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Abstract 

 

Australia’s native Eucalypt forests are the most fire-prone in the world due to high rates of fuel 

accumulation, high flammability of fuel, and seasonally hot and dry weather conditions. 

Projected changes in the frequency and intensity of extreme climate and weather could increase 

the occurrence of ‘mega-fires’, extreme fire events with catastrophic impacts on people and the 

environment. Current methods for fire risk mitigation and prediction such as fire danger rating 

systems, fire behaviour models, and hazard reduction treatments require an accurate description 

of forest fuel. However, fire management authorities share a common challenge to efficiently 

and accurately quantify forest fuel properties (e.g. fuel load and fuel structure) at a landscape 

scale. A landscape includes the physical elements of geo-physically defined landforms, such 

as forests, grasslands, and lakes. This thesis investigates the application of the Light Detection 

and Ranging (LiDAR) technique in quantifying forest fuel properties, including fuel structural 

characteristics and litter-bed fuel load at a landscape scale.  

Currently, fire fighters and land managers still rely on empirical knowledge to visually assess 

forest fuel characteristics of distinct fuel layers. The visual assessment method provides a 

subjective description of fuel properties that can lead to unreliable fire behaviour prediction 

and hazard estimation. This study developed a novel method to classify understorey fuel layers 

in order to quantify fuel structural characteristics more accurately and efficiently by integrating 

terrestrial LiDAR data and Geographic Information Systems (GIS). The GIS-based analysis 

and processing procedures allow more objective descriptions of fuel covers and depths for 

individual fuel layers. The more accurate forest fuel structural information derived from 

terrestrial LiDAR data can be used to prescribe fire hazard-reduction burns, predict fire 

behaviour potentials, monitor fuel growth, and conserve forest habitats and ecosystems in 

multilayered Eucalypt forests. 
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Traditionally, litter-bed fuel load is directly measured through destructive sampling, sorting, 

and immediate weighing after oven drying for 24 hours at 105 °C. This direct measurement of 

fuel load on a landscape scale requires extensive field sampling, post laboratory work and 

statistical analysis, which is labour intensive and time consuming. This study found new 

relationships among forest litter-bed fuel load, surface fuel depth, fire history and 

environmental factors through multiple regressions with airborne and terrestrial LiDAR data. 

The fuel load models established in this study indicate that litter-bed depth and fire history are 

the primary predictors in estimating litter-bed fuel load, while canopy density and terrain 

features are secondary predictors.  

Current fuel models are constrained to estimate spatial variations in fuel load within 

homogeneous vegetation that previously experienced the same fire events. This study 

developed a predictive model through multiple regression to estimate the spatial distribution of 

litter-bed fuel load in multilayered eucalypt forests with various fire histories and forest fuel 

types. This model uses forest structural indices and terrain features derived from airborne 

LiDAR data as predictors, which can be applied when data on forest fuel types and previous 

fire disturbances are absent. It can be used to map the litter-bed fuel load distribution at a 

landscape scale to support regional wildland fire management and planning. 

This study indicates that LiDAR allows a more efficient and accurate description of fuel 

structural characteristics and estimation of litter-bed fuel load. The results from this study can 

assist fire hazard assessment, fuel reduction treatment, and fire behaviour prediction, and 

therefore may reduce the impact to communities and environment.  
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Chapter 1. Introduction 

1.1 Background 

Australian natural ecosystems have evolved with fires and their biological diversity has been 

shaped by both historical and recent patterns of fires (Gill et al., 1981; Bradstock et al., 2002). 

Except for limited areas of rainforest, cypress pine and acacia associations, Eucalypt forests 

dominate Australian forests as they have developed extraordinary adaptations to relatively 

frequent fire events (McArthur, 1967). The highly flammable eucalypt-studded Australian 

landscape and seasonally hot, dry environment requires mitigation of fire threats due to 

potential damage to land, human property, environment, and even mortality (Bradstock et al., 

2012). Studies indicate that bushfire behaviour and effects are mainly determined by fuel 

condition (e.g. type, moisture content, load, and structure), weather, and topography (Andrews, 

1986; Cheney et al., 2012). For humans, the primary option available to reduce fire threats is 

through a modification of fuel availability (Fuller, 1991; Chatto, 1996). Therefore, sound fire 

mitigation requires accurate description of fuel properties to support fire hazard-reduction 

activities. 

In Australia bushfire risk management is underpinned by a whole range of activities. One of 

the core themes relate to increasing the level of bushfire resistance through fuel management 

(McLennan and Handmer, 2012). Prescribed burning practices are fundamentally important 

land management tools for Australia’s stakeholders to achieve specific objectives (e.g. 

ecological, fuel reduction and traditional burning) (Adams and Attiwill, 2011). Global warming 

increases the dryness of forest fuels and ultimately increases the frequency and severity of 

bushfires (Flannigan et al., 2013). The increase in occurrence of extreme weather narrows the 

window of prescribed burns (Clarke et al., 2013). These impacts of climate change on fire 

regimes increase the difficulties of wildland fire management. Land managers and fire 
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authorities also share a common challenge to efficiently and accurately quantify landscape-

scale fuel properties including litter-bed fuel load (also known as surface fuel load) and fuel 

structures (Gould et al., 2011).  

Distribution of litter fuel varies across the landscape even within homogeneous vegetation 

communities due to the complexity of forest composition of overstorey and understorey 

vegetation, intensity and severity of previous fire disturbances, changes in annual and seasonal 

precipitation, radiation, wind direction and speed, aspect, slope and elevation (Brown and 

Bevins, 1986). Therefore, quantifying forest litter fuel on a landscape scale is challenging. 

Forest litter-bed fuel load is typically determined by field sampling, which is error prone when 

extrapolating to a larger scale (Brown and Bevins, 1986). Forest fuel hazard assessments as 

well as fire behaviour models require accurate descriptions of the horizontal continuity and 

vertical distribution of fuel at distinct fuel strata (Agee et al., 1973; Gould et al., 2008). 

However, current fuel hazard assessment relies on subjective scores given by the observers in 

the field survey (Hines et al., 2010). Therefore, an accurate and efficient approach to quantify 

fuel properties including litter fuel load and fuel structural characteristics must be developed 

to support fire authorities in fire hazard mitigation (McLennan and Handmer, 2012).  

Remote sensing technologies allow a spatially and temporally accurate description of fuel 

conditions across a landscape, and have been used to map forest fuel types, fuel moisture 

content and also have the potential to estimate spatial variations in canopy fuel structure and 

crown fuel load (Rollins et al., 2004; Saatchi et al., 2007; Thenkabail et al., 2012). However, 

remote sensing application in litter-bed fuel load estimates and understorey fuel strata 

classification is not well understood. Understorey fuel structural characteristics and litter-bed 

fuel load are significant components of fire ecology, which provide accurate information of 

ecological restoration for fuel treatment activities (Covington and Moore, 1994; Agee and 

Skinner, 2005).  



- 5 - 

 

Many studies indicate that LiDAR (Light Detection and Ranging) data can be used to 

efficiently and accurately quantify crown fuel characteristics (Lefsky et al., 1999; Lovell et al., 

2003; Andersen et al., 2005). LiDAR waveforms are sensitive to forest structural changes 

(Andersen et al., 2005; Erdody and Moskal, 2010; Jakubowksi et al., 2013; Kramer et al., 2014; 

Rowell et al., 2016), which might have the potential to detect understorey fuel. 

This study proposes to develop efficient and accurate methods to quantify forest physical 

properties in terms of litter-bed fuel load and fuel structure. The expected results ultimately 

benefit forest resource management, bushfire suppression, and framing bushfire-related 

policies. The best potential approaches to accomplish this purpose involve the integration of 

remote sensing, GIS and statistical modelling (Falkowski et al., 2005). Quantification of grass 

fuel is relatively easier compared with forest fuel (Cheney and Sullivan, 1997); therefore, this 

study focuses on the forest fuel in order to support forest fire behaviour modelling and 

mitigation. 

1.2 Research Questions and Objectives 

This project aims to improve fuel structure and load measurement for the benefit of fire 

agencies. The core objective is to develop effective and efficient methods to quantify forest 

fuel properties, including fuel structural characteristics and litter-bed fuel load at a landscape 

scale. The expected results will support forest fire authorities and land management agencies 

for mitigation of fire threats to the community and environment in fire prone areas in Australia. 

This study is going to answer the following questions: 

 How to classify forest fuel strata using remote sensing technologies in order to quantify 

fuel structural characteristics efficiently and consistently (e.g. fuel depth, height, and 

cover) for forest fuel hazard assessment? 
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 How does forest litter-bed fuel load relate to fuel characteristics (e.g. litter-bed or 

surface fuel depth and fuel type), fire history (e.g. time since last fire, fire intensity, 

extent and severity) and terrain features? 

 How to estimate spatial variations in forest litter-bed fuel load at a landscape scale using 

remote sensing technologies?  

Corresponding to the research questions, this study has the subsequent objectives: 

 To stratify understorey fuel strata using terrestrial LiDAR data. 

 To develop a statistical model using fuel characteristics, previous fire events, and 

terrain features combined with field surveyed litter-bed fuel load.  

 To develop a litter-bed fuel load model using stratified fuel structural characteristics 

derived from airborne LiDAR indices for mapping the spatial distribution of litter-bed 

fuel load across landscape.  

1.3 Research Significance 

The research significance can be described from the following forest fire management and fire 

behaviour modelling perspectives. First, forest fuel hazard assessment requires accurate 

description of understorey fuel structural characteristics, but it currently relies on subjective 

and inconsistent descriptions given by observers based on their trained knowledge and 

empirical experience (McCarthy, 1996; Hines et al., 2010). This project aims to develop a more 

accurate and efficient method to quantify forest fuel structural characteristics using LiDAR 

data. The expected results will assist fire agencies in guiding forest fuel hazard-reduction 

treatments and monitoring ecological restoration after previous fires. Second, forest litter-bed 

fuel load is traditionally determined by field sampling and immediately weighing after oven 

drying fuel samples, which is labour intensive, expensive and time consuming (Brown and 

Bevins, 1986). McArthur’s depth-to-load relationships indicate that forest litter-bed fuel depth 

is one of the key indicators to litter fuel load estimation (McArthur, 1967). It has been used by 

fire authorities to roughly estimate fuel load during fuel hazard assessment (McCarthy, 1996). 
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Other studies developed fuel accumulation models that take years since fire as an indicator to 

predict fuel regrowth after previous fire events for specific fuel types at specific locations (Peet, 

1971; Fox et al., 1979; Schaub et al., 2008). This project will explore relationships among litter 

fuel load, forest fuel type, litter-bed depth, and fire history. Current fire behaviour modelling 

shares a common challenge in accurately quantifying litter-bed fuel load. The projected results 

will benefit fire authorities in predicting fire behaviour potential more accurately and 

efficiently. Last, the development of a litter-bed fuel load model using airborne LiDAR 

scanning (ALS) data reveals ALS’s potential in estimating spatial distribution of litter fuel load 

across landscape. This novel method will be beneficial in fire spread modelling and danger 

rating system development for eucalypt forests with various terrain features, fire histories, and 

fuel types. In summary, the expected results will provide more efficient, less labour intensive 

and cost effective methods for better protection of communities and the environment in fire 

prone areas. 

1.4 Thesis Outline 

This thesis is comprised of six chapters, including an introduction, literature review, three main 

findings, and a general conclusion. The three major findings consist of a terrestrial LiDAR 

scanning (TLS)-derived fuel classification, development of a depth-based surface fuel load 

model using both ALS and TLS data, and an ALS-derived litter-bed fuel estimation at a 

landscape scale. These chapters are either published or submitted work, structured and 

presented in this thesis following the original journal formatting. More details regarding these 

works are referred to the declarations before each individual chapter. 

Chapter 1 introduces the current knowledge gaps in forest fuel measurements. The section 1.2 

and 1.3 define project questions, objectives, and significance. Research rationale, approach, 

and innovation are outlined in section 1.4. 
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The first section of Chapter 2 reviews forest fuel characteristics as important components of 

fire behaviour and danger rating models in North America, South Europe, and Australia 

(section 2.1.). It also summarises the limitation of traditional methods in forest fuel 

measurements. The following section (2.2) reviews the remote sensing application in forest 

fuel management. It identifies the knowledge gaps in current literature concluding that remote 

sensing-based understorey fuel strata classification and landscape-scale litter fuel load 

estimates in multilayered forests are not well understood. This section also highlights the 

potential of LiDAR data to overcome these issues.  

Chapter 3 to 5 correspond to the original contributions of this thesis. Each of these three 

chapters correspond to published or submitted work to international journals. Chapter 3 is a 

published paper that describes strata-based forest fuel classification for wildfire hazard 

assessment using TLS data. In this study, LiDAR point cloud data were applied to reconstruct 

three-dimensional forest structures for forest fuel strata classification and fuel load estimation. 

This study firstly investigated the efficiency and accuracy of TLS - derived fuel characteristics 

for fuel hazard assessment. An automatic tool for forest fuel strata classification was then 

developed to assess fuel hazards based on integration between GIS and TLS data. It provides 

a consistent and accurate alternative to visual assessing techniques described in the Victoria 

forest fuel hazard assessment guide (Hines et al., 2010) and the fire behaviour model (project 

Vesta) (Gould et al., 2008). 

Chapter 4 is a submitted manuscript regarding the development of a predictive model for 

estimating forest litter-bed fuel load in Australian eucalypt forests with LiDAR data. 

McArthur’s depth-to-load models have been widely used as a rapid alternative to estimate 

litter-bed fuel load in order to support Australia’s bushfire-related activities (Fernandes and 

Botelho, 2003). This study found a strong and positive correlation between forest litter-bed fuel 

load and litter-bed depth derived from TLS data. It led to a development of a new depth-to-
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load model for litter-bed fuel load estimates through a multiple regression analysis. The model 

predictors and coefficients indicate how the spatial variation in surface fuel load relates to litter-

bed fuel depth, forest fuel type, fuel characteristics, topography, and previous fire disturbance. 

The calibrated model can be used to consistently and accurately predict forest surface fuel load 

and therefore assist forest fuel treatment activities.  

Chapter 5 describes eucalypt forest vertical structure stratification using ALS data. It is also a 

submitted manuscript that indicates that an ALS indices-derived litter-bed fuel load model can 

be successfully used to map spatial variation in litter-bed fuel load efficiently and accurately. 

In order to assist Australian fire authorities for regional decision-making, this study also 

developed a novel fuel load model for landscape-scale litter-bed fuel load estimates using ALS-

derived stratified height indices and topography. Forest vertical structure reflects understorey 

and overstorey vegetation species composition, microclimate, soil (e.g. type, moisture content, 

and productivity) as well as terrain features (e.g. topography, aspect and slope), which 

determines forest fuel productivity and decomposition (Dubayah et al., 1997; Dubayah and 

Drake, 2000). Therefore, ALS indices relating to crown height, canopy density, depth and 

closure of both understorey and overstorey layers, as well as topography, are useful for 

quantifying litter-bed fuel. This project established a predictive model that described accurate 

spatial variation in surface fuel load using forest understorey and overstorey vegetation 

structural characteristics, and topography through multiple regressions with ALS data. The 

accurate information derived from this model can be used to assist forest fuel management, 

assess suppression difficulties, predict ongoing fires for operational activities, and assess 

potential fire hazards in the study area. 

Chapter 6 presents the general conclusion of this PhD study focusing on the potential utility of 

LIDAR technology for forest fuel measurements. The significance of this project’s contribution 

in terms of scientific innovations and practical implications to research community and wider 
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society is also summarised. The study limitations as well as recommendations for future studies 

are highlighted in the last sections of this chapter.  
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Chapter 2. Literature review 

2.1 Wildland Fire and Fuel Assessment 

2.1.1 Introduction 

Natural forest fuel is vegetation biomass with multiple sizes, states (e.g. alive or dead), 

arrangements and orientations (Anderson, 1970). For the smallest elementary unit, fuel is 

considered as a particle arranged into structural forms normally called the fuel bed or fuel strata 

(McCaw, 1991). Fuel is typically characterized by type, size, quantity, and structural 

arrangement. Therefore, forest fuel can be described in numerical terms by dry fuel load, fuel 

depth, fuel particle density, and coverage. These fuel characteristics have different 

contributions to fire behaviour. Research has used quantities of fuel and forest structural 

information described by fuel depth, particle density, and coverage to predict the rate of surface 

fire spread, flammability, and also to estimate fire danger ratings (Anderson, 1982; Gould et 

al., 2008). The following sections describe the concepts of forest fuel load and fuel structure, 

and their significance in predicting fire behaviour and assessing fuel hazards.  

2.1.2 Fire behaviour models and danger rating systems 

Sound forest fire management (e.g. fire danger rating, prescribed burning and wildfire control) 

can benefit from an accurate and efficient description of forest fuel properties as one of the fire 

behaviour predictors (Burrows, 1999). Fire danger and behaviour models use fuel properties as 

inputs to derive fire danger indices or fire behaviour potentials. Fuel models describe fuel 

properties that are used as inputs to various fire danger ratings and mathematical surface fire 

spread models. Fire danger is determined by the combination of both constant and variable 

factors that impact the initiation, spread and difficulty to control a wildfire on a specific 
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geographic area (Deeming and Brown, 1975). A fire spread model characterizes the fire’s rate 

of spread, fire shape, direction, rate of energy release, mode of propagation, flame height, flame 

geometry, and fire transitions (from a surface fire to a crown fire) (Bradstock et al., 2012). Fire 

danger and behaviour models vary across the globe due to the high-degree of variation in 

vegetation communities (fuel models) and climate.   

2.1.2.1 North American and Mediterranean models 

A National Fire Danger Rating System (NFDRS) was proposed in America in 1972 (Deeming 

et al., 1972). It is a standardized set of equations to determine the relative seriousness of 

burning conditions and threat of fire in a specific area on a landscape using local observations 

of current or predicted conditions of fuel, weather, and topographic variables. The NFDRS has 

been used widely in the America as the main fuel model.  

The NFDRS uses Rothermel’s (1972) spread model as its core, and also integrates the impacts 

of existing and expected states of selected fire danger factors into qualitative indices for 

planning and operational purposes. The various factors of fuel characteristics, weather, 

topography, and risk are combined to assess the day-to-day fire protection programs on a fire 

danger rating area that has similar climate, fuel, and topography. This rating area should be 

sufficiently small that similar fire danger is preserved, but large enough such that fire protection 

operations and fire suppression can function efficiently (Fosberg and Furman, 1971). All fuel 

beds are categorized into six general classes (lichens and mosses, marsh grasses and reeds, 

grasses and forbs, shrubs and tree reproduction, trees, and slash) according to the predominant 

surface fuel (Deeming et al., 1977). A total of twenty fuel models are developed based on the 

general classes of surface fuel and relative loading of different fuel components (Deeming et 

al., 1977). Each individual fuel model uses fuel properties (e.g. surface fuel type, depth, weight, 

size, volume, and surface to volume ratio) of a fire danger rating area to determine the fire 
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potential (Schlobohm and Brain, 2002). Therefore, accurate description of fuel properties is 

significant for predicting fire behaviour potential and assessing fire effects. 

Climatic influences on fire danger are also involved in the NFDRS, as vegetation adapts to the 

general climate in a fire danger rating area, and the seasonal fuel and climate characteristics 

determine seasonal fire dangers. Adaption to various climate classes typically occurred across 

America, and the system grouped climate characteristics into four climate classes, numbered 

one through four: class one represents arid, semiarid desert or steppe country; class two is semi-

humid climate where summertime moisture is deficient; class three is defined as semi-humid 

climate where summertime precipitation is adequate to sustain plant growth most of the season; 

class four represents the wet coastal areas where summertime precipitation and fog are common 

(Schlobohm and Brain, 2002). The climate classes are judged adequate for the purpose of rating 

fire danger in order to define the different linear drying rates for annuals, perennials, and woody 

plants. A climate class determines the seasonal response of fuel moisture content to 

environmental conditions.   

Annual precipitation was introduced to the NFDRS system in 1988 along with the Keetch-

Byram Drought Index (KBDI) for the system modification to address the impacts of long term 

drying or drought on forest soils and duff layer in the southeast part of America (Burgan, 1988). 

The correlation between air temperature and the daily drought factors varies with different 

levels of annual precipitation (Schlobohm and Brain, 2002). The annual precipitation in a fire 

danger rating area can be derived from local meteorological data or precipitation maps when 

estimating the daily drought factors.  

Albini (1976) introduced thirteen fuel models that were developed to be interchangeable with 

the twenty NFDRS fuel models. These fuel models were also used with Rothermel’s (1972) 

fire spread models. These thirteen fuel models quantitatively describe the same fuel loading 



- 14 - 

 

components and are sorted into four classes: grass, shrub, timber, and slash (Anderson, 1982). 

Short grass, timber grass and understory, and tall grass were grouped into the class of grass; 

chaparral, brush, dormant brush, and southern rough were classified as the shrub group; the 

timber group included compact timber litter, hardwood litter, and timber understory; light slash, 

medium slash, and heavy slash were sorted into the slash group. They are also used for the 

severe period of the fire season when wildfires pose greater control problems during the dry 

season, and when the fuel bed becomes more uniform (Anderson, 1976; Scott and Burgan, 

2005). These thirteen stylised fuel models were then used as inputs to the BEHAVE fire 

behavior prediction system that predicted wildland fire behaviour for fire management 

purposes nationwide in America (Andrews, 1986). This system has been modified and updated 

as a Windows-based program known as the BehavePlus fire modelling system, which is 

adaptable to various fire weather and fuel conditions (Andrews and Bevins, 2003). Its further 

technological development allows users to build and test their customized fuel models to 

describe wildland fire behaviour and impacts for specific fuel types and complexes (Heinsch 

and Andrews, 2010).  

The Canadian Forest Fire Danger Rating System (CFFDRS) was developed to adapt to 

Canadian fuel complexes for fire management and planning used in prevention and mitigation 

of wildland fire disasters (Van Wagner, 1987). Similar to the NFDRS, the CFFDRS also 

requires a series of numerical ratings of fire weather and fuel conditions to predict wildland 

fire behaviour and effects for individual fuel types. It consists of seven components, including 

the litter and fine fuel moisture code, the duff moisture code, the drought code, the initial spread 

index, the build-up index, the fire weather index, and the forest fire behavior prediction system 

(Stocks et al., 1989). The build-up index for one fuel type is a numeric rating of the total amount 

of fuel available for combustion or fuel load. The build-up index, the codes of fine fuel moisture, 

duff moisture, and drought determine fuel conditions, which are combined with initial spread 
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index derived from daily weather data (e.g. air temperature, relative humidity, wind speed, and 

24-hours rainfall) to predict the fire weather index. The forest fire behavior prediction system 

is applied to estimate various fire behavior parameters for sixteen distinct fuel types depending 

on the inputs from the fire weather observations, fuel moisture content, as well as topography. 

These fuel types are initially grouped into five general vegetation classes, including coniferous, 

deciduous, mixed woodland, slash, and open grass. The further classification depends on forest 

floor cover and organic layer, surface and ladder (above litter-bed layer) fuels, and stand 

structure and composition (Van Wagner et al., 1992).  

North American models were generated in an attempt to establish one national fire behaviour 

prediction system that could be adapted to various climate classes and multiple domestic fuel 

types across the country. The abundance of fuel loads, dryness, duff thickness and slash 

accumulation determine that North American fuel models are different in structure and 

emphasis from the fuel models generated in the Mediterranean climate and harsh dry eucalypt 

studded Australian landscape. Compared to the Australian fire behaviour studies, North 

American studies assume that the weather and fuel moisture determine a basic burning index 

(e.g. rate of spread) and then a fuel type is incorporated later during the prediction.  

Fire behaviour and fuel models are not well documented in the Mediterranean area. Vegetation 

types in southern Europe are often assigned among the thirteen stylised fuel models in order to 

use the Rothermel’s (1972) spread model in the Mediterranean area for their regional wildland 

fire management and planning (Allgöwer et al., 1998; Loureiro et al., 2002; Fernandes and 

Botelho, 2004). The Greek Mediterranean vegetation types (e.g. grasslands, phrygana, maquis, 

and closed-forest litter of pine species) are classified into seven standardised fuel models 

according to their dominant vegetation species, fuel load categories and vegetation structural 

parameters in order to use the BEHAVE simulations (Dimitrakopoulos, 2002). In Portugal, 

twenty two forest fuel models were developed based on the forest fuel types defined by the 
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species composition and vertical structures (e.g. open or closed, and tall or low) from the 

Portuguese National Forest Inventory (Fernandes et al., 2006). The Mediterranean studies 

share a common finding that forest fire behavior is primarily driven by stand structure rather 

than species composition of the stand by using the American fire behavior and danger rating 

models (Dimitrakopoulos, 2002; Fernandes et al., 2006). However, the lack of litter-bed fuel 

load and depth data that are required as the inputs for estimation of fire behaviour potential and 

impacts constrains the application of the American fire models.  

2.1.2.2 Australian models 

In contrast to North American fire models, Australian fire models were developed based on 

several laboratory experiments and empirical data. Australian bushfire studies commenced in 

the early 1930s. Fire danger and fire behaviour models have been gradually developed and 

evolved to meet local circumstances, including vegetation communities and weather conditions. 

These models are concerned with the numerical simulation of wildland fires to present a 

systematic method for evaluating the risk of bushfires and predicting fire behaviour, many of 

which have become progressively more accurate and sophisticated.  

McArthur first introduced grass fire danger meters (GFDM) for the grasslands - Mark 3 (1966). 

The grassland fire danger index (GFDI) is estimated based on one fuel variable (degree of 

curing), air temperature (°C), relative humidity (%), and wind speed (km/h). This fire danger 

rating system has been used by fire authorities across Australia to provide public warnings and 

indication of the difficulty of fire suppression over a wider range of fires burning conditions in 

grassland.  

McArthur (1967) also proposed the forest fire danger meters (FFDM) for eucalypt forests - 

Mark 4. It was updated to the metric version - MK 5 in 1973. The forest fire danger index 

(FFDI) is determined by weather variables, including previous rainfall (mm), number of days 
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since last rainfall, drought factor (ranging from 1 to 10), air temperature (°C), relative humidity 

(%), and wind speed (km/h) (Luke and McArthur, 1978). These indices were expressed by 

algorithms based on mathematical equations of best fit for easy computation and use (Noble et 

al., 1980). However, the power function nature of the algorithm and accuracy in measuring the 

input variables (e.g. wind speed and temperature) may result in a large range of uncertainty 

(e.g. ± 20%) in the estimated FFDI values.  

The FFDI is then converted to a fire danger rating category ranging from low to catastrophic 

(Table 1) by the responsible fire agency in each jurisdiction, based on information of weather 

and fuel, in order to define suppression difficulties (Noble et al., 1980). In addition, likelihood 

of lightning ignitions and the severity of wind changes are also considered by the agencies in 

conducting a fire risk assessment. Furthermore, the rate of spread is estimated by the FFDI, 

fuel load, and slope of forest ground. The litter fuel load is expressed in tonnes per hectare of 

combustible material less than 6 mm on the forest floor.  

Table 1. McArthur forest and grassland fire danger rating indices (Luke and McArthur, 1978). 

Category 

Fire Danger Index 

Forest Grassland 

Catastrophic 100 + 150 + 

Extreme 75–99 100–149 

Severe 50–74 50–99 

Very High 25–49 25–49 

High 12–24 12–24 

Low–Moderate 0–11 0–11 

 

The MK5 model is simple to use and derived from the historical data in southeastern Australia 

(Noble et al., 1980). It has been the most widely used fire danger and behaviour model by fire 

authorities and land management agencies in southeastern Australia to issue fire danger 



- 18 - 

 

warnings, predict fire behaviour, suppress fire propagation to reduce risk and better protect 

communities in bushfire prone areas. Burrows (1999) evaluated the FFDM in Jarrah forests, 

Western Australia. The rate of spread could be overestimated by the FFDM, during conditions 

of high (surface litter) fuel quantities, low fuel moisture contents, and low wind speeds. 

However, during conditions of high wind speeds and low (surface litter) fuel quantities, the 

FFDM under predicted the rate of spread (Burrows, 1999). The under estimation could be 

explained by that the model assumed a direct relationship between fuel quantity and the rate of 

spread (Burrows, 1999). In addition, the impacts of the variation in understorey fuel structures 

and composition of overstorey and understorey vegetation on fire behaviour were not 

considered by the model, leading to underestimation of the rate of spread in the forests with 

shrubs (Gould et al., 2008). 

Since 1968, the Western Australian Forest Department has been supporting Peet’s model, 

which provides forest fire behaviour tables (FFBTs) in Western Australia (Peet, 1965). Similar 

to the MK5, the Peet’s model also uses historical weather records, actual weather, slope, 

moisture contents and quantities of surface fuel for fire-danger forecasting, interpolation of fire 

behaviour, and guiding prescribed burns (Sneeuwjagt and Peet, 1985). It has been applied to 

prescribe burning conditions in Western Australian forests, including Jarrah (Eucalyptus 

marginata) forests, Pine forests (Pinus Radiata), Karri forests (Eucalyptus diversicolor), and 

Wandoo forests (Eucalyptus wandoo).  

However, this model could underestimate the rate of spread of fires spreading faster than about 

50 – 60 m/h, and overestimate the rate of spread of slower fires burning under light winds 

(Burrows, 1999). It also overestimates the influence of low fuel moisture content on the rate of 

spread at wind speeds lower than 3.5 m/h. Unlike FFDI MK5, the Peet’s model suggestes that 

most of variations in the rate of spread could be explained by wind speed and fuel moisture 

content, rather than fuel load. The head-fire rate of spread was found to be independent of litter 
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fuel load providing there was sufficient fuel to sustain a spreading fire (e.g. more than about 4 

t/ha). In addition, the modified Peet’s model was developed based on non-linear regression that 

incorporated a power function in wind and a power function in fuel moisture content. On 

extrapolation to higher wind speeds (>10 km/h at 1.5 m in the forests or > 30km/h tower wind 

speed), this model tended to overestimate especially in dry fuel conditions (< 6% moisture 

content) (Burrows, 1999). Until the development of the Vesta model, quantities and moisture 

contents of fuel were the fuel characteristics used in southeastern Australian forest fire 

behaviour and danger rating models (Gould et al., 2008). 

The development of more efficient burning guidelines requires a sound understanding of fire 

behaviour and suppression difficulty in different forest fuel structure and vegetation 

composition. The project Vesta was conducted in dry eucalypt forests with different fuel ages 

and understorey vegetation structures (Gould et al., 2008). It introduced an empirical model 

named the Vesta fire behaviour model that describes the relationship between a series of 

quantifiable fuel hazard criteria, wind speed, slope, and fuel moisture contents (related to 

temperature and relative humidity). Different to its predecessors, this model developed a new 

concept of fuel characteristic for the estimation of fire behaviour potential, and also emphasized 

the importance of fuel structure as well as the age-related changes in fuel attributes for 

modeling fire behaviour in dry eucalypt forests. Consequently, accurate and efficient methods 

to quantify fuel load and fuel structure are significantly useful for understanding forest fire 

behaviour and mitigating the frequency and intensity of catastrophic fires in Australia’s fire 

prone areas. 



- 20 - 

 

2.1.3 Fuel measurements 

2.1.3.1 Fuel load 

Fuel load is defined as the surface fuel or litter-bed fuel (fine leaf and twig materials that are 

less than 6 mm in diameter), and quantified as tonnes per hectare. It has significant impacts on 

fire ignition, rate of spread, and propagation (Rothermel and Anderson, 1966). Research has 

found that the quantity of fuel is strongly correlated with the head-fire rate of spread as well as 

the residence time of flame (Byram et al., 1966; Cheney, 1981). Therefore, quantifying forest 

fuel load is essential for bushfire behaviour and effects models that require fuel load as one of 

the significant inputs for estimation of potential and ongoing fire behaviour and effects. 

Modeling fire behaviour is significant for predicting the area and perimeter growth forecasts, 

as well as assessing potential damage and difficulty of suppression (e.g. equipment needed to 

control ongoing fires).   

Traditionally forest fuel load is measured directly by field sampling, oven drying for 24 hours 

at 105 °C (Loomis and Main, 1980; Pook, 1993; Pook and Gill, 1993; Cheney and Sullivan, 

1997), and immediately weighing (Gould et al., 2011). Directly measuring fuel load on a 

landscape scale requires extensive field inventories with samplings, post laboratory work and 

statistical inference, which can be labour intensive and time consuming (Brown and Bevins, 

1986; Burgan et al., 1998).  

McArthur (1962) found a positive correlation between the depth of surface litter-bed and the 

dry weight of surface fuel, known as the depth-to-load relationship. This relationship has been 

used as a rapid alternative to the direct measurement of litter-bed fuel load for fuel hazard 

assessment in eucalypt forests (McCarthy, 2004). The litter-bed fuel depth is directly measured 

in areas where near-surface fuels do not obscure the litter using a simple depth gauge – a 15 

cm circular disk with a ruler through a slot in the centre (McCarthy et al., 1998; McCarthy, 
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2004). To use this gauge, a small gap is made in the litter bed down to mineral soil, and then 

the end of the ruler is placed resting on the mineral soil surface. The disk is pushed down with 

light pressure until its whole perimeter is in contact with the fuel. Five measurements of litter-

bed depth are carried out at each site sized 10 m in radius (Wilson, 1992; Wilson, 1992; 1993). 

The average value of the five measurements is one of the attributes that can be used to 

determine the surface fine fuel hazard. However, the number of measurements taken in an area 

influences its accuracy, since large variations in surface fuel depth could be found at a site 

within a homogeneous vegetation community (McArthur, 1962; McCarthy, 1996; Gould et al., 

2014). In addition, the fuel depth-to-load relationship varies with sites due to the high-degree 

of natural variability of overstorey and understorey vegetation species, environmental 

conditions, as well as previous fire severity and intensity (McArthur, 1962; Birk and Simpson, 

1980).  

Fuel accumulates over time depending on the productivity of fuel and environmental conditions. 

Forest fuel accumulation models describe a simplification of the difference between rates of 

fuel accession and decomposition (Agee et al., 1973). These model curves follow a general 

form of an exponential distribution (Peet, 1971; Birk and Simpson, 1980; Raison et al., 1983; 

1986; Gould et al., 2011):  

                                                             wt =  wss(1 − ekt)                                                     (1) 

where wt is defined as the dry weight of litter-bed fuel accumulated at time t (years since the 

last fire); wss is the dry weight of the fuel accumulated under steady state conditions; k is 

defined as the decomposition constant. The shape of this accumulation curve is determined by 

climatic conditions, vegetation species, and time since last fire.  

Australian fire authorities also rely on fuel accumulation models for specific forest vegetation 

species to roughly estimate the amount of surface or litter-bed fuel growth after previous fire 
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events to provide fire danger indices and also guide prescribed burns. Current forest fuel 

accumulation models are listed in Table 2. The application of fuel accumulation models is 

constrained by specific vegetation species and locations. Fire authorities and current bushfire 

studies have a common challenge in quantifying forest fuel load across landscape due to the 

extreme high variations in vegetation species, microclimate, and terrains (Gould et al., 2008). 

Therefore, the development of more efficient, accurate and consistent methods to quantify 

forest fuel is an ongoing requirement of the Australian government for fire-hazard mitigation 

and forest ecosystem conservation. 

Table 2. Summary of forest fuel accumulation models in Eucalypt communities Australia. 

Dominant Vegetation 

Species  Location  Model 

Rainfall 

(mm) Studies  

E. Pilularis  

Seal Rocks, 

NSW  Xt = 1.67 (1-e-0.31t) 1400 (Fox et al., 1979) 

E. radiata / E. rubida 

Wombat 

State 

Forest, VIC  Xt = 8.28 (1.47-e-0.506t) - 

(Tolhurst and 

Kelly, 2003) 

E. obliqua / E. radiata VIC  Xt = 1.69 (1-e-0.44t) 700 

(Simmons and 

Adams, 1986) 

E. pauciflora / E. dives 

Subalpine 

region  Xt = 11.1 (1-e0.11t) - 

(Raison et al., 

1983) 

E. delegatensis 

Subalpine 

region  Xt = 29.4 (1-e0.31t) - 

(Raison et al., 

1983) 

E. crebra 

Chilten, 

VIC  Xt = 7.15 (1-e-0.876t) 685 (Chatto, 1996) 

E. moluccana / E. 

macrophnra / E. signata 

Cooloola, 

QLD  Xt = 7.4 (1-e-0.64t) - (Sandercoe, 1986) 
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2.1.3.2 Fuel structure 

Fuel structure is defined by horizontal continuity and vertical arrangement (Figure 1). 

Horizontal continuity of fuel load describes the arrangement of fuel across the surface; the 

vertical arrangement refers to the upward distribution of fuel in a vertical dimension. Compared 

to fuel load, forest fuel structure has different impacts on fire behaviour, including fire intensity, 

flame height, flame structure and duration, due to changing fuel vertical arrangement. Tightly 

packed fuel is less likely to burn and smolder due to the lack of oxygen, whereas loosely 

arranged fuel burns quickly with a higher flame as more aspects of fuel are exposed to oxygen. 

Consequently, quantifying both forest fuel load and fuel structure is important for studying 

bushfire behaviour and impacts.  

 

 

Figure 1: Forest structure and vertical fuel layers. Adapted from (Gould et al., 2008). 
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Australian bushfire studies (Cheney et al., 1992; McCaw et al., 2003) have developed a system 

to quantify fuel structure with a numerical index that can be used as a fuel predictor variable to 

replace fuel load. The rating system that assesses the relative hazard of fuel factors that affect 

fire behaviour and suppression difficulty represents a new approach in forest fuel assessment 

(McCarthy et al., 1998). The fuel hazard rating system developed by Wilson (1992; 1993) and 

McCarthy et al (McCarthy et al., 1998) assesses fuel hazards for distinct fuel layers including 

eucalypt bark, elevated shrub fuel, near-surface fuel and surface fuel in order to estimate an 

overall fuel hazard rating, which provides a simple, easy-to-use method for operational 

assessment of the hazard presented by forest fuel structures. This assessment highlighted the 

fuel complex by combining a hazard rating for each of the different fuel layers (Figure 1), by 

visualizing fuel characteristics and providing subjective scores to evaluate the potential hazards 

that each fuel layer may contribute to fire behaviour and its main effects (McCarthy et al., 1998; 

Gould et al., 2008).  

The fuel hazard rating (low, moderate, high, very high, and extreme) is calculated for each 

structural layer of forest fuel in a plot from 10 - 20 m in radius based on key attributes, such as 

how bark is attached, quantity of combustible bark, percentage of plant cover, percentage of 

dead fuel, vertical continuity, horizontal connectivity, vegetation density, and thickness of fuel 

pieces (McCarthy et al., 1998). Project Vesta also adapts the hazard scores to estimate the 

potential fire behaviour. The overall forest fuel hazard rating is determined by the assessed 

levels of bark, elevated and combined surface and near-surface fuel hazards (Gould et al., 2011). 

However, the canopy fuel or overstorey fuel is not incorporated in the fuel hazard assessment, 

as the canopy fuel affects fire intensity and energy output, but has minor impacts on fire spread 

(Tolhurst et al., 1996). In addition, the rapid fuel hazard assessment is designed for trained fire 

fighters and land managers to use in guiding prescribed burns rather than predicting fire hazard 

in actual fire events (Hines et al., 2010). This visual-based technique for a rapid visual 
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assessment of fuel characteristics has a broad range of applications in wildland fire 

management and research (Gould et al., 2011), which is  inconsistent and subjective (Brown 

et al., 2011). The development of accurate and consistent methods to quantify forest fuel 

structural characteristics has significant implication in both fuel hazard assessment and fire 

behaviour modelling.  

Our study aims to improve the consistency and efficiency of forest fuel measurements in terms 

of fuel structure and fuel load, in southeastern Australian eucalypt forests. As discussed in the 

introduction, fuel is the only contributor to fire behaviour that can be modified by humans. This 

study develops a more accurate and efficient approach to quantify forest fuel structures using 

remote sensing technologies, which can be used as an accurate alternative to the current 

methods to assess fuel hazards. It also evaluates how the forest fuel load relates to the fuel 

characteristics and environmental factors in the study area. In addition, it develops a predictive 

model to estimate fuel spatial variation in forest litter-bed fuel load on a landscape scale. The 

outcomes of the study are expected to have multiple applications, including better guidance of 

fire hazard-reduction burns, prediction of fire behaviour potential, improved surveillance of 

fuel growth, forest habitats and ecosystems. For instance, a landscape-fuel load map is 

beneficial for fire authorities to guide fire-related operational activities to reduce fire threats, 

as it may accurately and efficiently locate the specific area that requires fuel-reduction burns. 

The following chapter reviews the application of remote sensing technology in forestry. 
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2.2 Remote Sensing of Forest Fuels 

2.2.1 Introduction 

Accurate description of spatial variations in fuel conditions (e.g. fuel type, load, structure, size, 

moisture content and previous fire disturbance) is essential to the development of wildland fire 

management strategies at local, regional, and national scales (Chuvieco and Congalton, 1989; 

North et al., 2009). Traditionally, forest fuel characteristics, for example fuel types and load 

were mapped through extensive field inventory with sampling and statistical inference, which 

was expensive, inefficient and error prone when extrapolated to a greater scale (Arroyo et al., 

2008). It has been considered as an impractical approach for land managers and government 

agencies (Falkowski et al., 2005). The limitation of the traditional method in terms of accuracy, 

cost and coverage results to a development of more efficient methods to map fuel types using 

remote sensing technologies (Arroyo et al., 2008). 

Remote sensing technologies, including passive and active systems, provide information with 

spatial continuity and varying scales. They potentially reduce the cost and time required to map 

forest vegetation and post fire effects (Skowronski et al., 2007). Remote sensing is the 

acquisition of information about objects or areas from a considerable distance without physical 

contact with the objects, typically from satellites, aircraft and ground stations (Sabins Jr, 1978). 

It has been used to map topography, fuel types, fuel moisture content and also has the potential 

to map spatial variations in fuel composition and fuel load across a landscape (Rollins et al., 

2004; Saatchi et al., 2007; Thenkabail et al., 2012). Consequently, remote sensing application 

in forest fuel measurements assists fire behaviour modelling and fire danger rating, forest fuel 

management, and fire-related activates. This section reviews the existing literature on the 

application of both remote sensing systems in forest fuel measurements, and also evaluates 

their potentials and limitations in quantifying fuel load and structural characteristics. 
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2.2.2 Passive Remote Sensing 

Passive sensors known as optical sensors do not emit radiation but detect natural energy that is 

reflected or emitted from the observed scene (Sabins Jr, 1978). Reflected sunlight is the most 

common external source of radiation sensed by passive sensors (Robert, 2007). The most 

common passive remote sensing imageries, for example Landsat, MODIS (Moderate 

Resolution Imaging Spectroradiometer), ASTER (Advanced Spaceborne Thermal Emission 

and Reflection Radiometer), SPOT (Satellite for observation of Earth), CBERS (China–Brazil 

Earth Resources Satellite), Quickbird and RapidEye have been widely used in multiple forest 

applications. Current studies map fuel types and fuel moisture content using various passive 

remote sensing imageries (Riaño et al., 2007; Arroyo et al., 2008; Yebra et al., 2013). Their 

lack of significant information about canopy heights and understorey vegetation leads to the 

integration with active remote sensing data or field-surveyed data to overcome this limitation.  

2.2.2.1 Forest fuel type 

Forest fuel types can be classified and mapped using various passive remote sensing data 

including multispectral and hyperspectral data through four primary methods. The initial 

approach is vegetation classification using either supervised classification, unsupervised 

classification or principal components (Kourtz, 1977). Fuel types are assigned according to the 

vegetation categories. This method produces accuracies of fuel type classification ranging from 

65% to 80% (Chuvieco et al., 1999). A more accurate method to classify fuel types was 

proposed by Cohen (1989), which used the tasselled cap transformation of Landsat TM 

multispectral data (Kauth and Thomas, 1976). The obtained accuracy of this method is 65% 

(Van Wagtendonk and Root, 2003), which can be increased to 86% by combining the Landsat 

TM data with ancillary data (e.g. Normalized Difference Vegetation Index - NDVI, slope, 

texture, illumination) (Riaño et al., 2002; Fernandes et al., 2006). Recent studies applied these 
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two methods using very high resolution multispectral data (e.g. ASTAR, Quickbird, and 

IKONOS) (Andrews and Queen, 2001; Lasaponara and Lanorte, 2007) and hyperspectral data 

(e.g. AVIRIS and MIVIS)  to increase the accuracy of fuel classification. Additionally, the 

object-oriented classification method is also adapted to map multispectral imagery-based fuel 

types (Giakoumakis et al., 2002; Arroyo et al., 2006; Gitas et al., 2006). The hyperspectral 

imagery-derived forest fuel characteristics (e.g. fuel types, canopy closure, ratio of dead to live 

fuel materials, and fuel moisture content) can be estimated through Spectral Mixture Analysis 

(Roberts et al., 1997; Cheng et al., 2006). These passive remote sensing data are unable to 

reveal understorey vegetation and derive height information (Van Leeuwen and Nieuwenhuis, 

2010). The reflectance of individual fuel types is not directly related to heights of overstorey 

and understorey vegetation (Riaño et al., 2007); vegetation heights however are critical 

information to discriminate forest fuel types (Arroyo et al., 2008). Therefore current studies 

fuse passive remotes sensing data with heights of understorey and overstorey vegetation 

derived from active remote sensing data sources (e.g. LiDAR data) to improve fuel type 

mapping (Riaño et al., 2007; Mutlu et al., 2008). 

2.2.2.2 Forest fuel moisture content 

Forest fuel moisture content is the mass of water contained within vegetation. It is one of the 

important components of fire danger rating systems and behaviour models, as it significantly 

impacts on the flammability of the fuel, combustion, the amount of available fuel and the rate 

of spread of a fire (Danson and Bowyer, 2004). Moisture content of dead fuel is highly 

correlated to temperature, humidity and wind speed, which can be easily estimated from 

weather danger indices (Saatchi et al., 2007). However, the moisture content of live fuel for a 

specific fuel type varies spatially and temporally due to the interaction of plant physiology with 

soil moisture conditions as well as plant adaptations to longer term climate events (e.g. drought) 

(Chuvieco et al., 2002). Traditionally, live fuel moisture content is determined by field 



- 29 - 

 

sampling, which is time consuming and expensive (Pook and Gill, 1993). Studies found 

positive correlations between leaf water content and remote sensing vegetation indices (e.g. 

NDVI, Soil-Adjusted Vegetation Index - SAVI, Enhanced Vegetation Index - EVI, Visible 

Atmospherically Resistant Index - VARI, Water Index - WI and Global Vegetation Moisture 

Index - GVMI), as liquid water has strong absorption features in the near and shortwave 

infrared spectral regions (Ceccato et al., 2001; Danson and Bowyer, 2004; Yebra et al., 2008). 

Therefore, the passive remote sensing data has the advantage of efficiently estimating the 

spatial distribution of live fuel moisture content at a fairly greater scale compared with the 

traditional method.  

2.2.3 Active Remote Sensing  

Although forest fuel types and moisture content of fuel could be interpreted based on the 

reflectance using passive remote sensing data, current studies share a common challenge in 

accurately describing physical properties of forest fuel (e.g. fuel load, sizes and structure) (Pyne 

et al., 1996). Forest vegetation biomass as well as horizontal and vertical position are among 

the key predictors to forest fire intensity, flame height and burn severity (Gould et al., 2011). 

The technology development in active remote sensing allows more accurate and efficient 

description of forest fuel structural characteristics and estimation of crown fuel load over a 

large area with a fine spatial resolution. 

In contrast to the passive sensors, active sensors emit radiation towards the target to be detected, 

which require a large amount of energy for illumination (Campbell and Wynne, 2011), such as 

radio detection and ranging (radar) and light detection and ranging (LiDAR) technologies. A 

radar sensor uses a transmitter to emit electromagnetic radiation to distant objects at either 

radio or microwave frequencies (Waring et al., 1995). A directional antenna is applied to 

measure the time of arrival of the reflected or backscattered pulses of radiation to calculate the 
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distance to the objects using the speed of light (Skolnik, 1962). Airborne radar data can be used 

to estimate forest stand height, canopy fuel load, crown closure, and canopy bulk density 

(Waring et al., 1995; Saatchi et al., 2007). Similarly, a LiDAR sensor uses a laser to transmit 

a light pulse and a receiver with sensitive detectors to measure the backscattered or reflected 

light from a target (Sampath and Shan, 2007). The distance to the target is determined by the 

time between the transmitted and backscattered pulses at the speed of light (Dubayah et al., 

1997). Studies found airborne LiDAR data could be useful for forest inventory, including 

canopy height measurements (Næsset and Bjerknes, 2001), estimation of diameter of breast 

height (DBH) and basal area (Simonse et al., 2003; Næsset, 2004; Maas et al., 2008; Hyyppä 

et al., 2009; Moskal and Zheng, 2011), as well as delineation of individual trees for tree height 

measurements (Brandtberg et al., 2003; Popescu et al., 2003; Koukoulas and Blackburn, 2005; 

Chen et al., 2006; Popescu, 2007), which provide a potential opportunity to quantify three-

dimensional forest fuel structure more efficiently and accurately.  

LiDAR application in forestry is usually categorised as either discrete return or fuel waveform 

systems depending on how they vertically (e.g. the number of range samples recorded for each 

individual emitted laser pulse) and horizontally (e.g. footprint sizes and number footprint/hits 

per unit area) sample forest structure (Lim et al., 2003). A discrete return LiDAR system known 

as multi echo airborne LiDAR system allows for one or more returns to be recorded for each 

laser pulse during a measurement; the number of the returns determines the amount of detail 

about forest vegetation that is present in a laser footprint (Dubayah and Drake, 2000). A single 

return system is useful for canopy height estimates; a multi echo LiDAR system provides point 

cloud data, and captures understorey vegetation and terrain features (Dubayah and Drake, 

2000). In contrast, a full waveform airborne LiDAR system records the amount of energy 

returned to the sensor for a series of equal time intervals; the amplitude-against-time waveform 

is constructed from each time interval and is representative of forest vertical interception 
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(Chauve et al., 2007). The following sections describe the current studies that use the radar and 

LiDAR data to quantify crown fuel characteristics and forest vertical structure. 

2.2.3.1 Crown fuel 

In general, forest fires are classified as two main types of wildland fires including surface fire 

and crown fire (Scott and Reinhardt, 2001). Surface fire is defined as the combustion of the 

fuel above the ground surface and within understorey fuel layers (Brown et al., 1982); crown 

fire is more difficult to control due to the extension of the combustion to overstorey fuel layers 

(Wagner, 1977). Crown fuel can be quantified in numeric terms of canopy fuel weight, canopy 

closure, canopy bulk density, canopy cover, foliage moisture content, canopy height and 

canopy base height (Scott and Reinhardt, 2001). Although radar sensors have not been widely 

applied in fire-related operational activities globally, studies have found the potential of 

providing quantitative information about the forest overstorey vegetation biomass and structure 

that can be used to estimate live fuel moisture content and crown fuel when operating at 

microwave frequencies (Saatchi and Moghaddam, 2000). Radar backscatter signals at linear 

polarizations (horizontal and horizontal, horizontal and vertical, and vertical and vertical for 

transmit and receive configurations, respectively) are sensitive to the three-dimensional canopy 

profile, which can resonate with the radar wavelength at low frequencies ranging from 400 to 

1500 MHz (Saatchi et al., 2007).  

Crown fuel load is the total dry weight of crown biomass including foliage and thin 

branchwood, which is traditionally calculated based on empirical allometric equations for 

specific forest fuel types (Brown, 1978). Passive remote sensing and radar provide efficient 

alternative approaches to the field measurement-based equations through leaf area index 

measurements (Fassnacht et al., 1994) and biomass estimates (Saatchi and Moghaddam, 2000), 

respectively. Radar-derived biomass can be estimated from the statistical correlation of radar 
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backscatter measurements at different frequencies and polarizations with forest biomass 

acquired from field measurements (Dobson et al., 1995).  

Crown structural characteristics can be described as tree size, canopy bulk density, canopy 

height and canopy base height, and canopy closure, which mainly affect flame height, intensity 

and spread of crown fire (Wagner, 1977). Canopy height can be identified by the inversion of 

physically based backscatter models derived from airborne radar or LiDAR data (McGaughey 

et al., 2004). Crown base height is considered as the vertical distance between the ground and 

the base of the live crown, which determines the threshold for transition from surface fire to 

crown fire (Dean et al., 2009). The estimation of crown base height using radar or LiDAR 

techniques could be performed either by analyzing the waveform of backscatter signal or by 

regression models (Riaño et al., 2003; Andrews et al., 2005; Ferraz et al., 2009).  

Current studies indicate the potential use of airborne full waveform LiDAR data to estimate 

forest vertical profile (Lefsky et al., 2002; Persson et al., 2005; Wagner et al., 2006; Hermosilla 

et al., 2014); however, it is restrictive in representing crown fuel characteristics, including 

canopy closure and crown bulk density (Coops et al., 2007). Canopy closure is defined as the 

progressive reduction of space between crowns, which influences the fire behavior by affecting 

the amount of fuel available for a crown fire, as well as changing fuel moisture content and 

wind speed below the canopy ultimately influencing a surface fire (Ferraz et al., 2009). Canopy 

closure of single layered forests could be obtained from optical data, while the underlying 

shrubs and grass may increase the difficulty of estimation (Means et al., 1999; Chuvieco, 2003). 

Multi echo LiDAR-derived canopy closure is typically determined by the number of canopy 

reflections divided by all reflections from overstorey, understorey and ground over a unit area 

(Means et al., 1999; Chuvieco, 2003; Riaño et al., 2003). Canopy bulk density is the mass of 

available fuel per unit canopy volume that can be computed as crown biomass divided by 

canopy height. The spatial accuracy and efficiency of crown fuel load and structure estimates 
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derived from radar data can be increased by LiDAR point cloud data (Drake et al., 2002; 

Andrews et al., 2005; Hyde et al., 2005; Persson et al., 2005).  

2.2.3.2 Understorey fuel 

Understorey fuel including elevated, near-surface and surface or litter-bed fuel layers 

significantly affect the surface fire intensity, flame height, flame structure and duration, due to 

changing vertical continuity of fuel availability (Gould et al., 2008). Understorey fuel structural 

characteristics are the key criteria to assess eucalypt forest fuel hazards in Australia (McCarthy, 

1996). Currently, the structural characteristics (e.g. plant height and cover at individual fuel 

layers) are described in numeric terms by field observers based on visual assessment in order 

to determine the overall fuel hazard in a forest (Watson et al., 2012). This visual assessment is 

acceptable when roughly predicting fuel hazards over a landscape scale; however, it can be 

bias prone when used as an input to fire behaviour models, such as Vesta (Gould et al., 2008). 

Therefore, an innovation of accurate quantification of understorey fuel structural characteristics 

is needed for a sound forest fuel management.  

In multilayered forests, forest understorey fuel layers are shadowed by the overstorey 

vegetation, which increases the difficulty in quantitatively describing these fuel layers using 

remote sensing data. Optical remote sensors fail to distinguish understorey vegetation from 

canopy due to the two dimensional description of forest vegetation (Waring et al., 1995; 

Carlson and Ripley, 1997; Turner et al., 1999). A radar sensor provides three-dimensional 

information on forest vertical structure, but its sensitivity and spatial accuracy to structural 

changes through forest vertical succession decrease with increasing canopy density and 

understorey vegetation biomass (Dubayah and Drake, 2000; Lefsky et al., 2002). The new 

generation of active remote sensing systems – LiDAR has higher spatial accuracy and 
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frequency that allows a complete representation of forest vertical structure (Van Leeuwen and 

Nieuwenhuis, 2010).  

The extraction of understorey fuel characteristics derived by remote sensing technologies is 

not well understood in current literature. Fine fuel loading with fuel particles sized 0 - 6 cm 

requires small footprint and high resolution of LiDAR data (Hermosilla et al., 2014). Large 

footprint LiDAR has significant difficulties to detect low vegetation biomass cover, as the 

signal disparities between low fuels and the ground are difficult to separate (Næsset and 

Bjerknes, 2001; Chauve et al., 2007). Full waveform small footprint LiDAR technologies 

permit extraction of low vegetation signal within the understorey, the waveform detection 

however allows an accurate determination of the peaks of overlaid pulses down to a target 

separation of about 0.5 m (Hug et al., 2004; Persson et al., 2005). Therefore, a full waveform 

LiDAR sensor has difficulty in separating understorey fuel layers, and fails to estimate plant 

cover and depth of understorey fuel at distinct fuel layers.  

In the USA, ladder fuels (above the litter-bed layer and under the crown fuel layer) are typically 

estimated by empirical equations that are developed based on stand canopy base height for a 

specific forest fuel type as a substitute of the direct measurement (Andrews, 1986). The canopy 

base height can be computed through either intensive sampling in the field or airborne LiDAR 

measurement of canopy heights (Scott and Reinhardt, 2001); however, the empirical equations 

are restricted by forest fuel types and locations (McAlpine and Hobbs, 2014). In practice, the 

canopy based height has not been well defined (Mitsopoulos and Dimitrakopoulos, 2014). 

Current studies found that height metrics derived from airborne LiDAR point clouds (vertically 

ranging from 1 m to 4 m with 1 m intervals) are strongly correlated to field measured shrubby 

ladder fuel height and cover within these individual height classes in mixed conifer forests 

(Skowronski et al., 2007; Clark et al., 2009; Wing et al., 2012). These studies indicate that 
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LiDAR point cloud data allows accurate description about shrubby or elevated fuel height and 

cover.  

A multi echo airborne LiDAR sensor allows a three dimensional forest structural measurement 

based on multiple pulse returns leading to a limitation in detecting forest surface or litter-bed 

fuel when fewer pulses reach the forest floor in a very dense forest. The litter-bed fuel load 

affects fire ignition and rates of fire spread, which are key information for fire danger rating 

and fuel hazard assessment. Terrestrial LiDAR sensors have the potential to overcome these 

limitations as they produce point clouds of higher density and higher laser ranging accuracy 

than airborne LiDAR systems (Simonse et al., 2003). They can scan a full hemisphere from a 

point on the canopy floor to tree stem and foliage. 

Terrestrial LiDAR application in forestry has focused on forest inventory estimates at a fine 

resolution but at smaller scales (Bellian et al., 2005; Dassot et al., 2011). Similar to airborne 

LiDAR overlapping flight lines, overlapped scans using the tripod-mounted devices are also 

often found in forest applications in order to increase the size of the scanning sites and improve 

the detection accuracy of vegetation further away from the scanning positions (Hopkinson et 

al., 2004). Many mathematical morphology techniques, such as the Hough-transformation and 

circle approximation were tested for tree stem identification (Simonse et al., 2003; Pfeifer and 

Winterhalder, 2004; Henning and Radtke, 2006; Maas et al., 2008; Moskal and Zheng, 2011). 

A tree topology skeleton algorithm was developed to reconstruct a three-dimensional tree 

structure by fitting a sequence of overlapping cylinders in point clouds to model stem and some 

major branches of a tree for a wood volume estimation (Pfeifer and Winterhalder, 2004). Côté 

et al. (2009) applied the three-dimensional Monte Carlo ray-tracing model Rayspread 

(Widlowski et al., 2006) to estimate the wood area and the leaf area. Hosoi and Omasa (2006) 

used the voxel-based three-dimensional model to estimate leaf area density. Although these 

studies did not use terrestrial LiDAR data to retrieve or reconstruct a forest structure, they 
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demonstrated that terrestrial LiDAR has the potential to present understorey fuel structure more 

accurately on a very fine resolution (e.g. cm or mm).  

For bushfire-related studies, using terrestrial LiDAR data to classify fuel structure and to 

quantify understorey forest fuel structural characteristics (e.g. depth, cover, and volume) is still 

an emerging field. Marselis et al. (2016) successfully separated forest fuel layers (canopy, tree 

trunks, elevated shrubs and near-surface vegetation) according to the vertical connection of a 

laser point’s representation in eucalypt forest vegetation. They used a handheld LiDAR device 

(Zebedee). However, the litter-bed fuel layer could not be identified in their study, and the 

method was tested in a simple-structured young forest that has flat terrain and relatively low 

overstorey and understorey vegetation (Marselis et al., 2016). In reality, dense and mature 

forests with steep slopes tend to have higher forest fire danger rates. Therefore, this method 

requires testing in forests with various fire history and complex terrain features. In conclusion, 

current bushfire fire-related studies and operational activities share common challenges in 

quantifying litter-bed fuel load as well as understorey fuel strata classification. 

2.2.4 Conclusion  

Remote sensing technologies allow forest fuel measurements to be more time effective, 

objective, and cheaper as they provide accurate and consistent information about forest fuel 

characteristics across a large area with a fine resolution. Active remote sensing derived forest 

fuel type classification and fuel moisture content estimates have been applied for fire danger 

rating and fire spread modelling. Many studies found that active remote sensing data including 

airborne radar and LiDAR data can be used to efficiently and accurately quantify crown fuel 

characteristics at a landscape scale. They also overcome the limitations of the passive remote 

sensing systems that only provide two-dimensional imagery of forest canopy and cannot 

penetrate the forest canopy to detect understorey vegetation. However, remote sensing 
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application in understorey fuel structure measurements as well as litter-bed fuel load estimates 

have not been well studied.  

Forest fuel reduction treatments (e.g. prescribed burns) require accurate information about 

understorey fuel growth after previous fire events. Results of an overall forest fuel hazard 

assessment are determined by an accurate description about understorey fuel cover and depth 

of distinct fuel layers including elevated, near-surface and litter-bed fuel layers. Litter-bed fuel 

load is one of the most significant forest fuel characteristics required by fire danger rating 

systems and surface fire spread models. In conclusion, an accurate and efficient approach to 

classify fuel layers and quantify understorey fuel characteristics including fuel load, depth and 

cover underpins sound forest fuel management to mitigate fire threats to our community and 

environment. Therefore, this project aims to develop a novel method to quantify understorey 

fuel more accurately and efficiently using LiDAR data. Improved fuel characterisation will be 

of benefit to the fire agencies and land managers in their fire risk planning and therefore 

potentially resulting in better fire management decision-making.   

  



- 38 - 

 

Chapter 3 statement  

Chapter 3 has been published in the Journal of Applied Remote Sensing in 2016. This chapter 

describes forest fuel strata classification using TLS data. In this study, an automatic tool for 

forest fuel strata classification has been developed in order to accurately extract forest fuel 

structural characteristics based on integration between GIS and TLS data. It provides a 

consistent and accurate alternative to visual assessing techniques described in the current fuel 

hazard assessment guides and fire behaviour models. The accurate description of forest 

structural characteristics obtained by this method benefits bushfire-related operational 

activities and the development of fire behaviour models. 
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Chapter 3. Strata-based forest fuel classification for 

wild fire hazard assessment using terrestrial 

LiDAR data 

Abstract 

Fuel structural characteristics affect fire behaviour including fire intensity, spread rate, flame 

structure and duration, therefore quantifying forest fuel structure has significance in 

understanding fire behaviour as well as providing information for fire management activities 

(e.g. planned burns, suppression, fuel hazard assessment and fuel treatment). This paper 

presents a method of forest fuel strata classification with an integration between terrestrial light 

detection and ranging (LiDAR) data and Geographic Information System (GIS) for 

automatically assessing forest fuel structural characteristics (e.g. fuel horizontal continuity and 

vertical arrangement). The accuracy of fuel description derived from terrestrial LiDAR 

scanning (TLS) data were assessed by field measured surface fuel depth and fuel percentage 

covers at distinct vertical layers. The comparison of TLS-derived depth and percentage cover 

at surface fuel layer with the field measurements produced RMSE values of 1.1 cm and 5.4%, 

respectively. TLS-derived percentage cover explained 92% of the variation in percentage cover 

at all fuel layers of the entire dataset. The outcome indicated TLS-derived fuel characteristics 

is strongly consistent with field measured values. TLS can be used to efficiently and 

consistently classify forest vertical layers to provide more precise information for forest fuel 

hazard assessment and surface fuel load estimation in order to assist forest fuels management 

and fire-related operational activities. It can also be beneficial for mapping forest habitat, 

wildlife conservation and ecosystem management. 

Keywords: TLS, GIS, canopy height, Eucalyptus spp. 
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3.1 Introduction 

The development of accurate and reliable methods to quantify forest fuels is an ongoing 

requirement of government and fire authorities, due to continual need for improvement in fire 

resource management (Gould et al., 2008). In Australia, fuel characteristics are usually 

assessed and described in numerical terms by fuel loading, fuel depth, and fuel particle density 

(McArthur, 1962; McCaw, 1991). Traditional fuel assessment relies on destructive 

measurement by directly measuring dry weight of total live and dead biomass per unit area, 

particularly fine litter fuel (Peet, 1971; Fox et al., 1979; Raison et al., 1983; Simmons and 

Adams, 1986), often defined in Australia as those fuel particles less than 6 mm in diameter.  

This is a required input to the McArthur empirical rate of spread model for eucalypt 

forests(Luke and McArthur, 1978; Watson et al., 2012). However, these direct measurements 

are time and labor intensive (Keane et al., 2001; Sandberg et al., 2001; Maas et al., 2008; Chen 

et al., 2011; Gould and Cruz, 2013). An Australian bushfire study, Project Vesta, identified the 

importance of fuel structural characteristics in determining fire behaviour and ease of 

suppression, rather than fine fuel load (Gould et al., 2008). Fuel structure is comprised of five 

layers based on their horizontal arrangement and vertical position in the forest profile, 

including canopy fuels, shrubby elevated fuels, near-surface fuels, litter fuels (surface fuels), 

and bark fuels (Gould et al., 2008). Currently, guidelines for fuel structure measurement 

through visual assessment have been developed for southeastern Australia and Western 

Australia, through the Overall Victorian Fuel Hazard Assessment Guide and Project Vesta, 

respectively. The visual assessment of fuel structural characteristics (e.g. fuel depth, height, 

percentage cover, horizontal continuity and vertical arrangement) at distinct fuel layers are 

rapid; however it can be subjective, inconsistent and also be restricted by local complex terrain. 

Therefore, an efficient and accurate method to assess fuel structural characteristics is a 
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significant need in bushfire-related studies and forest fuel resources management (Dubayah 

and Drake, 2000; Lim et al., 2003; Andersen et al., 2005; Gould et al., 2011). 

Light Detection and Ranging (LiDAR) can be used to reconstruct the vertical overstorey and 

understorey vegetation arrangement due to its capability of three-dimensional (3D) 

measurements with high accuracy (Lefsky et al., 2002; Lim et al., 2003; Popescu et al., 2003; 

Andersen et al., 2005). Airborne Laser Scanner (ALS)-derived canopy height models (CHMs) 

have been used to describe canopy height distribution (Naesset, 1997; Gaveau and Hill, 2003; 

Pitkänen et al., 2004; Andersen et al., 2005) and to identify individual tree heights (Popescu et 

al., 2003; Pitkänen et al., 2004; Suárez et al., 2005; Koch et al., 2006; Popescu, 2007). 

Moreover, LiDAR-derived vertical distribution of forest structures provides a new perspective 

to describe canopy profile. Recent studies, including for example that of  Hermosilla et al. 

(2014) and Jakubowksi (2013), described vertical profile of forest vegetation using theoretical 

distribution functions of ALS-derived indices. In these studies, lower vegetation (< 3 m) were 

excluded in the vertical description of forest structure, the authors argued the complete 

vegetation profile including the removal points would not follow the theoretical distribution.  

However, the lower vegetation including elevated shrubs, near-surface grass and surface litter 

fuel are significant fuel structural components, which directly impact on fire ignition and its 

rate of spread. ALS has limitations in detecting understorey fuels in multilayered forests, since 

the emitted laser beams have difficulty in penetrating the upper canopy to hit the ground with 

the majority of the energy reflected back to the sensor from overstorey vegetation (Lefsky et 

al., 2002; Zimble et al., 2003; Devereux et al., 2005; Liu, 2008).  In this context, terrestrial 

LiDAR scanning (TLS) can be used as a substitution of ALS for description of shadowing 

effected understorey vegetation (Dassot et al., 2011). 

Several studies have evaluated the significant improvement of using TLS (e.g. static and mobile 

TLS) in reducing the shadowing effects of overstorey vegetation to detect understorey fuel. 
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TLS changes the scanning angles and positions from top of canopy to understorey, which 

allows the majority of energy from laser beams to directly reflect back to the laser sensor from 

the lower (live and dead) vegetation, it also improves the spatial accuracy up to millimetres 

(Thies and Spiecker, 2004). The survey sizes, however, can be restricted within the given 

scanning scales (vertical and horizontal) of the survey instruments (Bellian et al., 2005; Dassot 

et al., 2011). Overlapped scans using the static (e.g. tripod mounted) devices are also often 

found in forest applications in order to increase the size of the scanning sites and also to 

improve the accuracy of further vegetation away from the scanning positions (Hopkinson et al., 

2004). The overlapping scans are not necessary when using mobile TLS, since it utilises a 

navigation module to determine the position of each laser beam when the laser takes 

measurements of the environment (Ryding et al., 2015). The vegetation measurements derived 

from TLS can be utilized as a basis for assessing biophysical tree parameters that include tree 

heights, diameter at breast height (DBH), woody volume and leaf area (Loudermilk et al., 2009; 

Newnham et al., 2015).  

Studies found that static TLS-derived mathematical morphology techniques (e.g. Hough-

transformation, circle approximation, and locating arc centre algorithm) could be used to 

estimate DBH accurately and consistently (Besl and McKay, 1992; Simonse et al., 2003; 

Aschoff and Spiecker, 2004; Pfeifer and Winterhalder, 2004; Henning and Radtke, 2006; Maas 

et al., 2008; Côté et al., 2009; Moskal and Zheng, 2011). A proof of concept test conducted by 

Ryding et al. (2015) demonstrated the ability of mobile TLS (including Zebedee and FARO) 

to extract DBH and stem position using circle approximation. The DBH and the stem position 

derived from Zebedee achieved a RMSE value of 1.5 cm and 2.1 cm, respectively. The 

maximum measurement error stated by the manufacturer is 3 cm at a range up to 10 m (Bosse 

et al., 2012).  Consequently, mobile TLS-representation of tree trunks can assist forest fuel 

strata classification. 
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Other studies have described estimating woody volume and leaf area by reconstructing tree 

structures using TLS-based 3D modelling. For instance, tree topology skeleton algorithms for 

estimating woody volume of main branches were proposed by Gorte and Pfeifer (2004). They 

fitted a sequence of overlapping cylinders in point clouds to model stem and some major 

branches of a tree. Côté et al. (2009) applied the 3D Monte Carlo ray-tracing model Rayspread 

(Widlowski et al., 2006) reconstruction modelling to estimate the woody area and the leaf area. 

These methods, however, have yet not been validated with ground data (Thies and Spiecker, 

2004; Moskal and Zheng, 2011). Hosoi and Omasa (2006) used a voxel-based 3D model to 

estimate leaf area density (LAD). In their study, the best LAD estimates showed errors of 17% 

at minimum horizontal layer thickness and 0.7% at the maximum thickness, respectively. Xu 

et al. (2007) represented tree trunks and main branches using polygonal meshes derived from 

TLS. This approach has only been tested by scanning of Elm, Ash, and Cottonwood trees (Xu 

et al., 2007).  

Consequently current methods developed to detect information of understorey vegetation have 

restrictions on operational use to assess forest fuel structures, because they are invalid for fuel 

strata-based classification, tree species or specific forest fuel types. For bushfire-related studies, 

using TLS to classify fuel structures and quantify understorey forest fuel structural 

characteristics (e.g. depth, cover, and volume) is still in an early stage. Litter-bed depth highly 

varies among plots; TLS is sensitive to height variation than traditional point intercept sampling 

(Loudermilk et al., 2009). Loudermilk et al. (2009) also found TLS voxel-based fuel volume 

estimates were linear correlated with biomass and leaf area distribution for individual shrubs 

when influenced by species, size and plant section. A transition from grass clumps, low forbs, 

and shrubs to grass seed heads and taller shrubs was determined by a derivative function on the 

frequency values of the fuel height (< 0.5 m) distribution derived from TLS (Rowell et al., 

2016). Marselis et al. (2016) used the circle fitting method to identify the tree trunks from 
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elevated shrubs in a young open eucalypt forest. Their study successfully separated distinct 

vertical fuel layers, including canopy, tree trunks, elevated shrubs and near-surface vegetation, 

according to vertical connection of laser point’s representation in forest vegetation. This 

method, however, was only assessed in a simple-structured young forest that has flat terrain 

and relatively low overstorey and understorey vegetation. More tests are essential in dense and 

mature forests with complex terrain features.  

Our study proposed an integrated method of TLS and GIS for an automatic classification of 

eucalypt forest fuel structures and quantification of understorey fuel structural characteristics, 

including surface fuel depth and percentage cover of fuel at individual fuel layers. This method 

provided an efficient and consistent alternative to visual assessment for fuel layer classification 

in multi-layered eucalypt forest with complex terrain features, in order to assist fuel hazard 

assessment, forest fuels management, and bushfire-related activities across study area. 

3.2 Materials and Methods 

3.2.1 Study Area and Data  

The study area is located at Upper Yarra Reservoir, Victoria, in south-eastern Australia 

(37°34’32’’S, 145°56’17’’E) (Figure 1), which is a eucalyptus open forest with a shrubby 

understorey. It has a large range of indigenous eucalypt species which include, Manna Gum 

(e.g. Eucalyptus viminalis), Grey Gum (e.g. Eucalyptus cypellocarpa), Messmate (e.g. 

Eucalyptus obliqua), Peppermint (e.g. Eucalyptus croajingolensis, Eucalyptus dives, 

Eucalyptus elata, Eucalyptus radiata), Silvertop (e.g. Eucalyptus sieberi), Stringybark (e.g. 

Eucalyptus baxteri, Eucalyptus cephalocarpa, Eucalyptus globoidea), and Candlbark Gum (e.g. 

Eucalyptus rubida), and mixed understorey species (e.g. Calochlaena dubia, Acacia dealbata, 

Acacia myrtifolia, Coprosma quadrifida). The elevation ranges from 219 m to 1205 m; the 
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slope ranges from 0 to 60 degree; the average annual rainfall is approximately 1122 mm and 

the main soil type is clay loam.  

Our study sites consisted of six plots of 50 m by 50 m with different terrain features and fire 

histories. Controlled burns have been conducted as a typical fuel-management activity in this 

area, and wildfires also occurred over time after recovery from the Black Friday fires of 13th 

January 1939. Plot 1 and plot 2 and plot 3 experienced wildfires in February 2009; plot 4, plot 

5, and plot 6 underwent controlled burns in March 2010, April 2008 and April 2007, 

respectively.  

 

 

Figure 1. Study plot locations. 
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The TLS data covering these six plots were acquired from April to May 2015 using a Zebedee 

three-dimensional Mapping System developed by CSIRO Australia. The device consists of a 

lightweight laser scanner with a maximum 30 m scanning range, and a micro-

electromechanical systems inertial measurement unit mounted on a simple spring mechanism 

(Bosse et al., 2012). As an operator holding the device moves through the environment, the 

scanner loosely oscillates about the spring, therefore producing a rotational motion that 

converts the laser’s inherent 2D scanning plane into a local 3D field of view. Walking slowly 

through each plot allows detailed, spatially extensive laser data to be collected. The scanning 

time is about 20 to 30 minutes for each plot depending on the accessibility and the local 

topography and the trajectory; point density can be increased by increasing scanning time. 

Field data, including fuel depth (height) and percentage cover at surface fuel layer, near-surface 

fuel layer, and elevated fuel layer, were collected simultaneously with the TLS survey. For 

each plot, random samplings were chosen in order to validate the accuracy of fuel assessment 

derived from the TLS data. The sample size for each plot varies from 5 to 8 depending on the 

local environment and accessibility. The sampling fuels were directly measured and assessed 

within a 1 m by 1 m frame. The surface fuel depth (cm) was directly measured in areas where 

near-surface fuels did not obscure the litter using a simple depth gauge - a 15 cm circular disk 

with a ruler through a slot in the centre(Deeming et al., 1977). The finalised depth was 

determined by averaging five measurements within the frame. The depth was determined by 

an average value of five measurements at each site and fuel coverage was assessed visually. 

Both fuel characteristics were collected based on the criteria from Victorian Overall Forest 

Fuel Hazard Assessment Guide. 
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Figure 2. TLS-derived fuel strata classification. 

3.2.2 Methods 

The integration between LiDAR and GIS-based method for an automatic forest fuel strata 

classification can be described in the following processing steps: converting elevation data to 

height values (Z to H conversion), fuel structure classification, and LiDAR derived fuel 

characteristics (Figure 2). These processing procedures were scripted and automated in ArcGIS 

ModelBuilder. The algorithm is illustrated as below.  
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3.2.2.1 Z to H Conversion 

After the LiDAR point clouds are extracted for the selected area, a digital elevation model 

(DEM) is generated which is used to convert the elevation value of each point (Z) to its height 

value above the bare earth (H). The DEM is generated through interpolation according to the 

lowest point within a 1 m by 1 m grid in order to keep consistency with the field measurements. 

The values of H are calculated by subtracting a smoothed DEM from the Z values for further 

fuel structure classification and assessment. 

3.2.2.2 Fuel Structure Classification 

Forest fuel layers are separated and grouped based on the spatial continuity of the forest bio-

physical knowledge. As shown in Figure 2, the fuel structure classification method involves 

the following steps:  

1) Classification of surface fuel and near surface fuel. 

Surface fuel is known as litter fuel, predominantly horizontal in orientation. Near-surface 

fuel, on the other hand, has a mixture of vertical and horizontal orientations. The frequency 

plot of TLS points against height (h < 0.5) (Rowell et al., 2016) tends to follow a bimodal 

distribution. The division point of the bimodal curve is identified by derivative functions. 

These two fuel layers are then separated by the identified division point. 

2) Initial classification of elevated shrub fuels (0.5 m - 2 m) and overstorey fuels (greater than 

2 m).  

The fuel layer classification based on only the height information is illustrated in Figure 3. 

By applying the initial classification directly to the LiDAR points, tall shrub fuels may be 

incorrectly assigned as overstorey fuels; low shrub fuels may also be misclassified as near-

surface fuels; trunks cannot be classified by this simple step which creates the difficulty of 
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separating the trunks from overstorey fuels. These misclassified and unclassified points 

need to be reassigned according to their vertical and horizontal continuity.  

3) Horizontal slicing the initially classified laser points into groups based on a height interval. 

Diameters of tree trunks do not change much within the 1 m interval of height (Gorte and 

Pfeifer, 2004). The smaller the interval requires longer processing time. For the processing 

efficiency, 1 m is chosen as the height interval; each sliced point layer (l) has 1 m height 

thickness. The sliced point layers will be used for the reference tree trunk identification 

where li (i = the number of height intervals) ranges from 0 to the maximum height of the 

canopy. 

4) Identification of reference trunks through locating closest points between two of the 

discontinued slices as shown in Figures 4a, b and c. 

The two slices are selected from the initially classified overstorey fuels with the height 

range between 2 m (minimum height of the overstorey in the study area) and h (the 

minimum height of the tree branches). The h values can be estimated based on empirical 

information (e.g. the species and the forest age). We assume that trunks from the two sliced 

point layers have linear relationships when they are projected to two dimensions according 

to the x and y coordinates of the laser points. For example, in Plot 1, slice l3 with the height 

range of 2 m to 3 m is shown in Figure 4a and slice l9 with the height range from 8 m to 9 

m is shown in Figure 4b. The reference tree trunks can be identified by searching for the 

closest points within a threshold, r. The threshold (r) is defined according to the footprint 

size of the laser system. We used a value of 0.02 m for r in our calculations. The laser points 

representing tree trunks from the discontinued slices as shown in Figure 4c, are then used 

as a reference to search for the trunks from each slice. 
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Figure 3. Fuel layer classification based on vertical height ranges. 3a. An overview of the 

initial classification based on height ranges; 3b. The initially classified fuel strata from top to 

bottom, including overstorey fuel, elevated fuel, near surface fuel, and surface fuel. 

5) Searching tree trunks from other slices using the reference trunks. 

Using the above example, the identified points from slice l9 act as a reference trunk layer 

to determine other points from the neighbouring slices l10 and l8 by searching their closest 

point upwards and downwards against slice l9. The determined points from the 

neighbouring slices then are assigned and grouped into the reference layer to continue the 

searching procedure upwards and downwards, till no further trunks can be identified and 

assigned. The assigned trunks from these slices are then merged together for next 

classification step (Figure 4d). 



- 51 - 

 

 

Figure 4. Reference trunks identification.4a and 4b show the sliced points from layers l3 and 

l9, respectively; 4c represents the reference trunks; 4d shows assigned tree trunks (black) 

according to the reference trunks (grey). 

6) Elevated shrub reassignment from the incorrectly assigned overstorey. 

This is accomplished by a) subtracting laser points of trunks from the slices; b) searching 

shrubs at the subtracted slices from the height range between 2 m to h’ (the maximum 

height of the shrubs), progressing upwards until no further point can be allocated, thus h’ 

can be defined; c) reassigning the searched shrubs and merging them with the initial 

elevated fuel class to regroup the elevated fuels together. 
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7) Identifying tree branches and leaves by subtracting the reassigned elevated shrubs from the 

rest of the points above 2 m and assigning them as branches and leaves. 

3.2.2.3 LiDAR Derived Fuel Structural Characteristics 

After the fuel layer classification, TLS points are used to quantify forest fuel structural 

characteristics, such as surface fuel depth and percentage cover at distinct fuel layers.  

1) A raster image of surface fuel depth is interpolated based on TLS points’ height values (h) 

at surface fuel layer. The cell sizes vary depending on the spatial accuracy and the footprint 

of the laser scanning system. 

2) Fuel cover is presented as a binary image with the same cell size by classifying the cells 

into two groups according to the presence (1) or absence (0) of TLS points. The percentage 

cover of fuel is estimated by calculating the proportion of presence of TLS points in 

individual fuel layers. 

3.2.2.4 Validation 

The accuracy of TLS-derived forest fuel structural characteristics is determined primarily by 

the accuracy assessment of the TLS-derived surface fuel depth and percentage covers at distinct 

layers against the field survey data at 45 sampling sites. In some plots there are only surface 

fuel, or combination of both surface and near-surface fuel with elevated fuel missing. Therefore, 

the number of fuel samples are limited, when we took consideration of availability of three fuel 

layers (surface, near-surface, and elevated fuel layers) within 1 m2 in the field. TLS-derived 

fuel properties compared with field sampling data according to the GPS location of each 

sampling site, since the Zebedee device has a detachable GPS device. In addition, photographs 

taken at each sampling site were used to verify the location of the plots. The root mean square 

error (RMSE) is applied to validate the accuracy, which is expressed as: 

RMSE = √∑
(𝑥𝑖−𝑥𝑖

′)2

𝑁
𝑁
𝑖=1  
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where 𝑥𝑖 represents the filed data (surface fuel depth and percentage cover at distinct layers) 

of fuel sample i,  𝑥𝑖
′ is defined as the TLS-derived fuel characteristics of fuel sample i and N 

is the number of fuel samples. The coefficient of determination (R2) is also calculated as the 

proportion of the response variable variation that is explained. Moreover, the P value is used 

to test for statistical significance. In addition, the assumptions and random errors associated 

with the regression model are also assessed by visualising the statistical graphics, such as, a 

histogram of raw residuals and a normal probability plot.  

3.3 Results 

Table 1. Surveyed and TLS-derived fuel characteristics. 

    Field measured  LiDAR derived Bias 

Plot ID 

Sample 

ID 

Litter-bed 

Depth (cm) 

Litter 

Cover 

(%) 

Near-

surface 

Plant 

Cover 

(%) 

Elevated 

Fuel 

Plant 

Cover 

(%) 

Litter-bed 

Depth (cm) 

Litter 

Cover 

(%) 

Near-

surface 

Plant 

Cover 

(%) 

Elevated 

Fuel 

Plant 

Cover 

(%) 

1 1 2 90 60 50 1.2 10 11.3 3.5 

1 2 2 90 60 75 -0.2 10 4.2 0.3 

1 3 2 100 100 80 -0.3 0 0 12 

1 4 6 100 100 30 -1 0 0 9.7 

1 5 6 100 70 50 -1 0 4.8 -5.5 

2 1 5 90 40 100 0 10 -3.8 -3.8 

2 2 6 100 60 80 -1 0 1.1 -7.1 

2 3 7 100 50 90 1.2 0 -2.5 1.3 

2 4 5.5 100 100 50 -0.5 0 0 1 

2 5 5 90 80 40 0 10 4.7 0.8 

2 6 5.5 100 100 50 -0.5 0 -0.7 -0.9 

3 1 13 100 70 90 1.1 0 -2 2 

3 2 10 100 30 90 1.2 0 -4 0 

3 3 7 100 90 100 -0.4 0 6 0 

3 4 6 80 30 90 0.4 1.4 1 5 

3 5 6 70 30 80 -0.2 -2.6 -6 -1 

3 6 5 60 90 90 -0.1 2.9 6 10 

3 7 8 100 90 100 -0.1 0 0 0 

3 8 11 100 90 100 0.2 0 1 0 

3 9 9 100 90 50 -0.1 0 1 -2 

3 10 7 100 80 60 0.1 0 3 0 

4 1 1.5 90 40 15 0.1 10 0 -2 

4 2 2 90 25 45 0.6 7 5 8 

4 3 1.5 80 20 60 -0.1 9 2 -1 

4 4 0.5 90 30 40 2.5 8 14 8 

4 5 3 80 10 20 -1.6 18 -4 2 
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4 6 3.5 70 30 30 -1.3 1 5 -4 

4 7 2 75 40 40 1.7 11 4 17 

4 8 1 50 10 35 -0.7 -6 2 6 

5 1 7 90 60 70 -1.6 10 21.9 18.7 

5 2 2.5 85 85 65 -1 13 10.8 11.5 

5 3 3 100 85 55 -1.1 0 12.5 -14.8 

5 4 5 95 75 65 -2 5 19.9 20.3 

5 5 2.5 90 75 60 -0.8 10 14.8 0.5 

5 6 3.5 100 60 55 -1.5 0 18.5 1 

5 7 7 100 80 45 -3.3 0 16 -6.1 

5 8 5 95 80 70 -2.5 5 16.2 19.6 

6 1 5 100 90 0 0 0 5.5 0.3 

6 2 7 90 80 40 -0.5 10 3.4 -22.2 

6 3 10 100 80 70 -1.3 0 1.5 15.4 

6 4 2 80 85 80 0.2 15.1 -1.7 11.2 

6 5 5 100 85 40 -0.2 0 -1.7 -8.9 

6 6 5 100 90 30 0.7 0 5.5 -9.3 

6 7 4 100 70 40 -0.6 0 0.6 30.3 

6 8 3 90 80 60 -1.5 8.1 9.6 -9.6 

 

This study results in three outputs: fuel strata classification, surface fuel depth and fuel 

percentage cover at distinct fuel layers. The GIS and TLS-derived method produces a more 

accurate forest fuel strata stratification (Figure 5b) compared to the photograph in Figure 5a. 

The tree trunks in Figure 5c are separated from branches and leaves compared with the initial 

fuel layer classification in Figure 3b. The overstorey fuels misclassified by directly applying 

the height difference are also correctly reassigned as elevated shrubs.  

Data on surface fuel depth at 45 sampling locations were collected to validate the TLS-derived 

fuel structural characteristics (Table 1). The residuals were normally distributed, and the input 

variables followed the assumptions of linear regression. The R2 value of 0.9 and RMSE values 

of 1.1 (cm) were produced by comparing the TLS-derived surface fuel depths with the surveyed 

depths (Figure 6). A correlation coefficient value of 0.4482 described in Table 2 shows a strong 

relationship between the surface litter fuel depth and elevated fuel percentage cover. 

 

 



- 55 - 

 

Table 2. The correlation coefficients among fuel layers. 

Correlation Coefficient 

Litter-bed Depth 

(cm) 

Litter 

Cover (%) 

Near-surface Plant 

Cover (%) 

Elevated Plant 

Cover (%) 

Litter-bed Depth (cm) 1 0.2092 0.1145 0.4482 

Litter Cover (%) - 1 0.4583 0.0129 

Near-surface Plant Cover (%) - - 1 0.062 

Elevated Plant Cover (%) - - - 1 

 

Direct application of the initial fuel layer classification based on vertical height ranges resulted 

in tree trunks not being detected and misclassification occurring (Figure 3), therefore, a 

reclassification of fuel strata was necessary before assessing fuels. The GIS and TLS - based 

method had very small discrepancies compared with the observed values at each fuel strata. 

The relationship was found to be statistically significant therefore we can have confidence in 

using TLS to classify understory fuel layers, and also to represent forest fuel coverage for 

surface, near-surface fuel, and elevated fuel layers (Figure 7). The TLS-derived fuel percentage 

covers had statistically significant relationship with surveyed results at surface fuel layer (R2 = 

0.8, RMSE = 5.4%), near-surface fuel layer (R2 = 0.9, RMSE = 6.9%), and elevated fuel layer 

(R2 = 0.9, RMSE = 9.9%) (Figure 7a,b,c). The total of TLS-derived fuel cover against field 

measured values produced values of R2 (0.9) and RMSE (7.6%) (Figure 7d). A normal 

distribution of the data were confirmed by a visual interpretation of histogram and normal 

probability plot of residuals. 
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Figure 5. TLS-derived fuel structural classification compared with a photograph taken at Plot 

2. 5a. A photography of forest fuel; 5b. An overview of LiDAR derived fuel strata; 5c. The 

classified fuel strata from top to bottom, including tree trunks, elevated fuel, near surface 

fuel, and surface fuel. 

 

Figure 6. Scattergram of TLS-derived against measured litter bed depth with linear regression 

(n = 45). (Note: some sample points are very close to each other and appear overlapped.) 
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Figure 7. TLS-derived and field measured fuel cover scattergram with linear regression. 7a. 

Litter cover (n = 45); 7b. Near-face cover (n = 45); 7c. Elevated cover (n = 45); 7d. 

Understorey fuel cover (n = 135). (Note: some sample points are very close to each other and 

appear overlapped.)  

3.4 Discussion 

Current fire danger rating systems and fire behaviour prediction models share a common 

challenge in quantifying fuels, since the fuel varies between sites and even within 

homogeneous vegetation depending on forest fuel types, local environment and previous fire 

disturbances (Deeming et al., 1977; Tolhurst et al., 2008; Gould et al., 2014). Accurately 

describing forest surface fuel load and fuel structure is significant for understanding bushfire 

behaviour and suppression difficulties. Traditionally, surface fuel load is determined by field 

sampling, oven drying, and weighing (McArthur, 1962; McCarthy, 1996; McCarthy et al., 

1998), which can be time and labour intensive at large scales. McArthur’s positive relationships 
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(1962) between surface fuel load and surface fuel depth have been used as a rapid method to 

support fire hazard-reduction burns in Eucalypt forests in Australia, instead of directly 

measuring surface fuel load. In addition, forest vertical structure is a function of species 

composition, microclimate, site quality and topography, which has a significant influence on 

productivity and fuel accumulation (Dubayah et al., 1997; Dubayah and Drake, 2000). 

Therefore, the development of accurate, reliable and efficient methods to quantify forest 

surface fuel depth and fuel strata can be useful for surface fuel load estimation and fire hazard 

assessment. 

In our study, the fuel structure classification based on the integration between TLS and GIS 

was proposed as a means to provide accurate, consistent and objective information for 

describing forest fuel characteristics. It could be used to assist visual fuel hazard assessment, 

when visual assessment is restricted by local complex terrain. It could also be useful for 

validating the result of visual assessment, which is error-prone and subjective. The TLS-

derived surface fuel depth is also of interest in surface fuel load estimation for assessing fuel 

hazards as well as predicting fire behaviour potential.  

Currently accepted methods used by fire fighters and land managers for field measurements 

are susceptible to bias. To be more specific, during the fuel assessment, the observer measures 

the surface fuel depth by direct measurements at one site, the finalised depth is determined by 

an average value of 5 measurements within the site. The observer also assesses the percentage 

cover of the vegetation for each fuel layer based on his or her empirical knowledge and visual 

assessing skills. Field-based surface fuel and near-surface fuel assessment can be more 

straightforward compared with assessing elevated shrubs because of the heights of the fuel 

layer and the position of the observer. Visually assessing elevated fuels may also create 

inconsistency as a result of individual survey error and local environment factors. Therefore, 

currently used visual assessment could be less objective compared with TLS data.  
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In contrast, this GIS-based fuel structure classification can be used to effectively and efficiently 

to assess forest fuel hazard and to estimate forest fuel inventory. The complex GIS procedure 

is edited, compiled and implemented in ArcGIS ModelBuilder. It can be used to automatically 

classify fuel strata and quantify surface fuel depth for assessing forest fuel hazards for open 

eucalypt forests with complex understorey vegetation and trains. The quantification of forest 

fuel structure and depth can assist surface fuel load estimation for fire-related management and 

operations. 

TLS is sensitive to vertical and horizontal change in vegetation availability (Loudermilk et al., 

2009). The plot 5 and 6 trend to have more bias in elevated fuel cover (Table 1). These slight 

discrepancies indicate visual assessment can be more subjective in describing structural 

information of elevated fuel. Table 2 describes the independence among layers based on their 

correlation coefficients. The percentage cover of elevated fuel is not correlated with any other 

fuel layers, but it has a strong positive relationship with surface litter depth. From a fuel 

accumulation concept, litter fuel accumulates over time depending on the difference between 

rates of fuel accession and decomposition (Peet, 1971). Understory shrubs contribute to 

increasing fuel accession rates thereby litter accumulates with the similar environmental 

condition and forest fuel type (Gould et al., 2008). A positive relationship between fuel cover 

at surface layer and near-surface layer (table 2) reflects understorey recovery with litter fuel 

accumulation and lower vegetation regrowth after the previous fire event (Fox et al., 1979). 

However, it should be noted that the classification could be affected by the choice of slicing 

interval and threshold. For instance, increasing the thickness of horizontal slices raises both 

accuracy and processing time. We suggest using 1 m as the height interval; the thinner the slice, 

the more processing time required. The accuracy of reference trunk identification could be 

affected by choosing the threshold (r) value. A rise in r value may lead to overestimation of 

the diameter of the stems. The sensitivities of the thickness of slices and the r value need to be 
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tested. This method is also restricted by empirical knowledge of forest fire history and the 

minimum height of the tree branches (h). 

Tree heights, DBHs and number of trees are not validated since they are not essential for 

assessing fuel hazard. For future study, DBHs could be tested in order to assess the accuracy 

of TLS-derived forest inventory. An overall forest fuel hazard assessment requires fuel depth 

and percentage cover at individual fuel layers, as well as a description of bark fuel as inputs. 

Bark fuel can be described by ease of ignition, the way it attaches to the trunks, the quantity of 

combustible bark, and burn out time according to the thickness, size, and shape of bark pieces. 

However, LiDAR has difficulty in assessing bark fuels, since assessing bark fuels requires 

more complex empirical knowledge to describe the texture and to assess the effect of bark on 

suppression difficulties. The application of TLS in quantifying and assessing forest fuels is 

restricted by scanning angle, scale (vertical and horizontal) and position. In order to overcome 

these restrictions, terrestrial and airborne LiDAR observations can be integrated to provide a 

more complete forest fuel hazard assessment. 

3.5 Conclusion  

Traditional wildland fuel load measurements are based on destructive samplings in order to 

directly measure the dry weight of fuels, which is time and labour intensive. The current 

sampling-based visual assessment is rapid but it can be subjective when extrapolated to infer 

fuels across larger landscape scales. LiDAR technology can provide more efficient, consistent 

and accurate information for measuring forest vegetation biomass. This paper has introduced 

an approach based on an integration between TLS and GIS to automatically classify forest fuel 

strata and assess fuel characteristics. The complex GIS-based processing procedures were 

edited and compiled in ArcGIS ModelBuilder, and then implemented with an ArcGIS toolkit. 

The outcome suggests that the integrated method can provide objective, consistent and efficient 
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information to describe fuel structural characteristics for forest fuel hazard assessment and 

forest fuels management as an alternative of the visual assessment. Additionally, accurate and 

efficient quantification of fuel structure and surface fuel depth has its significance in estimation 

of forest surface fuel load. The proposed method is beneficial for understanding fire behaviour 

in multilayered Eucalypt forests.   
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Chapter 4 statement  

Chapter 4 has been submitted to the Journal of Environmental Modelling and Software in 2016. 

This chapter describes the development of a predictive model for estimating forest litter-bed 

fuel load in Australian eucalypt forests with LiDAR data. This study has developed a new 

depth-to-load model for litter-bed fuel load estimates through multiple regression analysis. This 

model indicates how the surface fuel load relates to litter-bed fuel depth, forest fuel type, fuel 

characteristics, topography, and previous fire disturbance. 
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Chapter 4. Development of a Predictive Model for 

Forest Surface Fuel Load in Australian 

Eucalypt forests with LiDAR Data 

Abstract 

The accurate description of forest surface fuel load is an important factor in understanding 

bushfire behaviour and suppression difficulties, predicting ongoing fires for operational 

activities, assessing potential fire hazards and assisting in fuel hazard-reduction burns to reduce 

fire risks to the community and the environment. Bushfire-related studies and current 

operational activities share a common challenge in quantifying fuels, due to how fuel load 

varies across the landscape. This paper evaluates how the spatial variation in surface fuel load 

relates to litter-bed depth, fuel characteristics, topography and previous fire disturbance 

through statistical analysis. It also presents a predictive model (R2 = 0.89 and RMSE = 20.7 g) 

that efficiently and accurately estimates quantities of surface fuel in Australian south eastern 

Eucalypt forests. Light Detection and Ranging was used to quantify forest structural 

characteristics and terrain features. The model established in this study may be used as an 

efficient approach to assist in forest fuel management and fire-related operational activities.  

Key words:  surface fuel load, litter-bed fuel depth, airborne LiDAR, terrestrial LiDAR, 

multiple regression 

4.1 Introduction 

Fuel can be described by grouping vegetation communities into fuel types based on how 

similarly they contribute to potential fire behaviour (Anderson, 1982). However fuel quantity 

and distribution are often not directly related to vegetation types; they may be extremely 

complex (Pyne et al., 1996). For instance, the aspect and slope position influence soil moisture 
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and litter decomposition rates, and seasonal and diurnal changes in precipitation impact the 

moisture content of the leaf litter (Rollins et al., 2004). The variation in surface dry fuel load 

in eucalypt forests may be attributed to variability in species composition, the extent and 

severity of previous disturbance events (e.g. fires and erosion), the site quality (e.g. soil quality, 

stocking rates and plant cover), weather, and the terrain features (McCarthy, 2004; Tolhurst et 

al., 2008).   

Determining surface fuel load traditionally involved collecting fine fuel from a defined sample 

area, sorting it to remove fuel elements with a thickness greater than 6 mm, drying in an oven 

and then weighing to determine weight per unit area (McArthur, 1962; McCarthy et al., 1998). 

A landscape-scale fuel load was then estimated through extensive field inventories with 

sampling and statistical inference, which could be labour intensive and time consuming (Brown 

and Bevins, 1986; Burgan et al., 1998). A positive correlation between the depth of surface 

litter bed and the quantity of surface litter (depth-to-load relationship) proposed by McArthur 

(1962) has been used as a means of rapidly estimating fuel loads for fuel hazard-reduction 

burns in eucalypt forests (McCarthy, 2004). However the number of measurements taken in an 

area influences its accuracy, since large variation in surface fuel depth could be found at any 

given site with homogeneous vegetation (Gould et al., 2014). In addition, the fuel depth-to-

load relationships vary between and across sites due to the high-degree of natural variability of 

overstorey and understorey vegetation species, topography, weather and previous fire severity 

and intensity (McArthur, 1962; Birk and Simpson, 1980).  

The quantity of forest fuel after fire depends on the balance between rates of fuel accession and 

decomposition (Agee et al., 1973). When yearly decomposition equals yearly accession, fuel 

does not accumulate; when accession is more than decomposition, fuel builds up. Fuel 

accumulation models are used to estimate and predict quantities of fuel, which have been used 

to assist land management agencies in the decision making process (Gill, 1997; McCarthy et 
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al., 1998). Fuel generally accumulates rapidly and steadily for a period of time after fires, and 

then the rate of accumulation reduces gradually to the level of equilibrium (Olson, 1963). This 

trend was described and modelled by several studies (Olson, 1963; Birk and Simpson, 1980; 

Raison et al., 1983; 1986; Burrows, 1994; Gould et al., 2011) using a general form of an 

exponential function rising to a steady-state fuel load (a maximum):  

                                                             𝑤𝑡 =  𝑤𝑠𝑠(1 − 𝑒𝑘𝑡)                                                    (1) 

where 𝑤𝑡 represents the weight of surface litter fuel accumulated at time t years since the last 

fire, 𝑤𝑠𝑠 is the weight of surface fuel accumulated under steady state conditions, k is defined 

as the decomposition constant. Given by the general form of the fuel accumulated model, years 

since last fire is the only independent variable to predict fuel load growth, and it therefore 

cannot be utilised to estimate spatial variation in fuel load within homogeneous vegetation. As 

a result, the pattern of fuel accumulation varies with vegetation species and environmental 

conditions (Fox et al., 1979; Birk and Simpson, 1980; Walker, 1981; Raison et al., 1983; 

Burrows, 1994; Chatto, 1996; Tolhurst and Kelly, 2003). 

Unlike fuel accumulation models, other studies used the influencing factors as predictors to 

estimate the spatial variation in surface fuel load. Agee et al. (1973) used basal area as an index 

of crown volume and plotted a polynomial relationship between basal area of blue gum 

(Eucalyptus globulus) and its dry weight of fuel, including duff, litter and large debris. The 

result shows that as basal area increases, the total dry fuel weight rises, which may also be 

explained from a fuel accession perspective, where a greater crown area and crown volume 

results in more fuel on the surface fuel layer. Bresnehan (2003) suggested that forest fuel type, 

canopy density and soil type may be used to estimate fuel load as an adjunct to the fuel 

accumulation models on the sites where elapse (measured in number of years) since last fire is 

not known. A multiple regression analysis was applied in Gilroy and Tran (2006) to describe 
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how the surface fuel load relates to more predictors, including years since last fire, fuel depth, 

canopy cover, and average annual rainfall since fire. The model in their study suggests that 

years since last fire, fuel depth and canopy cover contribute more to surface fuel loading 

compared with the average rainfall in the study area. These authors suggested that their model 

could be enhanced by inclusion of other surface fuel load related predictors. Consequently, the 

development of such predictive models requires specific inputs. 

The development of remote sensing technologies could potentially increase the accuracy and 

also reduce the time required to quantify fuels, by providing a continuous dataset from which 

to assess fuel conditions across large scales; it also has the potential to update fuel maps quickly 

and consistently in areas where conditions are dynamic due to disturbances caused by fires and 

other changes (Keane et al., 2001; López et al., 2002; Skowronski et al., 2007). Optical remote 

sensing (e.g. ASTER, Landsat, SPOT-HRV, and aerial photo) has been widely used in 

classifying canopy fuel type, estimating percentage canopy cover and foliage biomass (Saatchi 

et al., 2007; Arroyo et al., 2008). 

Several studies used optical imagery-derived forest and environmental factors as explanatory 

variables in order to develop the predictive models to describe the spatial variability of forest 

fuel load (Brandis and Jacobson, 2003; Saatchi et al., 2007). In these studies, multiple 

regression was applied to determine which independent variables (e.g. spectral bands, forest 

class, structural stage, potential vegetation type, cover type, elevation, slope and aspect) have 

more significant impact on the response variable of interest - the fuel load. These models 

showed a range of 55% to 72% of variability in prediction bias, the major limitation in 

estimating surface fuel derived from optical remote sensing being an inability to penetrate the 

canopy (Lovell et al., 2003; Andersen et al., 2005). Radar data has also been used to predict 

these canopy fuel attributes as well as crown bulk density (Saatchi et al., 2007). However, both 
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satellite and airborne radar have limitations in estimating surface fuel load that requires very 

fine spatial resolution (cm or mm) (Riaño et al., 2003).  

Recently, Laser altimetry or Light Detection and Ranging (LiDAR) including airborne and 

terrestrial LiDAR has been used in estimating individual tree heights (Gougeon, 2000; Chen et 

al., 2006; Popescu, 2007), quantifying forest inventory (Næsset, 2004; Maas et al., 2008), leaf 

area (Béland et al., 2014), biomass (Lefsky et al., 1999; Popescu, 2007; Tao et al., 2014), and 

safety zone identification for forest fire fighters (Dennison et al., 2014), with its ability to 

provide three-dimensional information to quantify forest structure with high spatial accuracies 

of cm or mm. Some studies have explored statistical distribution functions to represent the 

vertical profile of vegetation structure using full waveform LiDAR (Lefsky et al., 1999; 

Wagner et al., 2008; Hermosilla et al., 2014), multi-echo LiDAR data (Lovell et al., 2003; 

Riaño et al., 2003), and terrestrial LiDAR data (Côté et al., 2011; Marselis et al., 2016), which 

indicates its potential for surface fuel load estimates (Skowronski et al., 2007; Jakubowksi et 

al., 2013). 

The purpose of this study is to develop a fuel load predictive model to estimate quantity of 

surface fuel in Eucalypt forests in the Upper Yarra Reservoir area, Victoria, Australia through 

LiDAR and multiple regression. The established model is also used to evaluate how the spatial 

variation in fuel load relates to the separate and related influencing factors, including litter-bed 

depth, fuel types and environmental conditions.   
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4.2 Methods 

Figure 1. Study area and plot locations (Landsat imagery, August 2015) 

4.2.1 Study site 

The study was conducted in the Upper Yarra Reservoir Park in south east Australia (Figure 1.).  

It is located east of Melbourne, within the locality of Reefton (37◦41’S, 145◦55’E). The 

Reservoir Park is an eucalyptus open forest with a dense shrubby understorey, which has a 

large number of indigenous eucalypt species, including Manna Gum (e.g. Eucalyptus 

viminalis), Grey Gum (e.g. Eucalyptus cypellocarpa), Messmate (e.g. Eucalyptus obliqua), 

Peppermint (e.g. Eucalyptus croajingolensis, Eucalyptus dives, Eucalyptus elata, Eucalyptus 

radiata), Silvertop (e.g. Eucalyptus sieberi), Stringybark (e.g. Eucalyptus baxteri, Eucalyptus 

cephalocarpa, Eucalyptus globoidea), and Candlbark Gum (e.g. Eucalyptus rubida). The 
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catchment area is 32,670 ha approximately with elevation ranging from 219 m to 1205 m. The 

average annual rainfall is approximately 1122 mm, and the main soil type is clay loam. 

 

Figure 2. A flow chart of the three-stage stratified systematic sample method 

 

4.2.2 Sample design 

A total of forty-one study sites were selected to have different fire history, burn types, forest 

fuel types, and terrain features using a three-stage stratified systematic sample design (Figure 

2). The first stage aimed to divide the study area into two strata, either recent wildfires or recent 

fuel hazard-reduction burns. Fuel hazard-reduction burns as typical fuel-management activities 

have been conducted, and wildfires have also occurred over time across this area. The previous 

burn severity could vary between burns and even within the same burn; we assume these 

burning conditions were similar for each burn type. Sites were chosen in this area if they were 

cleared of most understorey fuels and the overstorey fuels were left by previous disturbance of 

fires.  
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For the second stage, unique combinations of years since last fire, fuel type (damp shrubby 

forest or dry shrubby foothill forest) and elevation were then taken into account to stratify the 

samples for a coarse-scale variability of forest fuel. Due to the availability of the fire history 

and fuel type, six plots of 50 m by 50 m were allocated across this area as further sampling 

sites. Years since last fire was applied as fuel accumulates over time, which is one of the key 

indicators of fuel growth as well as vegetation recovery after fires (Birk and Simpson, 1980). 

Forest fuel type could directly impact on fuel moisture content, and fuel decomposition rate. 

Elevation was chosen because it quantifies biophysical gradients (e.g. temperature, moisture, 

and energy) over the study area.  

For the third stage, sampling sites covering 0.5 m by 0.5 m were allocated according to various 

values of aspect and slope within each of the six plots. These topographic variables quantify 

and characterize the biophysical potential of a site and also have great impact on fuel dynamics 

such as fuel type and fuel loading, for a fine-scale variability of forest fuel. 

4.2.3 Data collection 

The total surface fuel load at each site was weighted directly, as the weight (g) comprised dry 

weight and moisture content. Dry weight (g) was measured after oven drying for 24 hours at 

105 °C (Matthews, 2010). Canopy density (%), elevation (m), slope degree, and aspect were 

calculated based on airborne LiDAR data acquired in January 2008 with footprint size of 0.26 

m (Aldred and Bonnor, 1985; Lefsky et al., 1999; Næsset, 2002; Reutebuch et al., 2003). 

Terrestrial LiDAR data were acquired simultaneously with the field samplings, using a 

Zebedee three-dimensional Mapping System developed by CSIRO Australia (Zlot and Bosse, 

2014). If one sampling site was covered by a thick layer of surface fuel with no obvious soil 

exposed, we manually exposed some soil before the scan was conducted. This was done to 
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overcome the limitation of the laser beams of the Zebedee on penetrating thick layers of litter 

and reach the soil, what it is essential for an accurate generation of the DEM. 

The elevation of the lowest point within 0.5 m by 0.5 m grids was used to convert the point 

cloud derived from the terrestrial LiDAR data to a digital elevation model (DEM). Height 

values of the point clouds were computed by subtracting the DEM from its elevation. The 

surface fuel depth (cm) and percentage cover (%) were then estimated depending on the 

average height difference within sites between a surface fuel layer and the DEM derived from 

the terrestrial LiDAR data. The surface fuel layer was separated from other fuel layers 

according to a mixture distribution of LiDAR point density against height values (Jaskierniak 

et al., 2011). The depth of the surface fuel was computed by subtracting a smoothed DEM from 

a surface fuel layer; the percentage cover was a ratio between the surface fuel layer and the 

DEM. 

4.2.4 Model development 

Modelling of forest litter-bed fuel load was accomplished in three-stages of multiple regression 

analysis (Graybill, 1970). The first stage aimed to model the forest fuel depth-to-load 

relationship by exploring the variability in dry weight of forest fuel load (DW) as a function of 

surface fuel depth (FD) and years since last fire (YSF) (McArthur, 1962). 

The second stage was to introduce more quantitative variables in the model, as interactions 

with FD and YSF using stepwise regression. These independent variables consist of canopy 

density (CD), surface fuel percentage cover (PC), elevation (E), aspect (A) and slope (S). 

Stepwise regression was used as a variable screening tool when there exists a large number of 

potentially important independent variables (Draper and Smith, 2014). To keep the number of 
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variables manageable, we used the first-order interaction terms for independent variables, and 

omitted high-order terms to the model.  

 

Table 1. The variables associated with the model development  

Variable  Parameter Symbol 

Quantitative Years since last fire YSF 

Quantitative Surface litter-bed depth (mm) FD 

Quantitative Surface litter-bed percentage cover (%) PC 

Quantitative Canopy density (%) CD 

Quantitative Elevation (m) E 

Quantitative Aspect (degree) A 

Quantitative   Slope (degree) S 

Qualitative Forest fuel type (dry / damp) FT 

Qualitative Burn type (wildfire / fuel hazard-reduction burns) BT 

 

For the third stage, types of burn and fuel as dummy (qualitative) variables were introduced in 

the models as interactions with these existing independent variables, in order to account for 

differences among forest fuel types (FT) as well as burn types (BT). Each component of forest 

DW was modelled using stepwise procedures to identify the best subset of independent 

variables at the statistical significance level of 0.05. The dependent variable and independent 

variables associated with the model development are described in Table 1.  
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4.2.5 Model assumption and error assessment  

Statistical graphics (Birk and Simpson, 1980; Atkinson, 1987; Neter et al., 1996; Belsley et al., 

2005) were used to verify model assumptions and random errors associated with the regression 

models and to support improvements to the prediction when the assumptions did not appear to 

be satisfied. The outliers and the goodness of fit associated with the regression models were 

assessed through visualizing residual plots according to the following procedures of residual 

analysis.  

A histogram of raw residuals was plotted to examine whether the observations are randomly 

sampled from a normal distribution; however, detecting normality from a histogram could be 

difficult when data sets are not large (Chambers et al., 1983). Therefore, a normal probability 

plot (NPP) of the raw residuals was then plotted to identify substantive departures from 

normality. Both residual plots were applied to identify outliers, skewness, kurtosis, a need for 

transformations, and mixtures (Becker and Chambers, 1984). To further examine the outliers 

that were apparent from the histogram and NPP as well as to assess other potential problems 

in the models, diagnostics of the linear regression model were made by plotting leverage. A 

leverage plot is a measure of how far away the independent variable values of an observation 

are from those of the other observations (Everitt and Skrondal, 2002). If the observation was 

determined to be an error, it was then removed.  

These statistical graphic techniques were then repeated to refit the model till it provided a 

relatively good fit to most of the dataset and it was also appropriate for the prediction purposes. 

The residuals were calculated and plotted in MatLAB R2014a 

(http://au.mathworks.com/products/matlab/matlab-graphics/). Finally, Akaike information 

criterion (AIC) was carried out for model selection as well as restricting overfitting problems. 
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4.2.6 Model validation 

In order to define a dataset to test the model in the training phases, the leave-one-out cross-

validation was then used to verify the results of the finalised multiple linear regression model. 

One of the observations was left out each time as a testing set to validate the model, and used 

the remaining (n-1) observations as a training set to build the model. Each time the function 

approximation was trained on all the data except for one point and a prediction was made for 

that point. DW defined as the observed value of that point was used to test the error of the 

prediction at that time. Repeating this procedure for n times, the average error across all dataset 

was computed. Leave-one-out cross-validation (CV) could be computed using 

𝐶𝑉 =  
1

𝑛
∑ [𝑒𝑖/(1 − ℎ𝑖)]2𝑛

𝑖=1                                                              (2) 

where n is the number of the observations, ei is the error obtained from fitting the model to n - 

1 observations, hi is the leverage, and i is the repeating step (= 1, 2, …, n) (Good, 2001). 

Additionally, the predicted values of surface fuel load were then compared with the observed 

fuel load for a further assessment of the accuracy of the proposed model. This study also 

compared the developed models with McArthur’s depth-to-load model and Gilroy and Tran 

(2006)’s predictive model. 

4.3 Results 

The stepwise procedure was used to produce estimates of the model coefficients (β’s) to select 

the important variables (Table 2). According to the three-stage model development and the 

model assumption assessment, three models were produced and are described as follows: 
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4.3.1 Model 1  

Table 2.  Model coefficients 

Model   

Unstandardized 

Coefficients 

Standardized 

Coefficients 
t Sig. 

Correlations 
Collinearity 

Statistics 

B 
Std. 

Error 
Beta 

Zero-

order 
Partial Part Tolerance VIF 

1 
(Constant) 30.56 12.15   2.5 0.02           

YSF*FD 0.714 0.078 0.83 9.1 <0.001 0.8 0.8 0.8 1 1 

2 

(Constant) -43.5 15.32   -2.8 0.08           

YSF*FD 0.766 0.057 0.9 13.5 <0.001 0.8 0.9 0.9 0.97 1.03 

CD*E 0.12 0.021 0.39 5.8 <0.001 0.2 0.7 0.4 0.97 1.03 

3 

(Constant) -51.8 15.07   -3.4 0           

YSF*FD 0.744 0.053 0.85 14 <0.001 0.8 0.9 0.8 0.84 1.19 

CD*E 0.121 0.02 0.35 6.1 <0.001 0.1 0.7 0.3 0.93 1.08 

FD*FT 1.325 0.283 0.28 4.7 <0.001 0.5 0.6 0.3 0.9 1.11 

 

Table 3. Model Summaries 

Model R Square 

Std. Error of 

the Estimate F Sig. AIC CV 

1a 0.69 32.9 83 <0.01 385.11 1345.4 

2b 0.85 23.5 98 <0.01 352.57 836.82 

3c 0.89 20.7 95 <0.01 343.92 572.6 

4d 0.61 39.6 62 <0.01 417.95 1650 

5e 0.69 36.5 27 <0.01 413.06 1502 
a. Predictors: (Constant), YSF, FD;  

b. Predictors: (Constant), YSF, FD, CD, E;  

c. Predictors: (Constant), YSF, FD, CD, E, FT; 
d. Predictors: (Constant), sqrt(FD), SPC; 

e: Predictors: (Constant), ln(YSF), FD, CD. 
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                                  a                                                                                       b  

Figure 3. Residual plots of Model 1. a. Residual Histogram plot; b. Normal Probability Plot 

of Regression Standardized Residual 

The independent variables including FD and YSF were used to describe the variability in DW 

in order to develop the depth-to-load relationship as Model 1. One outlier was detected by the 

leverage plot. After removing it, the result described in Table 2 shows that DW is positively 

linearly correlated with the product of FD and YSF. This depth-to-load relationship provides 

an R2 value of 0.69 and Root Mean Squared Error (RMSE) value of 32.9 g (Table 3 and Figure 

6a). The histogram of residual plots described in Figure 3a shows a symmetric normal 

distribution; the NPP (Figure 3b) shows that most errors roughly fall on the straight line and 

two tails slightly move away from it.  

4.3.2 Model 2  

In order to improve the depth-to-load relationship, E, A, S, CD, and PC were then introduced 

in the model and interacted with FD and YSF using stepwise regression. The product of CD 

and E is positively correlated to the dependent variable; the sum of FD*YSF and CD*E 

improves the values of R2 (0.85) and RMSE (23.5 g), after removing another outlier with high 

value of leverage (Table 3 and Figure 6b); other introduced quantitative variables are excluded 
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due to their statistical insignificance. The residual histogram plot (Figure 4a and 4b) shows that 

data are sampled from a normal distribution.  

     
                                       a                                                                               b 

Figure 4. Residual plots of Model 2. a. Residual Histogram plot; b. Normal Probability Plot 

of Regression Standardized Residual 

4.3.3 Model 3  

Model 3 described in Table 2 shows the improvement in the prediction by introducing FT as a 

qualitative variable to interact with FD. The product of FD and FT is also positively related to 

DW; BT is omitted in the model due to the lower significance. A R2 value of 0.89 and a RMSE 

value of 20.7 g were produced by plotting Model 3 predicted dry weight of surface fuel against 

observed values (Table 3 and Figure 6c). The histogram of residual (Figure 5a) plots a fairly 

symmetric normal distribution; Figure 5b described the normal probability plot of the residuals 

is approximately linear supporting the condition that the error terms are normally distributed. 

Model 3 produced the lowest AIC and CV values of 343.92 and 572.60, respectively (Table 3).  
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a                                                                                b 

Figure 5. Residual plots of Model 3. a. Residual Histogram plot; b. Normal Probability Plot 

of Regression Standardized Residual 
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Figure 6. Surface fuel load scattergram of Model 1 (a), 2 (b), and 3 (c). 
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McArthur’s model (Model 4) and Gilroy and Tran (2006)’s model (Model 5) were also 

assessed with data collected from this study area. Model 4 described in Table 3 overestimated 

surface fuel load and produced an R2 value of 0.61 and a RMSE value of 39.6 g. Model 5 

involved three independent variables, including the natural logarithm of YSF, CD and FD. This 

model produced a value R2 of 0.69 and a RMSE value of 36.5 g with the same dataset. 

4.4 Discussion 

Current fire danger rating systems and fire behaviour prediction models have a common 

challenge in quantifying fuels, since the fuel load varies between sites and even within 

homogeneous vegetation (Deeming et al., 1972; Deeming et al., 1977; Anderson, 1982; 

Tolhurst et al., 2008; Gould et al., 2014). Traditionally, surface fuel load at sampling locations 

is calculated by oven-dried weight and estimated fuel load across a landscape through statistical 

inference. The measurement of fuel load can be labour intensive and inefficient. Fire authorities 

and agencies have been using litter-bed depth and fuel accumulation models as faster 

alternatives to estimate litter fuel load growth for making fire hazard-reduction related regional 

decisions (Conroy, 1993; Fernandes and Botelho, 2003; Gilroy and Tran, 2006). Fuel 

accumulation models following a general form of an exponential function are a simplification 

of the factors that influence fuel loading, which cannot describe how the spatial variation in 

surface fuel load relates to the influencing factors (Conroy, 1993; Fernandes and Botelho, 

2003). The rate of accumulation is further reliant on the results of a complex interaction of the 

separate and related influencing factors (e.g. fuel type, productivity of understorey and 

overstorey, density of canopy and environmental conditions) (Miller and Urban, 2000). 

Quantities of surface litter fuel load vary spatially with fuel characteristics and environmental 

conditions; therefore, to model surface fuel load with local variation, a spatial continuity of 

these variations is necessary. LiDAR was applied in the study to provide a continuity of spatial 
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variation in surface fuel depth and cover, topography and canopy density. This study used the 

Upper Yarra Reservoir Park area as a case study area to model forest surface fuel load using 

multiple regression analysis. Unlike the fuel accumulation studies, it assessed how the spatial 

variation in fuel load relates to other predictors. The topographic variables and canopy density 

were derived from Airborne LiDAR data. Terrestrial LiDAR was used to represent the spatial 

continuity of surface litter-bed depth as a replacement of the direct measurement. The LiDAR-

derived independent variables can also improve the efficiency and the accuracy in developing 

the predictive model of surface fuel load for eucalypt forests with high a spatial resolution.  

The three-stage modelling process indicates that surface litter depth and years since last fire 

are most significantly related to quantities of litter fuel load. To be more specific, the product 

of surface litter depth and years since last fire explained 69% variation in dry litter fuel load of 

the total dataset (Model 1, Table 3). Model 4 used a non-linear positive relationship between 

fuel load and surface litter depth, and also introduced percentage cover of understorey shrubs 

(SPC) in the model to enhance the performance of the depth-to-load relationship. Compared 

with Model 4, Model 1 explained 6% extra variation in fuel load of entire dataset. This 

improvement is explained by introducing years since last fire to the linear correlation between 

litter-bed depth and surface fuel quantity. The selected sites experienced understorey 

vegetation cleared up by the previous fires, therefore the quantity of understory vegetation 

would be highly related to the time since the previous disturbances. The application of Model 

1 for fuel management activities would be comparatively time effective than the McArthur’s 

load-to-depth relationship, since access to the information of fire history is more convenient 

than estimation of understorey vegetation percentage cover. From an operational perspective, 

Model 1 may be a quicker alternative to McArthur’s relationship; the litter-bed depth, however, 

still needs to be measured in the field. 
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Model 5 emphasized the significance of litter-bed depth, fire history and canopy density in the 

prediction of fuel load; it also transformed years since last fire to its natural logarithm. 

Compared to Model 5, Model 2 explained an extra 16% variation in fuel load of the dataset 

and also reduced the value of RMSE by 12 g/m2, by introducing elevation in the model to 

interact with other dependent variables. It also describes that both canopy density and elevation 

positively influence the prediction of fuel load in the study area, and elevation is also more 

statistically significant than other topographic variables. Canopy density directly impacts on 

fuel accession, and elevation indirectly influences fuel productivities and decomposition rates 

due to its effect on temperature (McArthur, 1962; Birk and Simpson, 1980; McCaw et al., 1996; 

Schaub et al., 2008). If litter-bed depth and fire history are the essential predictors to the 

estimation of litter fuel load, canopy density and elevation may be the subsidiary indicators. 

Therefore, accurate information of both canopy density and elevation has its significance in the 

development of predictive models for litter fuel load estimates.  

Three models were gradually developed in the study, and Model 3 produced the best results 

due to the lowest values of AIC and CV. Like Model 1 and Model 2, this model also indicates 

that litter fuel load is primarily influenced by surface litter-bed depth, years since last fire, 

canopy density, and elevation. To be more specific, the estimated effect of changing litter-bed 

depth from 0.3 to 5 cm is an increase in dry weight of litter fuel load of between 0.64 and 0.96 

(kg/m2), and increasing years since last fire from 5 to 8 years raises the dry fuel load up to 0.28 

(kg/m2), with 95% confidence. A rise in both canopy density (0.28 - 0.99) and elevation (281 

– 905) positively influences dry fuel load, raising it from 0.2 to 0.44 (kg/m2). Through 

introducing the qualitative variation in fuel type in the model, extra 4% variation of the dataset 

in fuel load was explained. It also suggests fuel type has a more statistically-significant 

contribution to the prediction compared with burn type, since fuel type directly influences the 

composition of understorey and overstorey vegetation as well as their productivities and forest 
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fuel type.  Dry eucalypt forests tend to produce (0.12 to 0.28 kg) more dry weight of litter fuel 

per square meter than damp eucalypt forest, which indicates that overall fuel hazard in the dry 

forests is comparatively higher than in wet forests that underwent the same previous fire events. 

In conclusion, these significant fuel characteristics (e.g. litter-bed depth, canopy and fuel type), 

environmental factors (e.g. topography) and fire disturbances may be used to estimate litter 

fuel load across the local area. From a practical perspective such fuel characteristics and its 

influencing factors-based predictive model provides bushfire authorities an alternative 

approach to accurately and efficiently predict litter fuel load in order to assist forest fuel and 

fire-related management activities.  

The predictive model was developed based on a limited number of observations (n = 41). The 

number of observations should be increased to reduce the prediction error. Further study should 

investigate other potential important predictors which may also influence wildland forest litter 

fuel load, including species composition of overstorey and understorey vegetation, soil type, 

seasonal and diurnal changes in rainfall and temperature, and the extent and severity of 

previous disturbance events including fires and erosion.  

4.5 Conclusion  

Quantifying surface fuel load is an ongoing requirement for fire authorities and fire 

management agencies, due to its importance in predicting fire behaviour and assessing potential 

fire risks. This study has integrated multiple regression analysis and LiDAR-derived metrics to 

propose a new relationship between the quantity of forest surface fuel, fuel depth and years 

since last fire, and found that the spatial variation in surface litter fuel load also highly relates 

to canopy density, elevation, and fuel type across the study area. LiDAR data were used as an 

effective means to provide spatial continuity in fuel depth and topography estimates with high 

spatial accuracy. The calibrated models may be used to predict forest surface fuel load and 
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therefore assist forest fuel management, assess suppression difficulties and identify potential 

fire hazards in the Upper Yarra Reservoir area.  
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Chapter 5 statement  

Although TLSs can accurately describe understorey fuel structural characteristics, mapping 

litter-bed fuel load across the landscape cannot be achieved by TLSs due to its scanning scales. 

Therefore, Chapter 5 evaluates how litter-bed fuel load relates to airborne LiDAR system (ALS) 

- derived fuel structural characteristics and terrain features, as well as fire history. This has led 

to the development of a novel approach to estimate spatial variation in forest litter fuel load for 

eucalypt forests at a large scale. The accurate information derived from this model can be used 

to assist forest fuel management, assess suppression difficulties, predict ongoing fires for 

operational activities, and assess potential fire hazards in the study area. This chapter has been 

submitted to the Journal of Remote Sensing of Environment in 2016.  
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Chapter 5. Stratifying Eucalypt Forest Structures 

Using Airborne LiDAR Indices to Map 

Litter-bed Fuel Load 

Abstract 

Accurate description of forest litter-bed fuel load is significant for modelling fire behaviour 

and for assessing fuel hazards. However, quantities of litter-bed fuel can be highly variable 

across a large scale due to the high-degree of natural variability of overstorey and understorey 

vegetation species and composition, topography, weather, and disturbances of previous fires 

and erosion. In this study, airborne Light Detection and Ranging (LiDAR) data was used to 

estimate litter-bed fuel load in multilayered forests located at the Upper Yarra Reservoir area, 

Victoria, Australia. First, the forest was stratified into vertical vegetation layers by identifying 

the division point of the smoothed mixture distribution of LiDAR point density. Second, the 

stratified height indices were computed for the distinct vegetation layers. Other LiDAR indices 

including initial intensity and canopy density as well as topographic attributes were also 

extracted. Finally, two predictive models were developed using multiple regression based on 

the LiDAR indices, topography, forest fuel types and fire history. The final model was 

determined by assessing the cross-validation (CV) and Akaike information criteria (AIC). It 

estimated litter-bed fuel load with a prediction error of 0.16 (kg/m2) and R2 value of 0.63, which 

was then utilised to map litter-bed fuel load on a landscape scale. This model provides accurate 

and consistent information on litter-bed fuel load that is beneficial to fire authorities in guiding 

fire hazard-reduction burns and fire suppressions in the study area. The LiDAR-based forest 

vegetation stratification can be beneficial for forest habitat mapping and ecosystem monitoring. 

Keywords: ALS; forest vertical stratification; Litter-bed fuel load; Mixture distribution; 

Multiple regression 
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5.1 Introduction  

Australia’s native Eucalypt forests are among the most fire-prone in the world due to high fuel 

accumulation rates, aerodynamic bark material, high flammability of the fuel and high climate 

variability (Adams, 2013). Projected changes in the frequency and intensity of extreme climate 

and weather could increase the occurrence of ‘mega-fires’ - extreme fire events with dramatic 

impacts on people and environment (Stephens et al., 2014). The most reliable method to reduce 

fire risk is through modifying fuel availability (Fernandes and Botelho, 2003). Therefore, 

accurate and consistent methods to quantify forest fuel load can assist fire-related studies and 

operational activities to reduce fire risk (Andrew et al., 2000). Fuel load is defined as the 

amount of surface fuel or litter-bed fuel (fine leaf and twig materials that are less than 6 mm in 

diameter), measured in tonnes per hectare, which has significant impacts on fire ignition, rate 

of spread and propagation (Anderson, 1982; Gill et al., 1987; Neumann and Tolhurst, 1991). 

However, the quantification of litter-bed fuel can be extremely complex at landscape scales, 

since litter-bed fuel load is often not directly related to vegetation types (Pyne et al., 1996; 

Falkowski et al., 2005), and also highly varies with environmental conditions (Brown and 

Bevins, 1986). 

Traditionally, litter-bed fuel load was determined by field sampling, oven drying at 105°C for 

24 hours, and immediate weighing (McArthur, 1962), which can be time and labour intensive 

when applying this method on large scales. McArthur (1962) found positive relationships 

between litter-bed fuel load and litter-bed depth known as the depth-to-load relationships that 

have been used as a rapid alternative to support fuel hazard-reduction burns in Eucalypt forests 

in Australia, instead of directly measuring fuel load (McArthur, 1962; Birk and Simpson, 1980).  

In addition, litter-bed fuel load can also be estimated using fuel accumulation models that 

describe a simplification of the difference between fuel accession and decomposition rates 
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(Agee et al., 1973). These models follow an exponential distribution (Peet, 1971; Birk and 

Simpson, 1980; Raison et al., 1983; 1986; Gould et al., 2011):  

                                                             𝑤𝑡 =  𝑤𝑠𝑠(1 − 𝑒𝑘𝑡)                                                                        (1) 

where 𝑤𝑡 is defined as the dry weight of litter-bed fuel accumulated at time t years since the 

last fire, 𝑤𝑠𝑠 is the dry weight of the fuel accumulated under steady state conditions, and k is 

defined as the decomposition constant. These models are constrained to estimate spatial 

variations in litter-bed fuel load within homogeneous vegetation that previously experienced 

the same fire events. The accumulation curve is shaped by both forest fuel type and time since 

last fire. In reality, fuel accumulation is caused by a complex interaction among forest 

composition and structure and ancillary factors (e.g. topography, aspect, seasonal and diurnal 

changes in rainfall and temperature, the extent and severity of previous disturbance events) that 

indirectly influence fuel accumulation (Fox et al., 1979; Birk and Simpson, 1980; Walker, 1981; 

Miller and Urban, 2000). Quantifying the composition of understorey and overstorey 

vegetation as well as the ancillary factors is significant in understanding spatial variations in 

litter-bed fuel load. Remote sensing (RS) is a breakthrough technology for modelling terrain 

features, monitoring weather, understanding forest ecosystems, as well as mapping resources 

for forest planning and management (Lefsky et al., 2002). However, measuring forest structure 

is relatively challenging compared to the estimation of other factors which determine litter-bed 

fuel load (Zimble et al., 2003).  

Application of RS technologies in forest management generally involves either the use of 

imagery from passive RS systems (e.g. aerial photography and Landsat Thematic Mapper) or 

radar sensors (e.g. RADARSAT) (Waring et al., 1995). However, passive sensors cannot 

penetrate the forest canopy to detect understory fuel structure (Dubayah and Drake, 2000; 

Lefsky et al., 2002). Radar sensors are known as lesser degree active RS systems due to their 
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relative low frequency and spatial accuracy. They also have significant limitations in fine-scale 

forest application, since their sensitivity and spatial accuracy decline with increasing 

aboveground biomass and LAI (Waring et al., 1995; Carlson and Ripley, 1997; Turner et al., 

1999). Moreover, these passive and active RS sensors produce two-dimensional images of 

canopy vegetation and cannot completely represent the three-dimensional structure of 

multilayered forests due to the limited information about understorey vegetation.  

In contrast to radar systems, LiDAR sensors have higher frequency and shorter wavelength. 

Most conventional Airborne LiDAR scanning (ALS) systems have a multi-echo capability and 

capture between two and five returns for each laser pulse by penetrating beyond the first 

reflective surfaces of the canopy. ALS systems directly measure three-dimensional forest 

structure in various forestry applications due to the sensitivity of their waveforms to the 

structural changes through forest succession (Dubayah and Drake, 2000).  

LiDAR-derived vertical distribution of intercepted surfaces provides new insights into forest 

structure.  Several studies, including Hermosilla et al. (2014) and Jakubowksi (2013) described 

vertical profiles of forest vegetation using theoretical distribution functions of ALS indices. 

More specifically, these studies applied a unimodal structure (e.g. a Weibull distribution 

function) in LiDAR to represent forest structural characteristics. However the form of the 

distribution of LiDAR points can be highly variable among forest fuel types, previous 

disturbance, and age classes. In a multilayered forest, the vertical profile of the vegetation in 

LiDAR tends to follow mixture distributions (e.g. bimodal distributions) depending on the 

complexity of the understorey vegetation (Jaskierniak et al., 2011). In statistics, a mixture 

model is a probabilistic model for describing the existence of two or more subpopulations 

within an overall statistical population (Lindsay, 1995).  
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Previous studies found that merchantable timber could be estimated by fitting the irregular 

diameter frequency distributions of mixed-species or uneven-aged forest stands to mixture 

models (Zhang et al., 2001; Liu et al., 2002; Zhang and Liu, 2006). Jaskierniak et al. (2011) 

applied bimodal models to represent LiDAR height distributions to estimate plot level 

structural characteristics. The Generalised Additive Model for Location, Scale and Shape 

(GAMLSS) was used for generation of the bimodal models. The GAMLSS are semi-parametric 

univariate regression models, where all the parameters of the assumed distribution for the 

response variable can be modelled as additive functions of the explanatory variables (Rigby 

and Stasinopoulos, 2009). The GAMLSS produced 1936 combinations of possible bimodal 

distributions. Jaskierniak et al. (2011) determined likely candidate distributions of the canopy 

vegetation layer in the second component of the bimodal model to reduce the number of 

candidate bimodal distributions to 390 for their study plots. Extrapolating and evaluating the 

amount of likely candidate bimodal distributions requires high performance computer systems 

and more computing time.  

Forest vertical structure is a function of species composition, microclimate, site quality and 

topography, which has a significant influence on productivity and fuel accumulation (Dubayah 

et al., 1997; Dubayah and Drake, 2000). Therefore, LiDAR indices relating to crown height, 

canopy density, depth and closure of, both understorey and overstorey layers as well as 

topography, are useful for quantifying litter-bed fuel. Unlike the approach in Jaskierniak et al. 

(2011), the present study stratified multilayered eucalypt forests through identification of the 

division points of the smoothed bimodal curves to quantify vertical forest structure through a 

non-parametric fitting strategy as well as derivative functions. The stratified LiDAR height 

indices, initial intensity, canopy density and topography, forest fuel type and previous fire 

disturbances were then used to develop predictive models to estimate litter-bed fuel load 

through multiple regression analysis. Two candidate models were then assessed using the 
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observed litter-bed fuel load that was directly measured. The finalised model was then used to 

map litter-bed fuel load across the Upper Yarra Reservoir Park area, Victoria, Australia. The 

predictive model provides accurate spatial information for decision making in regional forest 

fuel management. The LiDAR-based stratification of forest vegetation is also useful for land 

cover classification, habitat mapping, and forest ecosystem and wildlife management. 

5.2 Materials and Methods  

5.2.1 Study Area and Data  

The study area is located in Upper Yarra Reservoir National Parks southeast Australia 

(37°34’32’’S, 145°56’17’’E) (Figure 1). It is eucalypt dominated open forests with a large 

range of indigenous species, including Manna Gum (Eucalyptus viminalis), Grey Gum 

(Eucalyptus cypellocarpa), Messmate (Eucalyptus obliqua), Peppermint (Eucalyptus 

croajingolensis, Eucalyptus dives, Eucalyptus elata, Eucalyptus radiata), Silvertop 

(Eucalyptus sieberi), Stringybark (Eucalyptus baxteri, Eucalyptus cephalocarpa, Eucalyptus 

globoidea), and Candlebark Gum (Eucalyptus rubida), and understorey vegetation, including 

species of Wattle Silver (Acacia dealbata), Cinnamon Wattle (Acacia leprosa), Myrtle Wattle 

(Acacia myrtifolia), Prickly Currant (Coprosma quadrifida), Common Ground-fern 

(Calochlaena dubia) and Rough Tree-fern (Cyathea australis). The average annual rainfall is 

approximately 1122 mm; the main soil type is clay loam; the elevation ranges from 219 m to 

1205 m. Controlled burns as a typical fuel-management activity have been conducted in this 

area, and wildfires also occurred over time after recovery from the Black Friday fires of 13th 

January 1939.  Plot 1, plot 2 and plot 3 underwent wildfires in February 2009, while plot 4, plot 

5, and plot 6 experienced controlled burns in March 2010, April 2008 and April 2007, 

respectively.  
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Figure 1. Study area and plot locations over a true colour composite of Landsat imagery 

(August 2015). 

 

Datasets of forest fuel types and burn types (wildfires or fuel hazard-reduction burns) were 

provided by the Victorian State Department of Environment, Land, Water and Planning 

(DELWP). Forest fuel type was derived from Native Vegetation - Modelled 2005 Ecological 

Vegetation Classes with Bioregional Conservation Status, known as NV2005_EVCBCS 

(http://services.land.vic.gov.au/catalogue/metadata?anzlicId=ANZVI0803003495&publicId=

guest&extractionProviderId=1). 

Multi-echo ALS data were acquired in January 2008 with footprint size of 0.26 m. A stratified 

sampling method was used to collect litter-bed fuel load in various terrains and fire histories. 

A total of forty-one 0.5 m by 0.5 m samples from six 50 m by 50 m plots were taken. The plots 

sites were selected as follows. First, the study area was divided into two strata according to 
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previous burn types (wildfires or fuel hazard-reduction burns). Second, unique combinations 

of years since last fire, fuel type (damp shrubby forest or dry shrubby foothill forest) and 

elevation were taken into account to stratify the samples for coarse-scale variability of forest 

fuel. Last, sampling sites were allocated according to various values of aspect and slope within 

each of the six plots. Dry weights (g) of these samples were immediately and directly weighed, 

after oven drying for 24 hours at 105 °C (Matthews, 2010) in the laboratory. 

5.2.2 Stratification of Vegetation Layers 

A non-parametric fitting strategy and two derivative functions were applied to identify the 

division points of the bimodal distributions. The division point between two components of the 

bimodal curve was then utilised to stratify the multilayered eucalypt forest, characterise the 

vertical structure of the forest, and derive LiDAR indices for distinct vegetation layers. More 

specific procedures are described as follows. 

1) Generation of height values: The first step is the generation of height values. A digital 

elevation model (DEM) with 0.5 m resolution was generated using the last returns of LiDAR 

point clouds, which was then used to convert the elevation values of the LiDAR points to their 

height values above the bare earth. The height values were calculated by subtracting a 

smoothed DEM from the elevation values for the following stratification. 

2) Generation of forest vertical profile: A scatter-diagram was generated by plotting the density 

of LiDAR points against height (Figure 2). The values of height range from 3 m across the 

vertical profile of the forest structure with 1 m interval. LiDAR points with height lower than 

3 m were identified as lower vegetation that was excluded in the bimodal distributions 

(Jaskierniak et al., 2011), due to the high variation in lower vegetation heights as a result of the 

complexity in fire history and species composition.  
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3) Stratification of forest structure: The vertical profile of the forest structures in the study area 

tended to follow a bimodal distribution. The stratification of the forest vegetation between 

overstorey and understorey was then carried out by identifying the division point between the 

two components of the bimodal distribution. The division point was identified in four steps. 

First, the scatter plot of LiDAR point density against heights was smoothed using Locally 

Weighted Scatterplot Smoothing (LOWESS) to create a smooth curve through the scatter plot 

without assuming the shape of distribution for each component. Second, the first derivative of 

the smoothed data was generated to identify the peaks and troughs of the smoothed bimodal 

curve. This was conducted by identification of derivative value of 0. Third, the second 

derivative of the smoothed data was created. Fourth, the maximum value of the second 

derivative at the peak and trough values of the first derivative curve was defined as the division 

point. As described in Figure 2, the 1st component of the mixture model represents the density 

distribution of LiDAR points across vertical profile of understorey shrubs; the 2nd component 

of the mixture model plots the density distribution of LiDAR points in overstorey vegetation. 

The following three steps describe the extraction of LiDAR indices. 
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Figure 2. Density distribution of LiDAR points (H >= 3m) for plot 1. 

5.2.3 Extraction of LiDAR Indices 

After stratifying plot-based forest vegetation, the LiDAR height indices (H) were generated 

based on the distinct vegetation layers, including canopy (C), understorey shrubs (S) and lower 

vegetation (L) (Table 1). The plot-based extraction of the stratified H and the initial intensity 

(I) described in Table 1 were computed in MatLAB R2014a (http://au.mathworks.com). 

Canopy density (%) was estimated as the ratio of the number of stratified canopy return LiDAR 

points to the total number of points within small equal-sized units (1.5 m). The unit size was 

determined to be at least four times of the point spacing of the LiDAR system (0.26 m in this 

case). The DEM was used to estimate the elevation (m), slope (degree), and aspect (degree) 

http://au.mathworks.com/
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with 0.5 m resolution in order to keep consistency with the field measured fuel samples. These 

LiDAR indices were extracted using ArcGIS 10.3 (http://desktop.arcgis.com/en/arcmap/). 

Table 1. LiDAR derived indices of height and intensity. 

LiDAR Indices Maximum Minimum Mean Median 
Standard 

Deviation  

Percentile 

99th 

Percentile 

95th - 

Percentile 

5th 

Percentile 

1st 

Height 

(H) 

Overstorey 

vegetation(C) 
HmaxC HminC HmeanC HmedianC HStdC H99

th
prctileC 

H95
th

prctileC 

- 

H5
th

prctileC 

H1
st

prctileC 

Understorey 

shrubs (S) 
HmaxS HminS HmeanS HmedianS HStdS H99

th
prctileS 

H95
th

prctileS 

- 

H5
th

prctileS 

H1
st

prctileS 

Lower 

vegetation(L) 
HmaxL HminL HmeanL HmedianL HStdL H99

th
prctileL 

H95
th

prctileL 

- 

H5
th

prctileL 

H1
st

prctileL 

Intensity Indices (I) Imax Imin Imean Imedian IStd I99
th

prctile 
I95

th
prctile - 

I5
th

prctile 
I1

st
prctile 

(Note: Percentile ranges from 1st  to 99th with an interval of 5.)  

5.2.4 Estimation of Litter-bed Fuel Load 

5.2.4.1 Model development 

Two assumptions were made for the development of the litter-bed fuel load model: 1) the 

spatial variations in forest litter-bed fuel load were closely correlated to LiDAR height and 

intensity indices, which led to the formulation of Model 1; 2) the spatial variations in forest 

litter-bed fuel load were also highly related to previous disturbances and fuel types, which 

resulted in Model 2. The predictive models of litter-bed fuel loads (Model 1 and 2) were 

developed based on the extracted LiDAR indices, years since last fire, eucalypt forest fuel type 

(dry or damp), burn type (fire hazard-reduction burn or wildfires), and the field measured dry 

weight of the fuel samples through multiple regression. These variables are listed in Table 2. 

The stepwise procedure was used to produce estimates of the model coefficients to select the 

important variable at the statistical significance level of 0.05. The first-order interaction terms 
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for independent variables were applied to keep the number of variables manageable, and to 

omit high-order terms to the models.  

Table 2. Variables used for forest litter-bed fuel load model development. 

Descriptions Variables 

Litter-bed fuel load (kg) DW 

Maximum intensity / heights at stratified vegetation layers 

(m) 
Imax / HmaxC / HmaxS/ HmaxL 

Minimum intensity / heights at stratified vegetation layers 

(m) 
Imin / HminC / HminS / HminL 

Mean intensity / heights at stratified vegetation layers (m) Imean / HmeanC / HmeanS / HmeanL 

Median intensity / heights at stratified vegetation layers (m) Imedian / HmedianC / HmedianS/ HmedianL 

Standard deviation of intensity / heights at stratified 

vegetation layers (m) 
IStd / HStdC / HStdS / HStdL 

99th Percentile of intensity / height distribution at stratified 

vegetation layers 
I99

th
prctile / H99

th
prctileC / H99

th
prctileS / H99

th
prctileL 

… … 

1st Percentile of intensity /height distribution at stratified 

vegetation layers 
I1

st
prctile / H1

st
prctileC /H1

st
prctileS / H1

st
prctileL 

Canopy density (%) CD 

Elevation (m) E 

Aspect (degree) A 

Slope (degree) S 

Forest fuel type (dry / damp eucalypt forest) FT 

Burn type (wildfire / fuel hazard-reduction burns) BT 

Time since last fire (year) YSF 
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5.2.4.2  Model error assessment 

The model assumptions were assessed through Cook's distance plot, the histogram of residuals 

and the normal probability plot (NPP). AIC was computed for model selection as well as for 

restricting overfitting problems. The AIC value of the candidate models is calculated using the 

following equation (2). 

 𝐴𝐼𝐶 = 2𝑘 − 2 ln(𝐿)                                                             (2) 

where L is the maximum value of the likelihood function for the model, and k is the number of 

estimated parameters in the candidate model. In this study, ln(L) is replaced by N times the log 

of the variance of the noise, defined as N*log(RSS/N). N is the number of observations, and 

RSS is the residual sum of squares.  

The leave-one-out cross-validation was then used to verify the result of the candidate models. 

Leave-one-out cross-validation (CV) could be computed using equation 3, 

𝐶𝑉 =  
1

𝑛
∑ [𝑒𝑖/(1 − ℎ𝑖)]2𝑛

𝑖=1                                                            (3) 

where n is the number of the observations, ei is the error obtained from fitting the model to n - 

1 observations, hi is the leverage, and i is the repeating step (= 1, 2, …, n) (Kohavi, 1995; Good, 

2001). The preferred model-predicted values of litter-bed fuel load were then compared with 

the observed fuel load for a further assessment of accuracy of the prediction. Finally, sensitivity 

analysis was also conducted to further assess how the uncertainty in the model output can be 

apportioned to the uncertainty in its inputs.  
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5.3 Results 

5.3.1 LiDAR-derived predictive model 

Table 3. Forest litter-bed fuel load performance summaries for the different model formulations 

explored in this study. 

Model Predictors Coefficients 

Std. Error 

of the 

Estimate 

 t    P F 

1 

(Intercept)       -107.53 29.86 -3.60 < 0.01   

HmeanS   -0.22 0.06 -3.62 < 0.01 13.13 

log(HmaxC)      3.91 1.86 2.11 0.04 4.44 

log(HmeanC) -8.24 3.78 -2.18 0.04 4.75 

log(A)                   -0.15 0.08 -1.92 0.06 3.70 

HmedianS*HStdS       -0.03 0.01 -4.35 < 0.01 18.95 

log(HmedianC)*log(E) -27.79 7.43 -3.74 < 0.01 13.97 

log(HStdC)*log(E)       8.95 3.55 2.52 0.02 6.34 

2 

(Intercept)       29.47 12.38 2.38 0.03  

HmeanS -0.04 0.02 -1.74 0.1 3.03 

log(HminC)                 -2.96 0.62 -4.74 < 0.01 22.50 

CD       0.66 0.21 3.16 < 0.01 9.99 

log(E)               -10.45 4.81 -2.17 0.04 4.72 

log(S)              0.52 0.13 3.87 < 0.01 14.94 

BT 5.14 2.34 2.19 0.04 4.81 

HmaxS*HStdS        -0.03 0.01 -5.90 < 0.01 34.75 

 HStdS*log(A)          -0.19 0.07 -2.77 0.01 7.67 

log(HStdC)*log(A) 2.56 0.88 2.91 0.01 8.48 

log(A)*FT -1.16 0.25 -4.63 < 0.01 21.42 
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During the error assessment of forest litter-bed fuel load model development, a symmetric 

normal distribution of residuals was detected, which indicated the observations were randomly 

sampled from a normal distribution. The NPP of the residuals (the error terms) was 

approximately linear supporting the condition that the error terms were normally distributed 

and no obvious patterns were detected. Cook's distance detected three potential outliers. 

According to the model assumptions, the two models were produced as summarised in Table 

3. 

Model 1 was developed based on the LiDAR-derived height indices and topography. It is a 

linear regression model with eight terms in nine predictors, including HmeanS, log(HmaxC), 

log(HmeanC), log(A), HmedianS*HStdS, log(HmedianC)*log(E), log(HStdC)*log(E). It explained the 

majority of the variation in the observed litter-bed fuel load. LiDAR-derived I indices were 

excluded in the model due to their low statistical significance in the model prediction. Model 

1 produced an R2 value of 0.63 and Root Mean Squared Error (RMSE) value of 0.16 kg/m2, 

when compared with the model-predicted dry weight of litter-bed fuel load with observed 

values (Figure 3a).  

 
Figure 3. Scattergrams of Model 1 (a) and Model 2 (b) estimated forest litter-bed fuel load 

against field observed values. 
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Model 2 introduced other variables (FT and BT) to interact with the LiDAR-derived indices. 

CD and log(S) were included in Model 2 due to their statistical significance in the model 

prediction. Both models resulted in similar prediction errors (CV) through leave-one-out cross-

validation (Table 4). Model 2 explained an extra 17% of the observed variations in litter-bed 

fuel load, and also improved RMSE to 0.15 kg/m2 (Figure 3b). However, it included two more 

predictors (forest fuel types and fire history) that increased the AIC value by 25, compared to 

Model 1 (Table 4). Both models involve inputs of LiDAR indices (heights and topographic 

variables). However, Model 2 requires extra specific data inputs including forest fuel type and 

fire history. Its output may also be sensitive to the accuracy of the forest fuel type and fire 

history. Therefore, Model 1 is recommended for forest application, such as mapping litter-bed 

fuel load and assessing forest fuel hazards on a landscape scale. A complete litter-bed fuel load 

map in the Upper Yarra Reservoir Park could not be created due to the limited LiDAR data 

availability. Model 1 estimated spatial variations in litter-bed fuel load across 200 ha in the 

study area (Figure 4). The cell size or resolution (40 m by 40 m in Figure 4c) of the litter-bed 

fuel load estimation is the unit in which ALS indices were extracted and vegetation layers were 

then stratified. Model 1 consequently was utilised to compute the litter fuel load over these 

individual units. The size of the unit can be flexible depending on whether the scatter plot of 

laser point density against height follows a continuous mixture distribution. The following 

discussion is focused on the established model - Model 1. 

Table 4. Forest litter-bed fuel load model comparison.  

Model R Square RMSE F Sig. AIC CV 

1 0.63 0.16 3.34 <0.01 -116.22 0.073 

2 0.80 0.15 5.76 <0.01 -90.87 0.078 
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Figure 4. Spatial variations in fire history (a), canopy density (%) (b), and litter-bed fuel load 

(kg) (c) in the study area. 
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5.3.2 Sensitivity analysis 

Model 1 indicates that litter-bed fuel load can be primarily predicted by stratified LiDAR height 

indices and topography. Forest litter-bed fuel load is linearly related to HmeanS, log(HmaxC), 

log(HmeanC), log(A), HmedianS*HStdS , log(HmedianC)*log(E), and log(HStdC)*log(E). However, the 

uncertainty in the model-predicted litter fuel load can be apportioned to different sources of 

uncertainty in the inputs (Saltelli, 2002; Saltelli et al., 2008). Model outputs are more sensitive 

to HmeanS and log(HmeanC) (Figure 5). Changing HmeanS from 0 (no understorey shrubs) to 12 m 

decreases litter fuel load by 2.6 kg/m2, given all other parameters are held constant. It suggests 

that the mean heights of understorey shrubs may negatively influence the litter-bed load in the 

study area. Maximum canopy height is positively related to the load in the study area. A rise 

of log(HmaxC) from 1.43 to 1.67 (maximum canopy height changing from 27 to 47 m) increases 

the quantity of litter fuel by 0.9 kg/m2, when other parameters are held constant. There is a 

strong relationship between HmaxC and forest fuel type in the study area (Figure 6). The canopy 

height of dry eucalypt forest (in green) tends to be lower than 35 m; the canopy heights of wet 

eucalypt forests (in orange) are generally higher than 35 m. In this area, dry forests produce 

more litter fuel on the forest floor leading to a higher fire hazard than wet forests. Increasing 

log(HmeanC) from 1.3 to 1.59 (mean canopy height changing from 20 m to 39 m), holding other 

parameters constant, decreases quantity of litter fuel by 2.3 kg/m2. Raising log(A) from 1 to 2.6 

decreases the litter fuel load by 0.2 kg/m2 (Figure 5). The model prediction is least sensitive to 

the variation in aspect compared its main effect index with other predictors. In the study area, 

forests with east, southeast, and south aspects may produce more litter-bed fuel load than 

forests with north, northwest and west aspects (Figure 7b).  
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Figure 5. Main effect of the independent variables (HmeanS, log(HmaxC), log(HmeanC) and 

log(A)) of Model 1 in prediction of forest litter fuel load. The horizontal lines represent 

confidence intervals for these predictions. It measures the effect of varying one of the input 

parameters and averaged variations in other input parameters. 

 
Figure 6. Forest fuel type in relation to LiDAR-derived HmaxC (m). 
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Figure 7. Terrain features in the study area. a. Elevation; b. Aspect in relation to contours of 

the estimated fuel load. 

The  above sensitivity analysis, however, does not identify the output uncertainty caused by 

the interactions (White and McBurney, 2012). Model 1 involves the interaction of the 

parameters that simultaneously cause variations in the output, which is examined as follows. 

Changing HStdS from 0 to 5.11 m increases the quantity of litter fuel when HmedianS is constant 

and lower than 7 m, whereas increasing HStdS within the same range may decrease the litter fuel 
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load when the constant HmedianS is higher than 7 m (Figure 8a). Forests with lower understorey 

vegetation tend to have more litter-bed fuel when heights of understorey vegetation are 

inconsistent; forests with higher shrubs can also yield more litter-bed fuel when heights of 

understorey vegetation are consistent. Increasing elevation raises the litter fuel load when 

HmedianC is constant and lower than 37 m; rising elevation also reduces the litter fuel load when 

HmedianC is constant and higher than 37 m (Figure 8b). As described in Figure 7, in the study 

area maximum height tends to be lower than 35 m for dry eucalypt forests, and wet eucalypt 

forests are higher than 35 m. Therefore, the dry forest located at a higher elevation may produce 

more litter-bed fuel load, and the wet forests located at a lower elevation tend to have more 

litter-bed fuel load. Figure 8c shows that changing log(HStdC) from 0.47 to 0.9 reduces the litter 

fuel load, while holding log(E) fixed and lower than 2.9; and the increase in log(HStdC) also 

raises the litter fuel load when log(E) is constant and higher than 2.9. When elevation is 

constant and lower than 800 m, increasing standard deviation of canopy height from 3 m to 8 

m reduces litter-bed fuel load, and also increases the load when elevation is higher than 800 m. 

Thus, increasing the consistency in canopy vegetation heights may increase the amount of 

litter-bed fuel load when forests are located at a certain elevation below 800 m. However, this 

increase reduces the fuel load when forests are located at a certain elevation above 800 m.  
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Figure 8. Interaction plots to describe the model-adjusted prediction when holding one 

predictor fixed and changing the other interacted predictor. 

Statistically, the stratified LiDAR height indices (e.g. Hmax, Hmean, Hmedian and HStd) contribute 

more to the model prediction than the height percentile and intensity. YSF is not the key 

indicator of spatial variations in litter fuel load, despite litter-bed fuel accumulating over time. 

Fire intensity and severity can be highly variable with different fire histories, even within one 

fire. It is critical to apply physical boundaries of fire history to estimate litter-bed fuel load. In 

order to reduce the amount of uncertainty of outputs caused by model inputs, Model 1 is the 

recommended model in this study. This model shows that both elevation and aspect are more 

statistically significant than slope. Some fuel accumulation studies show that elevation 

indirectly influences fuel productivities and decomposition rates due to its effect on soil 

moisture; aspect is an indicator of litter-bed fuel moisture content that indirectly influences the 

decomposition rates (McArthur, 1962; Birk and Simpson, 1980; McCaw et al., 1996; Schaub 

et al., 2008). This study found that the impact of elevation on litter-bed fuel load could be 

restricted by canopy height indices in the study area, and the LiDAR-derived canopy height 
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indices are closely correlated with forest fuel type (wet/dry eucalypt forests). In other words, 

forest fuel types contribute differently to litter-bed fuel load with a change in elevation. Rising 

elevation for dry forests may increase litter-bed fuel load, and increasing elevation in wet 

forests may decrease litter-bed fuel load. Greater quantities of litter-bed fuel tended to be 

located on east, southeast and south aspects in the study area.  

5.4 Discussion  

Accurate prediction and description of wildfire behaviour is essential to sound forest fire 

management, including fire danger rating, prescribed burning and wildfire control (Burrows, 

1999). However traditional measurement requires extensive field sample collection and 

laboratory work when a large area is involved. Currently, Australian fire authorities and land 

management agencies are using direct measurement of litter-bed fuel depth to assess litter-bed 

fuel hazards (Watson et al., 2012). However, both methods have limitations in describing 

spatial variations in litter-bed fuel load, as they depend on statistical extrapolation of the field 

samplings to a greater scale. The accumulation models tend to follow a general form of an 

exponential function (Gould et al., 2014), in which years since last fire is the only independent 

variable used to predict fuel growth within homogeneous vegetation (Conroy, 1993; Fernandes 

and Botelho, 2003). In addition, McArthur (1962)’s depth-to-load relationships as well as 

Gilroy and Tran (2006)’s model use forest litter-bed depth to predict litter-bed fuel load. 

However current methods are restricted in measuring spatial variations in litter-bed fuel depth 

across landscape scales. Therefore, it is impossible to compare the predicted fuel load derived 

from these models to the spatial variation estimated from our model in our study area, as the 

forests have mixed fuel types and species with various fire events.  

Forest vegetation composition and structure, as well as terrain features shape forest ecosystems 

and microclimate. These factors also provide significant information for litter-bed fuel load 
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estimation that assists forest management and fire-related operational activities such as fire 

hazard-reduction burns. This study used LiDAR indices to quantify forest structural 

information through vegetation stratification according to the height distribution of LiDAR 

point density. Other studies used unimodal structures to represent vertical profiles of forest 

structure. However, unimodal distributions cannot capture a complete representation of the 

continuous LiDAR point density in multilayered forests (Jaskierniak et al., 2011). Jaskierniak 

et al. (2011) extracted LiDAR indices from the best-fitted bimodal models as a result of an 

extensive evaluation in goodness of fit among a wide range of candidate bimodal distributions. 

However, some types of distributions were assumed in advance, and this parametric fitting 

could lead to fitting a smooth curve that misrepresented the data. Unlike Jaskierniak et al. 

(2011), the LOWESS was used in this study for fitting a smooth curve to data points without 

the assumption that the data must fit some distribution shape. Our computation was relatively 

efficient and does not require a high performing computing system to generate the result within 

a reasonable time. The structural information was then used to develop a predictive model for 

litter-bed fuel load estimation. The model prediction error was 0.16 kg/m2 and explained 63% 

variation in litter-bed fuel load that observed using the direct measurements. The information 

derived from the model can be used to assist forest fuel management, and assess potential fire 

hazards in the Upper Yarra Reservoir area. 

This study also demonstrated an efficient method to stratify a LiDAR-derived forest vertical 

profile - a bimodal distribution through integration between a non-parametric smooth fitting 

strategy and derivative functions. This method provides a new approach to classify forest 

vegetation using ALS data, which is replicable and beneficial for various forest applications, 

such as mapping forest canopy closure, habitat conservation and ecological management. In 

addition, LiDAR-derived canopy density is typically computed through dividing the amount 

of non-ground return points by total amount of non-ground return and ground return points in 
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a unit area. This method is applicable in single layer forests. However, it overestimated canopy 

density in our multilayered forests by taking overstorey and understorey vegetation into 

account as a complete canopy. Our study computed forest canopy density according to the ratio 

of the number of LiDAR points returned from stratified overstorey vegetation to the total 

number of non-ground return points within small equal-sized units, which is more accurate.  

5.5 Conclusion 

The variation in litter-bed fuel load in eucalypt forests can be attributed to the variability in 

species composition of overstorey and understorey vegetation, the extent and severity of 

previous disturbance events including fires and erosion, the site quality including soil quality, 

stocking rates and plant cover, elevation, aspect and slope position which have impact on fuel 

moisture and litter decomposition rates, and the moisture content of the leaf litter due to 

seasonal and diurnal changes in precipitation and radiation (McCarthy, 2004; Tolhurst et al., 

2008). Therefore, quantifying litter-bed fuel load using environmental impact factors across 

the landscape can be challenging. This study developed a predictive model of forest litter-bed 

fuel load using LiDAR-derived stratified height indices and topography. The predictive model 

efficiently and consistently estimated the spatial distribution of litter-bed fuel load in 

multilayered eucalypt forests with various fire history and forest fuel types. Current fuel models 

use a single indicator (e.g. litter-bed fuel depth, and years since last fire) to estimate fuel load 

within a homogeneous vegetation community. On contrast, our model revealed spatial 

variations in litter-bed fuel load using forest understorey and overstory vegetation structural 

characteristics, and topography through multiple regression with LiDAR data.  

This newly-developed model (Model 1) for forest litter-bed fuel load estimation is applicable 

when data of forest fuel types and previous fire disturbances are not available, although these 

are among of the key indicators of fuel accumulation used in other studies. This study also 
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found eucalypt forest fuel type is closely correlated to maximum heights of canopy vegetation, 

which can be used as an alternative to map forest fuel type and to estimate fuel load. Forest 

fuel types and elevation indirectly influence the productivity of litter-bed fuel. The southeast-

facing aspect and the northwest-facing aspect have different impacts on the rate of fuel 

decomposition due to the change in microclimate and in soil moisture content. This predictive 

model also indicates that the mean heights of both canopy and shrub vegetation contribute more 

to the prediction than other predictors. The established model needs to be tested in other areas 

with a wider range of forest fuel types and fire disturbances, therefore more litter fuel samples 

should be collected to optimize it in the future. 
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Chapter 6. Conclusions 

The application of LiDAR data in forest fuel load estimation and structural measurements can 

improve the accuracy and efficiency of forest fuel hazard assessment and fire behaviour 

prediction. The first section of this chapter summarises the scientific findings of this study in 

forest fuel measurements, and also discusses the contributions to the field of remote sensing 

application in forestry. It is followed by a discussion regarding the limitations of this research 

and by a section that highlights the research directions and recommendations for future studies. 

6.1 Findings 

 An automated forest fuel strata classification tool through an integration of TLS data 

with GIS. The application of remote sensing in classifying understorey fuel strata is not 

well understood in current literature. GIS provides flexible, feasible, and easy-to-use tools 

for forest fuel strata classification that can be implemented more widely by practitioners. 

This research finding answers the first research question that integration between TLS data 

and GIS provides a novel method to quantify fuel structural characteristics efficiently and 

consistently. 

 New relationships among quantity of forest surface fuel, surface fuel depth, fire 

history and environmental factors. The fuel load models established in this study indicate 

that litter-bed depth and fire history are primary predictors in estimating litter-bed fuel load, 

while canopy density and elevation are the secondary indicators. In another word, litter-

bed fuel load is highly correlated to the litter-bed depth and fire history, and also related to 

canopy density and elevation. This finding addresses the second research question.  

 Spatial distribution of litter-bed fuel load in the study area. Forest vegetation 

composition, structure, and terrain features shape forest ecosystems and microclimate, 

which provide significant information for litter-bed fuel load estimation. This study 
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developed a perspective model to estimate spatial variation in litter-bed fuel load using 

forest understorey and overstorey vegetation structural characteristics, and topographic 

variables through multiple regressions with ALS data. It answers the last research question. 

6.2 Contributions 

This section discusses the two main contributions of this study, which are forest fuel strata 

classification and litter-bed fuel load estimation using LiDAR data. 

6.2.1 Forest fuel strata classification 

This study developed two efficient methods to stratify forest vegetation layers in multilayered 

eucalypt forests using LiDAR data. The first approach used TLS data to classify understorey 

forest fuel layers at the plot level with a very fine spatial resolution (mm). This method was 

implemented by moving searching windows vertically to identify the closest laser points 

according to the three-dimensional continuity of the forest vegetation. The second approach 

aimed to stratify overstorey and mid-storey forest vegetation at a landscape scale with a fine 

resolution (0.5 m). This method was carried out by identifying the division points of the mixture 

distribution of LiDAR point density against heights.  

 TLS-derived understorey fuel strata classification. TLS data has been used to 

reconstruct tree structures in order to estimate biophysical tree parameters, such as tree 

heights, DBHs, woody volume and leaf areas (Loudermilk et al., 2009; Newnham et al., 

2015). Despite that, remote sensing or LiDAR application in forest fuel strata classification 

is not well understood. The automated tool to classify forest understorey fuel layers 

efficiently was developed by integrating TLS data and GIS. Forest fuel strata were stratified 

based on the spatial continuity of the forest biophysical knowledge. This method is not 

restricted by forest fuel type, fire history and understorey structures. TLS data can 
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accurately and consistently represent three-dimensional forest fuel structures with a high 

spatial accuracy. The GIS-based analysing and processing procedures allow more objective 

descriptions of fuel covers and depths for distinct fuel layers compared with currently used 

visual assessments. The accurate description of forest structural characteristics obtained by 

this method benefits bushfire operational activities and the development of fire behaviour 

models. Although TLSs provide a higher spatial resolution for understorey fuel structural 

measurements; however, they are restricted by the systematic limitation in scanning scales 

(Rowell et al., 2016). Therefore, application of the TLS-derived method to classify forest 

vertical fuel strata across landscape can be constrained (Simonse et al., 2003), which leads 

to a development of a landscape scale forest fuel structural classification using ALS data. 

 ALS-derived overstorey and mid-storey vegetation classification. This study also 

developed an efficient method to stratify an ALS-derived forest vertical profile - a bimodal 

distribution through integration between a non-parametric smooth fitting strategy and 

derivative functions. Current studies use unimodal structures to represent vertical profiles 

of forest structure, which fail to capture a more complete representation of the continuous 

LiDAR point density in multilayered forests (Jaskierniak et al., 2011). Unlike Jaskierniak 

et al. (2011), the LOWESS was used in our study to fit a smooth curve to the data points 

without the assumption that the data must follow a certain distribution shape. Forest 

overstorey and mid-storey vegetation classification was achieved by identifying the 

division point of the smoothed curve by computing the maximum value of the second 

derivative. Our computation was relatively efficient and did not require a high performing 

computing system to generate its result within a reasonable amount of time.  

This method is an efficient approach to classify forest vegetation using ALS data, which is 

replicable and beneficial for various forest applications, such as mapping forest canopy 

closure, habitat conservation and ecological management. In addition, the ALS-derived 
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canopy density is typically computed by calculating the ratio between the amount of non-

ground return points and the total amount of ground and non-ground return points in a unit 

area. This method can be applied to a single layered forest, but it overestimates canopy 

density in a multilayered forest, as it mistakes understorey vegetation as a portion of 

overstorey. Our study computed forest canopy densities using the ratio of the number of 

LiDAR points returned from stratified overstorey vegetation to the total number of non-

ground return points within small equal-sized units. This method results in a more accurate 

canopy density estimation compared with the typical method. 

6.2.2 Litter-bed fuel load estimation 

Forest litter-bed fuel load is dynamic at fine spatial and temporal scales (Hudak et al., 2016), 

and is determined by a complex interaction of factors, such as fuel type, productivity of 

understorey and overstorey vegetation, weather, and environmental conditions (Miller and 

Urban, 2000). Spatial variations in litter-bed fuel load across the landscape are difficult to 

predict and simulate. This study developed two methods to estimate forest surface litter fuel 

load using LiDAR data, including development of a new depth-to-load relationship and a 

landscape scale fuel load estimation based on forest fuel vertical structures.  

 Modelling depth-to-load relationship. This study found a new depth-to-load model using 

fuel depth, canopy density and terrain features, forest fuel types, and fire history through 

multiple regressions. ALS data was applied in the study to provide the topographic 

variables and canopy density; TLS data was used to represent the spatial continuity of 

surface litter-bed depth as a replacement of direct measurement. The established model 

indicates that the majority of variations in litter fuel load can be estimated by litter-bed 

depth and fire history. McArthur (1962)’s depth-to-load model used percentage cover of 

understorey shrubs to enhance the model performance. In reality, information of fire history 
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is more convenient to obtain than estimation of understorey vegetation percentage cover 

from a practical perspective. Therefore, our model is more time effective compared with 

McArthur (1962)’s model. It also indicates that among environmental factors, canopy 

density and elevation significantly impact on forest surface litter fuel productivity. This 

study also found that LiDAR-derived independent variables (fuel depth, canopy density, 

elevation, aspect and slope) could improve the efficiency and accuracy in modelling forest 

surface litter fuel load.  

 Landscape scale forest litter-bed fuel load estimation. This study developed a predictive 

model using ALS data that produces a more accurate and consistent spatial distribution of 

surface fuel load in multilayered eucalypt forests with various fire histories and forest fuel 

types. Other fuel models use simple indicators (e.g. surface fuel depth, and years since last 

fire) to estimate fuel load within a vegetation community and are constrained to estimate 

spatial variation in fuel load within homogeneous vegetation that previously experienced 

the same fire events. Our model uses forest structural indices and terrain features derived 

from ALS data, which is applicable when data on forest fuel types and previous fire 

disturbances are not available. It also demonstrates how the topographic variables influence 

the litter-bed fuel load in the study area. Consequently, a landscape scale fuel load map was 

created corresponding to the established model. These results indicate that multi echo ALS 

data allow estimation of spatial variations in forest litter-bed fuel load at a landscape scale. 

6.3 Limitations 

In this study, LiDAR-derived surface fuel depth and fuel cover at distinct fuel layers were 

assessed by field data that were collected using typical field measurements. However, the 

validation is contentious and constrained by currently used field measurement methods. Field 

data that were used to validate the TLS-derived fuel structural characteristics were sampled 
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and collected through visual assessments that are currently used by fire fighters and land 

managers. However, these visual techniques can be subjective and prone to errors. A more 

accurate and robust method should be investigated to validate both TLS-derived and visual 

assessed results. Moreover, field data on surface fuel depth in the field were measured directly 

using a gauge at one site sized 1m by 1m. The finalised depth was determined by an average 

value of five measurements within the site. Using the averaged depth of one site to validate the 

exact values that are derived from TLS data may increase the deviation.   

This study investigated relationships among quantities of surface litter fuel, fuel structural 

characteristics (e.g. depth, cover, and height), fire histories, forest fuel types, and 

environmental factors. Spatial distribution of litter fuel varies depending on forest composition 

of overstorey and understorey vegetation, previous fire disturbances, changes in annual and 

seasonal precipitation, radiation, wind direction and speed, aspect, slope and elevation (Brown 

and Bevins, 1986). However, weather variables were not considered in the model development 

due to a coarse resolution of local weather data. This study assumed that terrain features 

influence fuel productivity and also help to form the microclimate across the study area instead 

of weather variables.   

6.4 Future research 

Increasing the number of field observations should be considered in the future to reduce the 

prediction error in the new depth-to-load relationship. Further studies should also investigate 

other potential important predictors that may also impact on litter fuel load, such as soil type, 

seasonal and diurnal changes in precipitation and temperature, and the extent and severity of 

previous disturbance events including fires and erosion. In addition, the automated tool for 

eucalypt forest fuel strata classification as well as the novel method to estimate landscape scale 

spatial distribution in litter-bed fuel load should be tested in other areas and different seasons 
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with a wider range of forest fuel types and fire disturbances. Forest fuel load accumulation is 

dynamic temporally and spatially. The litter-bed fuel load model developed in this study used 

field-surveyed fuel load data that was collected during summer. Future studies should 

investigate the temporal variations in fuel load across landscape, to provide a temporally 

accurate estimation of forest fuel load for fire behaviour modelling with various fire seasons 

and weather.   

The application of LiDAR in forest fuel measurements provides opportunities to overcome 

common challenges shared by forest fire behaviour and fire danger rating models as well as 

fire hazard mitigation activities. In the future, TLS and ALS observations should be integrated 

to provide a more complete forest fuel representation. It will provide a more comprehensive 

and accurate description of fuel structural characteristics and estimation of litter-bed fuel load.  

LiDAR application in fuel load estimates and fuel structural measurements is still at an early 

stage. Future studies should focus on how to apply LiDAR-derived fuel data in fire behaviour 

and danger modelling. It is also necessary to integrate LiDAR-derived landscape scale litter-

bed fuel load with forest fuel hazard assessing criteria to assist fire hazard-reduction treatments.  

In conclusion, this thesis presents compelling evidence that highlights the benefits of applying 

LiDAR data in forest fuel measurements. This study has developed objective methods that 

provide more accurate and consistent description of forest litter-bed fuel load and fuel 

structures for fuel hazard assessment, fire behavior modelling, and danger rating systems. As 

a result, the application of this study in fire management can better protect the environment 

and communities in Australia and other countries that are prone to frequent wildland forest 

fires. 
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