC shows larger variability than the SM (see 
Supplementary Figure 1). This possibly highlights controls on daily LFMC dynamics 
other than the SM in the 0-350 mm profile and which is not represented here. 
Hence, the specified linear relationship may not be adequate to capture these 
variations seen in residual LFMC. It is also worth noting that Warra is one of the 
sites where the JASMIN soil moisture has a low skill (Vinodkumar and Dharssi, 
2019). Hence, a combination of factors may have contributed to the bad fit over 
Warra.  

 

 

 

 
 

 

 

 

FIGURE 14. TIME SERIES OF MODELLED (LIGHT RED LINE) AND MEASURED (BLACK DOTS) LFMC OVER CUMBERLAND PLAIN AND WARRA SITES. THE 
CUMBERLAND PLAIN STATION LOCATED IN DRY SCLEROPHYLL FOREST IN THE HAWKESBURY VALLEY IN CENTRAL NEW SOUTH WALES. THE WARRA SITE IS 
LOCATED IN A WET EUCALYPTUS FOREST AND IS SITUATED IN A TEMPERATE CLIMATE ZONE IN SOUTHERN TASMANIA.  
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The time function model to estimate the annual cycle and the ordinary least 
squares regression model to estimate the daily variations are computed 
separately and then combined to estimate the LFMC value at each 5 km grid 
point. To check the adequacy of the predictive model, correlation, bias, and 
normalised root mean squared difference (NRMSD) are computed against the 
original AFMS dataset for the training period. The NRMSD score is computed by 
normalising the RMSD using the range of the measured LFMC. The spatial 
distribution of the resultant correlation and NRMSD scores are presented in Figure 
15. A strong correlation is observed over the tropical, northern savannas and 
southern grasslands and croplands (Figure 15a). The model is found to be 
generally unbiased (not shown). The random error in the model is usually less than 
25% of the dynamic range as indicated by the NRMSD score (Figure 15b). 

 

 

 

 

 

 

 

 

 

FIGURE 15. VALIDATION OF THE LFMC PREDICTIVE MODEL: A) PEARSON’S PRODUCT-MOMENT CORRELATION, AND B) NORMALISED RMSE 

The results indicate that SM is a leading indicator of LFMC. This has significant 
operational implications as daily variations in LFMC can be predicted using SM 
information from JASMIN on a national scale. JASMIN is currently run as a 
prototype, research system with SM analysis done at near-real-time. However, 
JASMIN can be extended to run both at real-time and in a prognostic mode. The 
prognostic mode can provide SM forecasts for up to 10 days. The model 
developed here considers a lag of 14 days between SM and LFMC. This implies a 
lead time of 14 days for predicting the LFMC estimates and a maximum lead 
time of 24 days for a 10-day SM forecast product. 

This preliminary research was undertaken to understand the relationship that 
exists between the AFMS LFMC and JASMIN SM products. In that respect, we kept 
the modelling strategy fairly simple. For example, the model considers only a 
single soil profile and lag value at all locations across the country. The correlation 
analysis indicates that the dependence of LFMC to SM can vary with vegetation 
type. For a plant with complex, deeper root systems, the relationship may exist at 
multiple soil layers. Also, the lag between the two variables is an attribute of the 
location determined by a range of factors including soil and vegetation 
characteristics. Therefore, the future modelling strategy may consider a spatially 
varying lag as well as a combination of soil layers.   
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KEY MILESTONES 
1. Comparison of KBDI and SDI against NWP soil moisture analysis. 

2. Presentation at 2016 AFAC Conference. 

3. Published a paper as co-authors in Remote Sensing of the Environment 
journal. 

4. Published a paper in Water Resources Research. 

5. Development of the JASMIN system. 

6. Bureau of Meteorology seminar on the development and evaluation of the 
JASMIN system. 

7. Bureau of Meteorology research report on the JASMIN system. 

8. Presentation at 2018 AFAC conference. 

9. Developed JASMIN calibrated products. 

10. JASMIN made available through Bureau's THREDDS server and AFMS. 

11. Developed a Bureau internal web interface to visualise JASMIN data. 

12. Bureau of Meteorology seminar on JASMIN calibration. 

13. Developed JASMIN downscaled products. 

14. Technical report on validation of the downscaled JASMIN product. 

15. Bureau of Meteorology on JASMIN downscaling. 

16. Published a paper in Agriculture and Forest Meteorology journal. 

17. Presentation at 2019 AFAC conference. 

18. Development of a simple model to predict live fuel moisture using JASMIN 
soil moisture information. 

19. Bureau research seminar on the live fuel moisture – soil moisture relationship. 

20. Technical report on the live fuel moisture – soil moisture relationship. 
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UTILISATION AND IMPACT 

SUMMARY 

In light of the lack of a comprehensive system to analyse soil moisture accurately 
for fire prediction, a stand-alone high-resolution land surface modelling system 
has been developed. The new system is called JASMIN and the core focus during 
its development has been on the utilization pathways. In that respect, the project 
developed several outputs, a list of which is given below. 

a) High-resolution KBDI and SDI datasets – 1970 onwards, updated NRT and 
available via an internal web server. 

b) JASMIN volumetric soil moisture – 2010 onwards, updated NRT, available 
via BoM THREDDS and AFMS. 

c) Calibrated JASMIN soil dryness – total 8 products with varying 
characteristics, designed to accommodate specific user need and 
application: 2010 onwards, updated NRT, available via BoM THREDDS 
server 

d) Downscaled JASMIN surface volumetric water content at 1 km spatial 
resolution. 

e) An LFMC product developed using a simple predictive model based on 
soil moisture. 

JASMIN 

Description 
JASMIN is a national scale, high-resolution soil moisture analysis produced daily 
at 5 km resolution. JASMIN provides soil moisture information in the form of 
volumetric soil moisture content (m3 m-3), which represent the volume of moisture 
in a unit volume of soil. JASMIN computes volumetric soil moisture at 4 soil layers, 
with thicknesses of 100 mm, 250 mm, 650 mm and 2 m. Thus, the soil column in 
JASMIN is 3 m deep. 

Extent of use 
• JASMIN assessed in WA DBCA study on tall wet forest fuel availability, with 

initial indications that it will prove useful in that setting. 

• Tas Parks and Wildlife using JASMIN as one of the decisions supports tools 
to restrict the use of open fires in national parks. 

• JASMIN data updated specifically to assist with Tasmanian decision-
making for 2018-19 seasonal bushfire assessment workshop and preseason 
consultative committee on fire weather. 
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Utilisation potential 
• There is continuing interest in the application of the JASMIN system to the 

Australian Fire Danger Rating System ongoing work and approaching 
operational implementation. 

• Currently discussing opportunities to combine best features of AWRA-L 
hydrological modelling project (and website) and JASMIN to deliver a 
single, improved and unified Bureau Land Dryness product. 

Utilisation impact 
• Experience from JASMIN was drawn upon to develop an offline system to 

initialise Bureau of Meteorology's new seasonal forecasting system, 
ACCESS-S1. 

• A manuscript has been submitted to the Geophysical Research Letters 
journal titled " Characterising the 2019-2020 Australian bushfires using 
SMAP vegetation optical depth retrievals". This research is done in 
collaboration with NASA Goddard's LIS team (who lead the research) and 
utilises JASMIN (referenced below). 

Description 
1. Dharssi, I., and Vinodkumar, 2017, JASMIN: A prototype high-resolution soil 

moisture analysis system for Australia, Bureau Research Reports, No. 026. 

2. JASMIN daily volumetric soil moisture data available via the Australian 
Flammability and Monitoring System (AFMS) -  (e.g.: 
http://wenfo.org/afms/#_/sm/gfe_fire_weather/_/_/_/5/6/2019/_) 

3. JASMIN volumetric soil moisture content and calibrated SMD data 
available through the BoM THREDDS server: 

4. http://opendap.bom.gov.au:8080/thredds/catalog/c35ee8d2a475e10e
a06d0ad53b46ce2a/JASMIN_land_dryness/catalog.html 

5. Kumar, S. V., Holmes, T., Dharssi, I., Vinodkumar, Hain, C., Peters-Lidard, C., 
2020: Characterising the 2019-2020 Australian bushfires using SMAP 
vegetation optical depth retrievals, Geophysical Research Letter 
(Submitted). 

6. Vinodkumar, and I. Dharssi, 2019, Evaluation and calibration of a high-
resolution soil moisture product for wildfire prediction and management, 
Agriculture and Forest Meteorology, 264, 27–39, doi: 
10.1016/j.agrformet.2018.09.012. 

7. Vinodkumar, I. Dharssi, J. Bally, P. Steinle, D. McJannet, and J. Walker, 2017, 
Comparison of soil wetness from multiple models over Australia with 
observations, Water Resources Research, 53, 633–646, doi: 
10.1002/2015WR017738. 

 

http://wenfo.org/afms/#_/sm/gfe_fire_weather/_/_/_/5/6/2019/_
http://opendap.bom.gov.au:8080/thredds/catalog/c35ee8d2a475e10ea06d0ad53b46ce2a/JASMIN_land_dryness/catalog.html
http://opendap.bom.gov.au:8080/thredds/catalog/c35ee8d2a475e10ea06d0ad53b46ce2a/JASMIN_land_dryness/catalog.html
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CONCLUSION 
The BNHCRC project on land dryness arrives at a successful conclusion having 
completed all the milestones set out in the project proposal. The project in total 
developed 15 products, including the high-resolution (5 km) KBDI and SDI 
datasets derived using AWAP data. The major work completed as part of the 
project includes: 

• Establishing JASMIN and demonstrating superiority over current soil 
moisture estimates (SDI and KBDI). This includes running the system with 
approximately weekly updates. 

• Developing calibration techniques to allow currently used McArthur fire 
danger meter to employ JASMIN data as an input (JASMIN provides 
volumetric soil moisture information in Kg/m2 or m3/m3; SDI and KBDI 
provide soil moisture as rainfall deficits in mm, so JASMIN cannot natively 
input to the McArthur fire danger calculations); 

• Developing techniques to downscale JASMIN data from 5 km to 1 km 
horizontal resolution. 

• Developing a simple model to predict LFMC using soil moisture as the 
input. 

The new JASMIN system can address gaps in the present operational methods 
by providing accurate soil moisture information in different layers. This is 
highlighted by the good skill provided by JASMIN in estimating soil moisture at 
both surface and root zone layers. The biggest beneficiaries of the new system 
will be fire agencies. Further, JASMIN can produce an analysis of land surface 
fluxes and is a cheap source of products for applications like initialization of 
regional NWP and seasonal forecasting systems.  

The calibrated drought index products based on JASMIN can replace the 
existing methods with minimal effort. This calibration exercise is an important step 
towards faster adoption of JASMIN product for operational use. Considering the 
considerable resources required to adopt any new source of information in 
operations, the calibration provides an opportunity to make a significant 
improvement to the existing system with the least effort. However, in the longer 
term, we envisage the adoption of raw JASMIN soil moisture for operational fire 
prediction, potentially reducing the loss of information arising from any form of 
calibration. The new Australian national fire danger rating system is expected to 
explore how to incorporate raw JASMIN soil moisture into its fuel availability 
estimation once the initial development and release of the system is complete. 
In that respect, we also developed a simple model to estimate LFMC from 
JASMIN soil moisture. The model can predict LFMC 14 days in advance. 

The BNHCRC end-users of the JASMIN remains engaged with the project. Western 
Australia has offered to pilot JASMIN implementation, with strong interest as well 
from ACT. Tasmanian users already consider JASMIN when making operational 
decisions e.g. for Parks and Wildlife, when to impose campfire restrictions. Also, it 
is anticipated by fire managers that JASMIN will be available for inclusion in the 
AFDRS as both systems mature. Discussions are underway on how to 
operationalise JASMIN, given the current availability of AWRA. The two systems 
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have been designed for differing purposes and have different vertical 
resolutions. AWRA already has a well-developed mechanism for delivering daily-
updated data to users. AWRA management is amenable to the idea of 
incorporating JASMIN insights/techniques into its framework. It is not currently 
clear whether the higher vertical resolution of JASMIN affords an advantage for 
fire users. Some work is underway by Alex Holmes at NSW RFS to examine MODIS 
Fire Radiative Power in comparison with both AWRA and JASMIN to determine 
which layers of both systems provide the best guidance for estimating fire 
intensity. 

NEXT STEPS 

JASMIN in NASA-LIS framework 

Existing satellite systems such as ASCAT, SMOS, SMAP etc. are valuable sources of 
soil moisture measurements. The above satellite measurements can be 
assimilated with the JULES land surface model to provide more accurate, 
detailed, and confident estimates and forecasts of land dryness. NASA’s LIS 
framework provides a great opportunity to effectively assimilate the different 
remote sensing observations with land surface models for national scale 
estimation of soil dryness. Improving the spatial resolution of the JASMIN soil 
moisture analysis from 5 km to 1 km can also be achieved within LIS. Our future 
work intends to implement JASMIN in LIS framework thereby providing a pathway 
for the future development of JASMIN. 
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