Experiences in the in-field utilisation of Fuels3D

AFAC18 / **2018**

Luke Wallace, Karin Reinke, Simon Jones, Sam Hillman, Ian Thomas / RMIT University

Adam Leavesley / ACT Parks and Wildlife

Simeon Telfer / SA DEWNR

Rachel Bessel / CFA

🕑 @bnhcrc 💿 @bnhcrc

Australian Government Department of Industry, Innovation and Science

Business Cooperative Research Centres Programme

© BUSHFIRE AND NATURAL HAZARDS CRC 2018

Overview

- Fuels3D background
 - Principles
 - Research to date
- Utilisation Trial
 - Approach
 - Current status
 - Expected outcomes

Background

Fuels3D Principles

- Fuels3D is a set of methods for the collection 3D data and the processing of that data to inform our fuel environments
- Fuels3D consists of two main modules

Fuels3D point cloud generation; and

Fuels3D point cloud analysis.

Point cloud generation

- A number of technologies exist for generating point clouds
 - Laser Scanning
 - Structured light cameras
 - Photogrammetry/Computer Vision/Structure from Motion
- Several platforms exist to carry this technology
 - Drones
 - Tripods
 - People
- Structure from motion technique is currently most feasible infield use
 - Low cost technology
 - Easy to understand capture*
 - Solving issues surrounding scale /environmental conditions key to success

Point cloud processing

- Point clouds captured by different technologies similar but not the same
- Methods developed to extract features of interest in different environments
 - Fuel strata
 - Status (live/dead)
 - Cover
 - Height
 - Change
 - Stratification
 - Bark type
- Significant focus on replicating the fuel hazard guide metrics

Research Activities

Fuels3D capture restrictions

TLS point clouds

Result of 4 merged scans from a Trimble TX8 scanner

29 – 46 points per cm

Image based point clouds 16 – 58 points per cm

Fuels3D Precision

sensors

MDPI

0.5

Article Investigating Surface and Near-Surface Bushfire Fuel Attributes: A Comparison between Visual Assessments and Image-Based Point Clouds

Christine Spits ^{1,*}, Luke Wallace ^{1,2} and Karin Reinke ^{1,2}

- ¹ School of Science, RMIT University, Melbourne 3001, Australia; luke.wallace2@rmit.edu.au (L.W.); karin.reinke@rmit.edu.au (K.R.)
- ² Bushfire and Natural Hazards Cooperative Research Centre, East Melbourne 3002, Australia

* Correspondence: christine.spits@gmail.com; Tel.: +61-422-234-688

Academic Editor: Jason K. Levy Received: 30 January 2017; Accepted: 17 April 2017; Published: 20 April 2017

Planned burn efficacy

Accuracy

- First step in any point cloud processing approach is knowing where the ground is
- Aim to determine the accuracy with which the ground can be found with different
 - Technologies
 - Vegetation environments
 - Cover conditions

Accuracy

- Grid point intercept method used to validate point cloud (near-surface and surface)
 - 64 sample points
 - Spaced approximately 50mm apart in 0.5 x 0.5m frame
 - Measured height of intercept on rod to nearest cm.
- Varying correlation depending on complexity of vegetation.
- Frame has minimal effect on point cloud generation
- Wind effects the ability to complete point matching

Environmental conditions

- Testing the limits of point cloud capture technology with simulated fuel/vegetation beds
- Effect of wind and inconsistent lighting

Utilisation Trials

Utilisation Workflow

Data collection

- Smartphone based data capture
 - Smartphone primarily acts as a data capture and organization device
 - No end-to-end workflow implemented
- Data is captured in **projects** which represent an area (burn area, forest etc.)
- Within projects, **samples** are collected which currently includes;
 - A set of photos
 - Metadata concerning
 - Plot location
 - Time of capture
 - Fuel details (for utilization trial)

Fuels3D app

Data collection

- The data collection method has been designed to be easy to follow and flexible within different environments.
 - Transects can be any length
 - Contain 2 6 target poles

Data transfer

Continued next slide ...

Point cloud generation

Point cloud analysis

Utilisation trials – current status

Government of South Australia Department of Environment, Water and Natural Resources

Department of Environment, Land, Water & Planning

- Four agencies participating in trial (as above)
- 14 Projects received thus far
- These will be processed in the coming weeks
- Currently QA occurs at a number of stages to determine issues

