

Real-time flood inundation mapping for flood intelligence: A case study from India

Carrie Dearnley & Ben Caddis

5 September 2018

Presentation Overview

- Context
- Flood problem
- Study area
- Forecasting framework
- Design considerations
- Framework architecture
- Key operations
- Next steps + summary

Bihar's flood problem

- India's most flood prone state
- 76% of northern population at risk of recurrent flooding
- Flood levels elevated for months
- Mostly rural area, but many villages in floodplain
- Lower income and education
- Little ability / desire to build elsewhere

Study area: state of Bihar

Study area: Bagmati River catchment

Study area: topography

Study area: land use

Typical land use: meandering river, small villages, farm land Approx. 1,000km of embankments

Study area: monsoonal flooding

Design considerations

- Nature of flooding annual, slow onset, long duration
- Availability of data esp. topographic and rainfall
 - Poor geographic coverage of gauges
 - No / difficult access to gauges in Nepal
 - LiDAR available for downstream areas
 - SRTM only in upper catchment can be metres different to ground survey
 - Limited and dated bathymetry: dynamic streams and sedimentation bring challenges with representation of waterways
- Capacity building consideration of FMISC skill and experience
- System flexibility ensuring capacity to grow and evolve

Framework architecture

Three key components:

Runoff-routing modelling for observed and forecast rainfall

Produces hydrographs (flow vs time)

Framework architecture

Three key components:

1D/2D hydraulic modelling of channel and floodplain behaviours

Uses hydrographs from URBS

Produces flood maps

Framework architecture

Three key components:

Delft-FEWS flood forecasting software

Ingests rainfall and stream obs / forecast

Runs models and manages results

Main interface for users

Key operations

Want to know 3 main things:

- What is the current situation?
- What is the future situation?
- What happens if embankment breaches?

Key operations: current situation

Poor rain gauge coverage means we don't know how much rain is entering the system in upper catchment

Solution? Test ensemble

- Tested every day of monsoon
- Hydrology considers 7 x 7 scenarios
- Fast hydraulic model simulates 49 events
- Boundary conditions from previous days' simulation (represents water already in system / 'hot start')
- Hydraulic model output compared against recorded river levels

Key operations: current situation

Key operations: future situation

What are river levels likely to be in the next few days?

→ Main purpose of system

Select 'current situation' event which best matches recorded Simulate in fast hydraulic model using observed + forecast

Key operations: future situation

Gridded rainfall forecast from IMD: daily forecasts, 6 hour steps for 3 days

- Boundary conditions from:
 - Forecast model results
 - Interpolated between obs river gauges
- Informed by on-ground obs
- Operator identifies:
 - Location
 - Length
 - Start time
 - Duration of failure
- Breach simulated in 2D model
- Dynamic flood mapping produced

4 separate 2D models

Next steps

- Testing during 2018 monsoon
- Ongoing training and modifications
- New observed and forecast data feeds
- Capture and inclusion of bathymetric data
- Extension to other river systems in Bihar
- Public-facing interface

Summary

- Flood forecasting framework is a step-change improvement for FMISC and outcomes for locals
- Data limitations have been a big challenge
 - Technical solutions, e.g. data filling and interpolation
 - Procedural solutions, e.g. ensembles and daily performance testing
- Balance automation and human intervention
 - Fully automated possible, but not desirable
 - Want to lock down some parameters or limit range
- Technically, very exciting
 - Multiple, advanced and industry best tools
 - Combined in new ways
 - New scripts to extend functionality (esp embankment breaching)

Want to know more?

Catch me after the presentation

Find me or Ben Caddis (PM) on LinkedIn

Contact us at BMT Brisbane

Carrie.Dearnley@bmtglobal.com

Ben.Caddis@bmtglobal.com

