

ANALYSIS OF RAPID DAMAGE ASSESSMENT DATA FOLLOWING SEVERE WINDSTORM EVENTS

^aDaniel Smith, ^bRichard Krupar III, ^aDavid Henderson, ^cMatthew Mason
 ^aCyclone Testing Station, James Cook University, QLD
 ^bUniversity of Maryland, Center for Disaster Resilience, MD, USA
 ^cSchool of Civil Engineering, The University of Queensland, QLD

© BUSHFIRE AND NATURAL HAZARDS CRC 2017

Business Cooperative Research Centres Programme

Rapid Damage Assessment (RDA) Data

- \rightarrow CTS assessments = lots of engineering detail, fewer locations
- \rightarrow RDA = less detail, more locations
- \rightarrow Trained emergency services personnel (typically on foot)
- \rightarrow Building condition and description, build type, roof type, etc.
- \rightarrow Condition = No Damage, Minor, Moderate, Severe, Total
- \rightarrow Collected very quickly \rightarrow informs response/recovery efforts

Building Condition

<u>Minor</u>

- \rightarrow Superficial damage, glass breakage
- \rightarrow Ridge capping and gutter damage
- \rightarrow Structure is habitable
- \rightarrow Less than 25cm water

*per QFES Damage Assessment Operator Guide V5

BNE Thunderstorm, skylight/window glass breakage

Building Condition

<u>Moderate</u>

- \rightarrow Roofing cover damage
- \rightarrow Door/window frames damage
- \rightarrow Power impacted
- \rightarrow Internal linings/fixtures damaged
- \rightarrow 25cm 100cm water

BNE Thunderstorm, partial roof sheeting removed

Building Condition

<u>Severe</u>

- → Roof structure significantly damaged (damage to roof trusses)
- \rightarrow Walls/ceilings collapsed or unstable
- \rightarrow Structure is not usable/habitable
- \rightarrow Structural dmg that could be repaired
- \rightarrow More than 100cm water

BNE Thunderstorm, all roof sheeting removed

Building Condition*

Total

- → Complete failure of major structural components (e.g. collapse of walls, foundations or roof)
- \rightarrow Only foundations remain
- ightarrow Structure is unsafe and not habitable
- \rightarrow House pushed off foundations

*data require engineering "conversion"

TC Marcia, Nerimbera Football Club

Severe Wind Events

Brisbane Thunderstorm

I) Data sources:

- a) CP2 and Mt. Stapylton Sband Doppler radar data.
- b) BoMAWS
- c) QFES RDA

2) Methods:

- a) Radar pre- and postprocessing = wind field
- b) Damage mode assignment

40 Kilometers

Thunderstorm Downbursts

Dimension

- Tropical cyclones
- Thunderstorms
 - RFD/FFD
 - Microbursts
 - Tornadoes

Schematic of a downburst and tornado by Fujita (Image reference - http://www.tordach.org/topics/tornadodef_en.htm)

Doppler Radar Observations *Krupar et al.

RDA Analysis

Assign damage modes

- \rightarrow Term searches
- \rightarrow Tree damage/debris = wind
- → Review of photographs

BNE Analysis Summary

- \rightarrow Good qualitative agreement w/ radar (200 m) and RDA @ ground-level
- \rightarrow Need to explore quantitative relationships
- \rightarrow Real-time predictive tools w/ RDA as calibration?

Cyclone Marcia (2015)

Cairns

Landfall: Cat. 4-5 (BOM) >250 km/h gust

Brisbane

CTS Damage Survey

- Rockhampton
- Yeppoon
- Failures < design for NCC

Age vs Performance

 \rightarrow RDA points assigned age based on claims data (housing only)

- \rightarrow Assignments not perfect but reasonable
- \rightarrow Parametric wind field used to assign site-level speed (Krupar et al.)
- \rightarrow Minor = Minor
- \rightarrow Major = Moderate/Severe/Total

RDA Analysis Outputs

Green = Good

Red = Bad

Discussion

<u>Summary</u>

- \rightarrow RDA enables spatial analysis of damage
- \rightarrow Age vs performance trends affirmed
- \rightarrow Used to examine non-synoptic events
 - Harder to gather info than larger synoptic events
 - Better datasets may inform code changes

Benefits of RDA

 \rightarrow Enables catalogue of severe events for historical analysis

 \rightarrow Improved forecasting = better preparation

Future

- \rightarrow Data is great and has to be rapid
- \rightarrow More damage descriptions (remove unknowns)
- \rightarrow Nomination of damage modes (wind, hail, flood, etc.)
- \rightarrow Merge with GNAF for property ages?
- \rightarrow Develop relationships to \$ loss

Acknowledgements

- →BoM
- →QFES
- →Suncorp
- →Advance Queensland Grant
 →BNHCRC
- More Information
- \rightarrow Journal of the Atmospheric Sciences (JAS)
- →Frontiers Journal Paper
- →Australian Journal of Emergency Management (October Ed.)

AWS – Dual-Doppler Radar Horizontal Wind History Comparisons *Krupar et al.

Rapid Damage Assessment (RDA) Data

 \rightarrow Trained emergency services personnel (typically on foot)

 \rightarrow Building condition and description, build type, roof type, etc.

→Condition = No Damage, Minor, Moderate, Severe, Total

 \rightarrow Collected very quickly \rightarrow informs response/recovery efforts

