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ABSTRACT 

A natural hazard becomes a natural disaster when individuals, communities and infrastructure are 

impacted (Smith, Martin & Cockings 2016). The economic and social repercussions of natural disasters 

create a need for improved approaches to reduce natural hazard risk. To enable this, a better 

understanding of what influences hazard risk, and how these drivers can be affected, is required. The 

conceptual framework proposed in this report presents a method to breakdown and understand 

natural hazard risk, for a non-specific hazard in a non-specific location. The framework incorporates 

hazard, exposure, vulnerability to evaluate current risk, and uses an exploratory scenario approach to 

evaluate future risk. This understanding enables decision makers to form long term plans to reduce 

natural hazard risk. A sensitivity analysis of the drivers of hazard risk has been included in the 

framework alongside mitigation to inform effective and targeted mitigation strategies. 

The conceptual framework was applied to a case study to understand the influence of Social 

Vulnerability on Hazard Risk by considering a bushfire hazard in Greater Adelaide. The case study 

application demonstrates how the framework can be used to make decisions in real world contexts 

and assesses the impact of mitigation on reducing hazard risk. The conceptual framework successfully 

identified the areas in Greater Adelaide with the highest Social Vulnerability and Bushfire Hazard 

Likelihood and assessed how these will change in the future. The implementation of certain mitigation 

and co-benefit policies positively impacted the Social Vulnerability and Hazard Risk in Greater 

Adelaide. Having demonstrated its utility, it is recommended that the conceptual framework be 

applied to other natural hazards, to better understand the influence of Social Vulnerability on Natural 

Hazard Risk.  
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1 INTRODUCTION  

A natural disaster results when individuals, communities and infrastructure are impacted by a natural 

hazard (Smith, Martin & Cockings 2016). The economic and social repercussions of natural disasters 

create a need for improved approaches to natural disaster risk reduction. In 2015, natural disasters 

caused in excess of US$70 billion damage globally (Guha-Sapir & Below 2009). The total number of 

people affected by these disasters was 103,037,856, which is better represented as approximately 4 

times Australia’s population (Guha-Sapir & Below 2009). To reduce the time and cost of recovery, 

mitigation strategies can be employed (He & Zhuang 2016; Islam & Lim 2015; King 2005; McAllister 

2016; Truong & Trück 2016). Allocation of funds to mitigation strategies is difficult to achieve for two 

main reasons: the benefits of mitigation measures are often long term, and the perception of risk is 

often inaccurate due to the infrequency of natural hazards (Van Delden et al. 2015).  

Natural hazard risk has been widely recognised as a coupled human and natural system (Arneth, 

Brown & Rounsevell 2014; Cutter & Finch 2008; Monticino et al. 2007; O'Connell & O'Donnell 2014; 

Pooyandeh & Marceau 2013; Spies et al. 2014; Walsh & McGinnis 2008). These complex coupled 

systems can greatly, and unintentionally, be affected by policies and choices made by decision makers 

(Spies et al. 2014). Furthermore, it is accepted that the future state of the world is highly uncertain, 

so the influence of policies and choices on risk in the future is largely unknown. This uncertainty of the 

future is termed ‘deep uncertainty’, which describes the presence of multiple plausible futures, each 

with an unknown probability of occurrence and their own associated uncertainties (Buurman & 

Babovic 2016; Maier et al. 2016). Decision making using intuition and experience, therefore, is 

inefficient for these systems – especially for mitigation strategies which aim to reduce risk in the 

future. This motivates the need for a decision support system to analyse the efficacy of mitigation 

strategies under deep uncertainty, to enable a systematic and transparent decision-making process. 

To achieve this, it is necessary to understand what comprises natural hazard risk and how this risk is 

affected (Klonner et al. 2016). 

 
Figure 1-1 Visual representation of the links between risk, mitigation and long term external drivers 
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Hazard risk is shaped by three main components; hazard, exposure and vulnerability – termed the 

“risk triangle”, as shown in Figure 1-1. Exposure and vulnerability incorporate the people and 

infrastructure that are exposed to the hazard, and their vulnerability, respectively. Focussing the 

measure of risk on social vulnerability emphasises how an individual or community’s ability to respond 

to, or recover after, a hazard event affects the impact of a natural hazard. 

Mitigation strategies may be used to target the components of hazard risk. The effectiveness of 

mitigation depends on its effect on hazard, exposure or vulnerability. However these are also 

impacted by external drivers, which are factors that affect risk but cannot be influenced through policy 

and decision making (Van Delden et al. 2015).  Examples of external drivers that influence natural 

hazard risk include climate, population, demographic, and economics (Van Delden et al. 2015). These 

long term external drivers are spatially explicit and temporally dynamic. Thus, natural hazard risk is 

assessed spatially and temporally, and should consider the impact of deep uncertainty. A method for 

dealing with deep uncertainty in the future is to use exploratory scenarios, which describe plausible 

future states of the hazard risk system due to changes in the external drivers. Therefore, to understand 

the dynamic nature of hazard risk and to develop long term planning approaches that consider deep 

uncertainty, exploratory scenarios should be used. However, limited research has considered the 

effect of exploratory scenarios on all three components of hazard risk: vulnerability, exposure, and 

hazard.  

To understand how mitigation affects risk under deep uncertainty, the interaction between mitigation 

and the components of the risk triangle is important. The idea of risk mitigation is thoroughly 

considered in the literature; however, these assessments have used their own definition of risk, and 

have not explicitly considered exposure and vulnerability in their assessment of hazard risk. To 

understand how natural hazards affect community resilience and recovery, it is important to consider 

the impact of social vulnerability on hazard risk. Analysing social vulnerability spatially and temporally 

allows risk reduction techniques to be targeted to the most vulnerable people.  

The aim of the research is to produce a conceptual framework for an integrated hazard modelling 

platform that can be used to understand the influence of social vulnerability on hazard risk in a spatial 

and temporal dimension. The conceptual framework is for a non-specific hazard in a non-specific 

location; it outlines an approach for understanding the long-term drivers of hazard risk to inform 

planning of mitigation strategies to reduce social vulnerability and natural hazard risk. The framework 

is applied to a case study assessing the social vulnerability and hazard risk in Greater Adelaide using a 

bushfire hazard. The case study demonstrates how the conceptual framework can be applied to 

answer real world questions.  
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2 LITERATURE REVIEW 

 Relationship between Risk, External Drivers and Mitigation 

Natural hazard risk is defined by many elements. Figure 2-1 represents the factors affecting risk, 

including vulnerability, exposure, hazard, mitigation and external drivers. It shows how the areas of 

interest in this literature review are interconnected. It is important to understand this relationship to 

appreciate why these elements need to be coupled. 

 

Figure 2-1 Diagram of the relationships between hazard risk, mitigation and external drivers 

2.1.1 Components of risk  

Within the risk triangle, hazard, exposure and vulnerability are the three components that shape risk 

(Dwyer et al. 2004). These elements are important to consider in order to quantify and understand 

how risk changes, and thus how it can be minimised. In the context of natural hazard risk management, 

hazard is the specific natural event that has an associated magnitude and likelihood (Dwyer et al. 

2004). Severity of these hazards can be impacted by factors such as geographical location and climate, 

however there is uncertainty in the event’s occurrence, magnitude and spatial extent (Dwyer et al. 

2004). Exposure is the people, communities, resources, assets and infrastructure that are affected by 

the hazard (IPCC 2012). For example, a hazard that occurs in a densely-populated city such as New 

York City will have a much greater scope to affect people, communities, infrastructure, and political 

and economic institutions, relative to a hazard in the middle of the Sahara Desert. Finally, vulnerability 

is the characteristics and circumstances of an individual or community that have the propensity to 

magnify the disaster; age, gender, socio-economic status, or any combination of these, are likely to 

affect the consequences of the hazard (Cutter, Boruff & Shirley 2003; Dwyer et al. 2004; Frigerio & De 

Amicis 2016). Factors that affect vulnerability can have an impact on the sensitivity to risk (e.g. age, 

health), but also someone’s response capacity (e.g. socio-economic status, community relationships) 

(Moser 2010). Hazard, exposure and vulnerability are dynamic (IPCC 2012), hence consideration of 

these elements changing with space and time is important. 
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Much research has been undertaken into defining vulnerability. De Groeve, Poljansek and Vernaccini 

(2015) and Wu, Yarnal and Fisher (2002) recognised that physical vulnerability can be accounted for 

in the exposure element of risk, whereas vulnerability can define social, economic and political 

vulnerability, as well as the coping ability of the community. In relation to natural hazards in the 

literature, vulnerability is usually referred to as social vulnerability but incorporates many diverse 

influencing factors (Cutter, Boruff & Shirley 2003; Cutter & Finch 2008; Frigerio & De Amicis 2016). 

McKenzie and Canterford (2016) identified thirteen social vulnerability characteristics that help assess 

vulnerability specific to bushfire hazard, including youth, old age, single parent families, volunteers, 

and income, among other factors. While these factors could be used to assess vulnerability to multiple 

hazards, they are specifically targeted to bushfire risk. The demographic characteristics chosen in the 

definition of vulnerability change the purpose and usefulness of the vulnerability assessment. 

2.1.2 External drivers 

External drivers affect the different elements of risk, however it can be challenging to influence these 

through policy and decision making (Van Delden et al. 2015). Four examples of external drivers that 

influence natural hazard risk are climate, population, economics, and demographics (Van Delden et 

al. 2015). Changes in climate and climate patterns influence the occurrence and size of natural hazard 

events (Bambara et al. 2015), for example, increased rainfall will increase the risk of flood occurrence. 

Population increases are predicted to increase exposure to natural hazards (GFDRR 2016) and the 

potential disaster losses will also be increased by population growth (Chang, S et al. 2012). As global 

population continues to increase, more and more people will be living in more hazardous areas, such 

as flood plains, bushfire zones, and coastal areas (Chang, S et al. 2012). The movement of people into 

hazardous areas will increase risk through increasing exposure. Economic conditions will directly affect 

asset value and hence the costs associated with individual natural hazard events (Chang, S et al. 2012). 

Finally, demographics of a region will also affect an individual's vulnerability to a natural hazard event 

(Chang, W-Y et al. 2012). For example, an elderly person may have more difficulty evacuating promptly 

in a bushfire event as they may have mobility issues or not be able to drive. Demographics will also 

impact the sense of community, and individual attitude to hazards, which in turn will define the 

challenges to mitigation and resilience. 

2.1.3 Mitigation strategies 

A mitigation option is a measure put in place to reduce the risk posed by a hazard. Mitigation options 

can be targeted to reduce one or more of hazard, exposure or vulnerability. Mitigation options can 

take the form of direct policy measures, for example implementing planned burns to reduce bushfire 

risk or through the co-benefit of social policies and community resilience, for example increasing 

school funding could increase community education levels and reduce social vulnerability . Mitigation 
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options are categorised by both their type and their implementation method. A mitigation strategy is 

a set of mitigation options.   

2.1.3.1 Types of mitigation options 

The literature categorises mitigation options based on their development and how they intend to 

mitigate risk. Mitigation options have been categorised into land use planning, human behavioural 

change, and structural measures (Asgary & Halim 2011; Dawson et al. 2011; Dickinson et al. 2015; 

Wouter Botzen & Van Den Bergh 2012). These categories each have different effects on the hazard, 

exposure and vulnerability elements of risk (Islam & Lim 2015).  

Land use planning mitigation options are categorised as those which identify and alter land use in 

areas at risk to natural disasters (Dawson et al. 2011). Human behavioural change mitigation options 

are those developed on the basis of understanding the behaviour of humans in a natural disaster 

event, and the factors that influence human behaviour and social interactions (Dickinson et al. 2015). 

Mitigation options categorised as structural measures include the physical construction of 

infrastructure to mitigate, or changing building codes (Botzen, Aerts & van den Bergh 2009; Dawson 

et al. 2011; McAllister 2016).  

These categories define very different mitigation options which affect the exposure and vulnerability 

of risk differently and to different degrees (Asgary & Halim 2011). Hence, the different categories of 

mitigation options have varied degrees of effectiveness (Ghanbarpour, Saravi & Salimi 2014). The 

effectiveness of the mitigation option may also vary depending on the hazard.  For example, 

Ghanbarpour, Saravi and Salimi (2014) found that structural measures were more practical for 

reducing flood risk than behavioural change and land use planning.  

2.1.3.2 Implementation of mitigation options 

Literature identifies that mitigation options can be implemented through alternate methods, which 

include top-down or bottom-up implementation (Azim & Islam 2016; Dawson et al. 2011). 

Implementation through top-down policy may be on a government or industry level. Implementation 

through bottom-up may include raising public awareness, training or education (Dawson et al. 2011). 

The way in which a mitigation option is implemented can influence its effectiveness (Asgary & Halim 

2011). The effectiveness of bottom-up methods depends on the attitudes of individuals and how they 

perceive the hazard risk (Ancog, Florece & Nicopior 2016; Dickinson et al. 2015; Gan, Jarrett & Gaither 

2015). For example, educational programs may advise individuals to evacuate their property in the 

event of a natural disaster, however, whether this is done or not is the decision of the homeowner 

(Dickinson et al. 2015). Hence, to ensure human response methods are most effective, how and why 
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individuals respond to a hazard risk must be understood when developing the mitigation option (Gan, 

Jarrett & Gaither 2015).  

Government policy can be an effective and powerful tool to mitigate natural hazard risk (Handmer, 

Loh & Choong 2007). Governments generally have the resources and authority to take action for 

implementing mitigation options  (Alesch, Arendt & Petak 2012). The effectiveness of government 

policy also relies on the reception of individuals to the policy. As shown by Ghanbarpour, Saravi and 

Salimi (2014), an insight into individual willingness to accommodate natural hazard mitigation can be 

used as a planning tool in risk management. People who live in areas vulnerable to natural hazards 

may be doing so due to lack of knowledge or understanding of their exposure, and in these cases top-

down approaches may be less effective than community based initiatives (Azim & Islam 2016). 

Community involvement in the natural hazard planning processes can enable decision makers to 

better facilitate sustainable natural hazard management schemes (Ghanbarpour, Saravi & Salimi 

2014). In communities where mistrust of government initiatives and policies is common, 

implementation of solely top-down approaches may be ineffective (Handmer, Loh & Choong 2007). 

According to Azim and Islam (2016), people will only adapt or change living patterns to reduce their 

natural hazard vulnerability if it doesn't increase their vulnerability to other issues, such as 

employability and health. 

To ensure effectiveness of mitigation, the most appropriate mitigation type and implementation 

method should be considered. The relationship between this mitigation option and vulnerability and 

exposure should also be understood, and used to determine the most effective mitigation option.  

 Dynamic Hazard Modelling 

To model changing hazard risk in time and space, the dynamic components of hazard risk must be 

modelled first. Spatial and temporal changes in vulnerability, exposure, and hazard have all been 

modelled individually or as a combination of two or more of these. 

2.2.1 Spatial dimension 

Modelling the spatially explicit nature of exposure and vulnerability has been undertaken extensively 

in the literature, using indicators to quantify vulnerability and exposure and then mapping these 

indicators over a geographical space.  

A number of indicators have been proposed in the literature for quantifying vulnerability. Examples of 

common indicators used to quantify social vulnerability in the literature are age, education, income, 

family/household structure, morbidity, employment and potential for loss of employment, ethnicity 

and local language skills, and gender (Cutter, Boruff & Shirley 2003; Dwyer et al. 2004; Frigerio & De 
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Amicis 2016; Phung et al. 2016). Dwyer et al. (2004) proposed a method for combining these common 

indicators to yield a single measure of vulnerability based on consultation with experts about the 

perceived risk caused by these indicators. Cutter, Boruff and Shirley (2003) also quantified the impact 

of social vulnerability to natural hazards with a social vulnerability index (SoVI). The need for a SoVI to 

tailor the measure of vulnerability to a cultural context was highlighted by Chen et al. (2013). The 

literature contains a large amount of research into vulnerability indices for different regions, including 

America (Cutter et al. 2008; Cutter, Boruff & Shirley 2003; Wu, Yarnal & Fisher 2002), Europe (Frigerio 

& De Amicis 2016), Australia (Dwyer et al. 2004), and Asia (Chen et al. 2013; Chow, Chuang & Gober 

2012). Furthermore, indices specific to certain natural hazard events have been developed. Examples 

of this have been seen for heatwave by Zhu et al. (2014) and Chow, Chuang and Gober (2012), and for 

flooding by Phung et al. (2016). Spatial mapping of vulnerability indices has been thoroughly 

undertaken in the literature. 

A number of indicators have also been proposed to quantify exposure in the literature, primarily based 

on property exposure and occupancy rates (Wadey, Nicholls & Hutton 2012). Exposure to hazards has 

been found to vary spatially on multiple scales, from constant exposure when a hazard prone area is 

inhabited, to diurnal variation in exposure due to changes in population density throughout the day 

as a result of people commuting between work and home (Schmitt 1956; Smith, Martin & Cockings 

2016).  

The need to model vulnerability and exposure spatially to properly assess natural hazard risk has been 

highlighted in the literature, and as such spatial mapping of coupled vulnerability and exposure indices 

has been widely undertaken. Frigerio, I et al. (2016) developed an exposure map which used a risk 

matrix to spatially combine the social vulnerability index with seismic hazard zones. Emrich and Cutter 

(2011) also constructed similar maps for the Southern United States that used a risk matrix to depict 

place vulnerability. Chow, Chuang and Gober (2012), however, spatially mapped a combined 

vulnerability and exposure index for extreme heat based on data from 1990 and 2000. The importance 

of including vulnerability alongside exposure in planning practices has also been recognised (Lee 

2014).  

2.2.2 Temporal dimension 

 “Tomorrow’s risk is being built today. We must therefore move away from risk assessments 

that show risk at a single point in the present and move instead towards risk assessments that 

can guide decision makers towards a resilient future.” 

Global Facility for Disaster Reduction and Recovery, GFDRR (2016) 



8 
 

It is accepted that the future state of the world is largely unknown. Decision makers are faced with 

the growing problem of developing appropriate solutions to problems we might not even know exist. 

Most mitigation strategies are static and focus only on current natural hazard risk (GFDRR 2016). The 

uncertainty of the future is termed 'deep uncertainty' and is linked to the dynamic external drivers 

such as climate change, population growth, new technologies, economic developments and societal 

perspectives and preferences (Chang, W-Y et al. 2012; Haasnoot et al. 2013). Deep uncertainty 

describes the presence of multiple plausible futures, each with an unknown probability of occurrence 

– global uncertainty – which each have their own associated uncertainties – local uncertainty 

(Buurman & Babovic 2016; Maier et al. 2016). A visual representation of deep uncertainty is shown in 

Figure 2-2. Global uncertainty is represented by the three branches, and local uncertainty represented 

by the shading around each. Buurman and Babovic (2016) recognised the contribution of “unknown 

unknowns”, which are events we cannot foresee or which are completely unexpected.  Hence, it is 

important to consider how the application of mitigation strategies for natural hazards will affect 

natural hazard risk under deep uncertainty.  

 

Figure 2-2 Visualisation of deep uncertainty, adapted from Maier et al. (2016) 

One method for consideration of natural hazard risk into the future would be to extrapolate the 

current exposure and vulnerability data into a future period to develop mitigation strategies. Another 

method is to use a range of plausible future scenarios to assess future risk from various mitigation 

options, which incorporates the presence of deep uncertainty. A review of the literature has shown 

that both extrapolation and scenario methods have been extensively used to model natural hazards 

in the temporal dimension. The impact of mitigation on natural hazards using scenario methods has 

also been considered in the literature. Dawson et al. (2011) used future scenarios to analyse the net 

present risk to flood damage in 2020 and 2050 with and without mitigation measures. Botzen, Aerts 



9 
 

and van den Bergh (2009) also looked at the willingness of homeowners to adopt structural mitigation 

measures into the future under three climate scenarios: present temperature conditions; present 

temperature conditions + 1oC; and present temperature conditions + 2oC. Both these cases, however, 

used their own definition of risk, and did not include an analysis of vulnerability and exposure in their 

investigation. 

The consideration of mitigation options in the future and their influence on future natural hazard risk 

should incorporate a temporal variation of exposure and vulnerability. Both exposure and 

vulnerability are dynamic due to the influence of dynamic external drivers and hence will change 

throughout the future (IPCC 2012). Thus, to assess the appropriateness of a mitigation strategy, the 

interaction between the mitigation strategy and the future exposure and vulnerability is an important 

consideration. Temporal variation in exposure has received some attention in the literature, however, 

quantifying temporal variation in social vulnerability using scenarios has not been considered in the 

hazard space. Furthermore, assessments of temporal variation in exposure applied constant social 

vulnerability in their assessments of hazard risk.  

Forzieri et al. (2016) investigated changes in multi-hazard exposure in Europe under different climate 

scenarios, however, this assessment did not consider social vulnerability in its definition of risk, and a 

rigorous analysis of changes in population and infrastructure were also not included in the exposure 

assessment. Similarly, the investigations by Wu, Yarnal and Fisher (2002) used coupled climate and 

population growth scenarios to analyse changes in exposure and flood hazard. Their assessment of 

risk considered spatially mapped social vulnerability, however, it was assumed that social vulnerability 

remained constant in each location under each scenario.  

The consideration of temporal changes in social vulnerability has mostly been retrospective.  Cutter 

and Finch (2008) retrospectively investigated changing social vulnerability within the United States for 

discrete intervals of 10 years, dating back to 1960. Cutter and Finch (2008) went on to use crude linear 

extrapolation of past trends to consider vulnerability for no more than 2 years into the future (Cutter 

& Finch 2008). Although linear extrapolation forward one time step allowed prediction to 2010, this 

prediction was not validated as it was later found that the required variables from the 2010 Census 

data was no longer comparable (Emrich & Cutter 2011). 

Hall, Sayers and Dawson (2005), however, used climate and socio-economic scenarios to test long 

term changes in hazard, exposure and vulnerability. Four climate and four-socio economic scenarios 

were used to approximate potential future projections of flood risk. This included applying the socio-

economic scenarios to the Social Flooding Vulnerability Indices to obtain a quantified assessment on 

the effect of each scenario on relevant variables. However, they did not present a methodology for 
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this process, and they acknowledged that the presented quantified analysis could have produced 

other equally plausible future vulnerability representations for the scenarios. Their assessment of 

vulnerability focused on policy analysis rather than an understanding of the vulnerability of 

communities in relation to their sensitivity to risk and their response capacity.  

 Critical Review and Research Gaps 

The work undertaken in literature to assess the impact of mitigation on natural hazard risk, quantified 

using vulnerability and exposure, is highlighted in Table 2-1. 

There has been extensive research undertaken on mapping risk as a function of hazard, exposure and 

vulnerability. Most of this research has considered the spatial element of risk, however there has been 

little investigation into temporal changes of risk which considers all three aspects of the risk triangle: 

hazard, exposure and vulnerability.  

There has also been extensive research on mitigation options, where different hazards and respective 

implementations have been considered. The missing link between mitigation and risk in research to 

date is shown in Table 2-1. Despite acknowledging that the “risk that actually prevails in the future 

will be further modified by [hazard] management activity” (Hall, Sayers & Dawson 2005) there has 

been little research that has coupled mitigation with all three elements of the risk triangle.  

Ancog, Florece and Nicopior (2016) assessed the impact of mitigation on forest fires using surveys of 

local farmers to investigate what mitigation strategies they implemented. The data was then analysed 

along-side recorded fire locations to assess the correlation between mitigation options and fire risk. 

The results also considered the social vulnerability of the survey participants to assess the relationship 

between different socio-economic groups and their willingness to adopt different mitigation 

strategies. However, this assessment considered only an empirical retrospective link between 

mitigation and hazard, risk and exposure, and the links were considered separately rather than 

coupled to inform mitigation impact on an overall risk.  

Similarly, Dickinson et al. (2015) considered the interaction between different social types and 

mitigation behaviours, and reviewed the results of empirical wildfire literature to generate hypotheses 

about the relationship between social vulnerability and wildfire risk. Dickinson et al. (2015) developed 

a conceptual framework for this relationship, however, the framework did not extend to include the 

relationship between mitigation and hazard and exposure. Frigerio and De Amicis (2016) and Zhu et 

al. (2014), however, developed conceptual frameworks for assessing hazard risk which considered 

vulnerability, exposure and hazard. However, these conceptual frameworks did not extend to include 

the assessment of how mitigation options may impact these elements of hazard risk.  
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The benefit of exploring the interaction between mitigation and the components of the risk triangle is 

to ensure the most appropriate mitigation type and implementation methods are considered. 

Additionally, through the incorporation of vulnerability, there is potential to assess how risk reduction 

could be targeted to areas of more vulnerable populations. 

Table 2-1 Identification of knowledge gaps in the impact of mitigation on natural hazard risk 
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Cutter, Boruff and Shirley (2003)         X             

Cutter and Finch (2008)         X             

Bennett, Kadfak and Dearden (2016)        X             

Smith, Martin and Cockings (2016)   Flood X X               

Kershaw and Millward (2012)   H/wave X X               

Lee (2014)   Flooding X X X             

Emrich and Cutter (2011)   Multiple X X X             

Tate and Cutter (2010)   Multiple X X X             

Chow, Chuang and Gober (2012)   H/wave X X X             

Phung et al. (2016)   Flood X X X             

Zhu et al. (2014) X Seismic X X X             

Frigerio and De Amicis (2016) X Seismic X X X             

Forzieri et al. (2016)   Multiple X X   X X         

Wu, Yarnal and Fisher (2002)   Storms X X X X X         

Hall, Sayers and Dawson (2005)   Flood X X X X X        

Albano et al. (2016)   Storm X           X   X 

Butry et al. (2010)   Fire X X           X X 

Ancog, Florece and Nicopior (2016)   Fire X X        X X X 

Wadey, Nicholls and Hutton (2012)   Flood X X   X       X   

Botzen, Aerts and van den Bergh (2009)   Flood X X   X         X 

Dawson et al. (2011)   Flood X X   X X   X X X 

Ghanbarpour, Saravi and Salimi (2014)   Flood X X   X X   X X X 

Egbelakin et al. (2013)   Seismic               X   

Gan, Jarrett and Gaither (2015)   Fire             X   X 

Kanowski, Whelan and Ellis (2005)   Fire             X X X 

Dickinson et al. (2015) X Fire          X  X  X 
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Exploratory scenarios allow the performance of different mitigation options to be tested under 

alternate plausible futures. Application of exploratory scenarios to the hazard and exposure elements 

of risk has been undertaken extensively in the literature, including by Forzieri et al. (2016), 

Ghanbarpour, Saravi and Salimi (2014) and Hall, Sayers and Dawson (2005), and a clear methodology 

has been demonstrated for this process.  

Qualitative changes in social vulnerability under different scenarios were also considered by Bennett, 

Kadfak and Dearden (2016), although their assessment was not extended to quantify changes in social 

vulnerability for use in a risk assessment. Hall, Sayers and Dawson (2005) briefly mentioned 

quantifying changes in social vulnerability by applying socio-economic scenarios to Social Flooding 

Vulnerability Indices, however, they did not present a methodology for this process, and 

acknowledged that other projected results may be equally plausible.  

Outside hazard literature, van Delden et al. (2005) presents a methodology for quantifying narrative 

storylines for scenarios, however, this methodology has not been applied to social vulnerability in the 

hazard space. Furthermore, application of this methodology to social vulnerability has not been paired 

with scenario analyses of exposure and hazard.  

2.3.1 Research gap 1 

The literature has thoroughly considered risk mitigation; however, these assessments have not 

explicitly considered vulnerability in their definition of hazard risk. Thus, an understanding of the 

drivers of the vulnerability elements of natural hazard risk is a gap in the research. Furthermore, 

understanding the interaction between mitigation and the elements of risk is important in the 

identification of mitigation options that can be used to target specific aspects of vulnerability. Thus, 

using the drivers of vulnerability, exposure and hazard to inform mitigation strategies is a gap in the 

research. 

2.3.2 Research gap 2 

The literature has established the merit of using exploratory scenarios to develop a long-term planning 

approach to hazard mitigation. However, limited research has considered the effect of exploratory 

scenarios on all three components of hazard risk: vulnerability, exposure, and hazard. In particular, 

there is a gap in quantifying projections in social vulnerability indices using exploratory scenarios.  
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3 OBJECTIVES 

To address the identified research gaps, the research objectives have been identified below.  

Objective 1 To develop a conceptual framework for an integrated hazard risk modelling platform 

that can be used to assess the impact of Hazard Risk, considering Social Vulnerability. 

Hazard Risk will be assessed in a spatial and temporal dimension over a period that 

considers long term planning (approximately 50 years into the future). Its function is 

to support decision makers in understanding the drivers of Hazard Risk, and inform 

long term planning. The integrated approach: 

a) Details a method for understanding the drivers of Hazard Risk; 

b) Incorporates exploratory scenarios that affect vulnerability and exposure to 

evaluate how they change over the planning horizon; 

c) Uses the drivers of risk to inform mitigation options for long term planning; 

d) Links the effects of mitigation to risk. 

Objective 2 To apply the conceptual framework to a case study to understand the influence of 

Social Vulnerability on Hazard Risk by considering a bushfire hazard in Greater 

Adelaide with the aim of developing an understanding of the drivers of Hazard Risk. 

The case study for Greater Adelaide will be used to: 

a) Develop an understanding of current Hazard Risk; 

b) Develop an understanding of the dynamic nature of Hazard Risk; 

c) Assess future Hazard Risk; 

d) Assess the impact of mitigation options that target Social Vulnerability and Hazard 

Likelihood. 
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4 PROPOSED FRAMEWORK FOR AN INTEGRATED HAZARD RISK 

MODELLING PLATFORM  

The methodology is presented in multiple parts; these parts explain the processes used to achieve the 

Research Objectives proposed in Section 3. This section discusses the theory behind the conceptual 

framework, and its novelty in addressing the shortcomings of conceptual frameworks existing in 

literature. 

The schematic diagram presented in Figure 4-1 shows the elements of the proposed conceptual 

framework. The conceptual framework has been developed to facilitate long term planning of 

mitigation strategies to reduce natural hazard risk in areas with high social vulnerability.  

The Hazard Risk Model – indicated by the green envelope of the conceptual framework schematic 

presented in Figure 4-1 – assesses risk spatially and temporally. The model couples hazard, exposure 

and vulnerability into a measure of Hazard Likelihood and Social Vulnerability, which is then used to 

quantify a single measure of Hazard Risk using a risk assessment. The model considers all three 

components of Hazard Risk to form a single measure of risk. This enables an understanding of the 

drivers of hazard, exposure and vulnerability, and their influence on the overall risk, which was 

identified as a gap in the existing literature in Section 2. 

The conceptual framework also proposes a methodology for using exploratory scenarios to develop a 

long-term planning approach for Hazard Risk mitigation. The framework proposes a methodology for 

quantifying projections in Social Vulnerability indices using exploratory scenarios, which is a 

shortcoming of existing long-term Hazard Risk assessments, as identified in Section 2. The orange 

envelope in Figure 4-1 captures how the external drivers shape the exploratory scenarios, which in 

turn impact the inputs to the Hazard Risk Model. The methodology for quantifying projections in Social 

Vulnerability using exploratory scenarios, detailed in Section 4.1.1.2, captures the impact of the 

external drivers and exploratory scenarios on the dynamic Social Vulnerability inputs. 

Having coupled hazard, exposure, and vulnerability into a single measure of risk, and projected their 

respective long-term changes using exploratory scenarios, the conceptual framework also includes a 

proposed methodology for understanding the interaction between mitigation strategies and these risk 

components, which was identified as a gap in the research in Section 2.3.
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Figure 4-1 Schematic diagram of the proposed conceptual framework for understanding the drivers of natural Hazard Risk, by considering Social Vulnerability and Hazard Likelihood. Hazard 
Risk is assessed spatially and uses exploratory scenarios to assess temporally dynamic risk under future uncertainty.
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This methodology focuses on using an understanding of the drivers of risk to inform plausible 

mitigation strategies which will be targeted to different aspects of risk. For example, in the case study 

presented in Section 5, there is a focus on reducing risk to the most socially vulnerable areas. The blue 

Mitigation envelope is included inside the Natural Hazard Risk Model, to include feedback loops to the 

Hazard Likelihood and Social Vulnerability model envelopes. These feedback loops enable the impact 

of the changing drivers and Hazard Risk to be seen in the assessment of how effective a mitigation 

strategy may be. 

To identify drivers which are dominant controls of the system, and thus effectively reduce risk by 

targeting mitigation to these drivers, a sensitivity analysis is included within the Natural Hazard Risk 

Model in the conceptual framework. The dynamic Hazard Likelihood and Social Vulnerability models 

are fed into the sensitivity analysis to ensure drivers which create the highest response in Hazard Risk 

over the entire long-term planning time frame are identified. The results of the sensitivity analysis are 

then fed into the mitigation envelope, to help identify plausible mitigation strategies. Literature has 

already highlighted the importance of model sensitivity analyses to support the calibration and 

verification stages of model development (Shin et al. 2013), and has recommended the use of 

sensitivity analysis to support model-based decision-making (Pianosi & Wagener 2015). However, the 

novelty of the conceptual framework is that it links the sensitivity analysis to the drivers of the Hazard 

Risk Model, and enables the sensitivity of all the drivers to the overall risk and its components to be 

identified.  

The proposed framework outputs the results of the Natural Hazard Risk Model as spatially explicit 

Hazard Risk maps for each of the discrete time intervals considered, as shown in the purple results 

envelope in Figure 4-1. By testing different scenarios and mitigation options, spatially explicit Hazard 

Risk maps for different mitigation strategies can also be developed and compared to inform long term 

planning. 

4.1.1 Natural hazard risk 

Within the Natural Hazard Risk Model in Figure 4-1, Hazard Risk is quantified using a risk assessment 

matrix from the National Emergency Risk Assessment Guidelines (NERAG) (AGAGD 2015), shown in 

Figure 4-2. This matrix assessment of risk evaluates risk priority (1 to 5 in increasing priority) based on 

the likelihood of the risk (Extremely Rare to Almost Certain) and the consequence of the risk 

(Insignificant to Catastrophic). The risk assessment matrix in Figure 4-2 follows the same methodology 

as AIDR (2015), however, the consequence of the Hazard Risk is measured by the Social Vulnerability 

of the location, as Hazard Risk to socially vulnerable areas is the focus of the conceptual framework.  
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  SOCIAL VULNERABILITY    

  1 2 3 4 5  RISK LEVEL 
HA
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D
 5 M H H VH VH  VH Very High 

4 M M H H VH  H High 

3 L M M H H  M Medium 

2 L L M M H  L Low 

1 VL L L M M  VL Very Low 
Figure 4-2 Risk assessment matrix used to combine the influence of Social Vulnerability and Hazard Likelihood – which 
encapsulate the hazard, likelihood and exposure elements of the risk triangle – to quantify a single measure of risk, 
adapted from AGAGD (2015). The risk matrix is applied to each location at each time interval to develop spatially and 
temporally dynamic maps of Hazard Risk.   

Hazard Likelihood is calculated as a function of the hazard and exposure elements of risk; Social 

Vulnerability represents the vulnerability element of risk. This assessment of Likelihood and Social 

Vulnerability is conducted spatially, which allows Hazard Risk to be determined spatially. 

Subsequently, the Hazard Risk assessment is applied to each location for each time period, such that 

the framework is able to assess spatially distributed risk over time. 

Hazard Likelihood and Social Vulnerability are quantified based on five discrete intervals, as shown in 

Figure 4-2, before being combined to assess risk in five discrete intervals from Very Low to Very High. 

The five risk levels allow even low Likelihood events to have a high risk if the Social Vulnerability of the 

event is very high. For example, if an area had Hazard Likelihood of 2 and a Social Vulnerability of 5 

this will have a Hazard Risk value of High. 

Depending on the spatial resolution of the data and the scale of the area being assessed, the use of 5 

discrete intervals to measure Hazard Likelihood and Social Vulnerability, may result in some resolution 

of the data being lost. Creating a larger number of discrete intervals will allow for more defined ranking 

of the Hazard Risk for each area.  

4.1.1.1 External drivers  

External drivers to the Hazard Risk system include population, demographics, economics and climate. 

The conceptual framework considers the impact of these drivers on the elements of Hazard Risk and 

the resultant measures of Hazard Likelihood and Social Vulnerability. Plausible changes in Hazard 

Likelihood, Social Vulnerability and Hazard Risk in the future as a result of these external drivers are 

tested using exploratory scenarios in the conceptual framework. The application of exploratory 

scenarios to all elements of the risk triangle, particularly changes in Social Vulnerability, addresses a 

gap in existing literature. As highlighted in Figure 4-1, the external drivers shape the exploratory 
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scenarios, which impact the model inputs. Thus, for the Hazard Risk system, climate and socio-

economic scenarios are developed to explore changes in the climate, population, demographic and 

economic external drivers.  

Climate is an external driver that impacts natural hazard occurrence, and may be explored using 

climate scenarios. Climate changes affect factors like temperature, rainfall, and humidity, among 

others. The Representative Concentration Pathways (RCPs) developed by the IPCC for the fifth 

Assessment Report (AR5) model four independent pathways for future atmospheric greenhouse gas 

concentrations (Moss et al. 2008). The use of RCPs to project climate data into the future is a well-

recognised and established method. The RCPs were developed by experts in the Integrated 

Assessment and Climate Modelling community, and serve as inputs to climate model simulations to 

develop climate scenarios (Moss et al. 2008). The RCPs considered only radiative forcing literature in 

their development, and do not consider the influence of any climate policy action. Thus, as they are 

not policy prescriptive, they may be applied to develop climate scenarios for testing mitigation of 

climate and socio-economic drivers (Moss et al. 2008). Therefore, the conceptual framework applies 

the RCPs to develop climate scenarios for modelling the dynamic climate drivers.  

Socio-economic drivers, such as population, demographics and economics, may also be explored with 

multiple plausible future scenarios. Socio-economic scenarios are developed by first identifying 

stakeholders, issues, and the drivers of change. Using stakeholder engagement, axes which 

differentiate the scenarios are then selected, and narratives are developed for the scenarios.  An 

example of axes that could be applied in developing socio-economic scenarios are Challenges to 

Mitigation versus Challenges to Resilience, as applied by Riddell et al. (2015). In this case, the ideal 

scenario occurs when Challenges to Mitigation and Challenges to Resilience are both low, and the 

most challenging scenario occurs when both are high (Riddell et al. 2015). Alternatively, Hall, Sayers 

and Dawson (2005) applied axes of Governance (Autonomy-Independence) and Values (Community-

Consumerism) when developing scenarios to investigate economic futures of England. When 

developing the socio-economic scenarios, changes in the dynamic population, economic and 

demographic drivers should be highlighted as key characteristics of the scenario narratives. Detail is 

needed in the scenario narratives to allow the qualitative information to be turned into quantitative 

data or changes. This facilitates more comprehensive modelling of the future using scenarios.  

4.1.1.2 Social Vulnerability  

The conceptual framework in Figure 4-1 uses sixteen indicators that cover a range of social 

vulnerability aspects to quantify Social Vulnerability now and in the future using socio-economic 

scenarios. The methodology for applying the socio-economic scenarios to the Social Vulnerability 
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indicators, and combining the indicators to measure Social Vulnerability for each scenario, is 

presented in Figure 4-3. The steps highlighted in blue in Figure 4-3 detail the methodology for 

quantifying projections in social vulnerability indices using scenarios, which addresses a gap in existing 

literature.  

 
Figure 4-3 Proposed methodology for combining social vulnerability indicators to quantify a single measure of Social 
Vulnerability using exploratory scenarios. The steps highlighted in blue show the proposed methodology to projecting 
social vulnerability indicators in line with future socio-economic scenarios, which is a gap in the existing literature 

The methodology for aligning the vulnerability multipliers, presented in Figure 4-3, requires 

quantification of the narrative storyline for each scenario, whereby the changes in the model inputs 

that are qualitatively explained in the scenario storylines are assigned a future quantitative value. This 

methodology follows the procedure presented in van Delden et al. (2005), but with the focus on 

quantifying storylines to multipliers for vulnerability indicators. 
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As presented in Figure 4-3, the first step in the storyline quantification process is to identify storyline 

clues about the vulnerability indicator being projected. Clues are meaningful statements in the text 

that contain relevant information about a state, change in state, a quality, a trend, or an interaction 

relevant to the indicator (van Delden et al. 2005). Thus, the projections rely on description of the 

changes undergone by each Social Vulnerability indicator in the scenario storyline, and so, the level of 

detail contained in the scenarios is integral to the meaningfulness of the projections. This idea ties 

into the development process for the socio-economic scenarios, as detailed in Section 4.1.1.1. The 

clues should ideally have spatial and temporal specification, and difficulties in scenario quantification 

arise when insufficient detail is presented in the storyline (van Delden et al. 2005). From these clues, 

a multiplier is developed to represent the numerical change in the indicator as described by the clue. 

This multiplier is then applied to the raw indicator value at the present time, to model the value of the 

indicator in the future under that scenario. The Social Vulnerability based on the projected indicator 

value is then evaluated on a scale of 1 to 5 (very low Social Vulnerability to very high Social 

Vulnerability).  

The process is repeated for each social vulnerability indicator. A single measure of Social Vulnerability 

is then calculated from a summation of the Social Vulnerability due to each indicator, considering the 

importance weighting of each indicator. From the literature, the importance and relevance of different 

vulnerability indices depends on the differing objectives and goals of different parties. Thus, the 

priorities of stakeholders can be incorporated using importance weightings. In the absence of 

stakeholder and expert input, equal weightings should be applied for each of the vulnerability indices, 

to avoid assumptions of relative importance. The total Social Vulnerability is then evaluated on a scale 

of 1 to 5, in the same manner as the individual indicators. This process is repeated for each scenario, 

such that Social Vulnerability is quantified for each scenario, to be applied to the risk assessment 

matrix, as detailed in Section 4.1.1. 

The indicators used in the assessment of Social Vulnerability are displayed in Table 4-1, and are widely 

recognised in the literature as being key characteristics of social vulnerability in the event of a hazard. 

Table 4-1 explains in detail the relevance of each of the indicators to how people may respond to or 

recover from a hazard. As discussed in Section 2, however, there is a need for vulnerability indicators 

to be tailored to a cultural context. Thus, the relevance of all sixteen indicators to Social Vulnerability 

in a specific region may need to be assessed during the application of the framework.  
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Table 4-1 Social Vulnerability indicators used in the conceptual framework to quantify a single measure of vulnerability. 
The indicators are recognised by literature as being key characteristics affecting hazard response and recovery. 

Indicators  Relevance    References   

Personal wealth  
Low income communities have fewer individual and 
community resources available for recovery.  Low income 
households may also be underinsured or uninsured. 

Cutter, Boruff and Shirley (2003), 
McKenzie and Canterford (2016) 

Age   

Young children and elderly people are considered to be 
the most vulnerable age groups in society as they depend 
on others for care. Elderly are also often more frail and 
prone to health issues. 

Chen et al. (2013), Cutter, Boruff 
and Shirley (2003), Frigerio and De 
Amicis (2016), McKenzie and 
Canterford (2016) 

Employment  

An elevated unemployment rate in an area can result in a 
slower recovery. In the event of a disaster, certain 
industries may be unable to operate, increasing 
unemployment further. 

Chen et al. (2013), Cutter, Boruff 
and Shirley (2003), 
Frigerio and De Amicis (2016) 

Housing stock 
and tenancy  

This indicator considers the type of dwelling, the 
ownership and the location, which all indicate the socio-
economic situation of a family or individual. 

Chen et al. (2013), Cutter, Boruff 
and Shirley (2003) 
McKenzie and Canterford (2016) 

Proficiency in 
local language 

People who are not proficient in the local language may 
struggle to access or understand various emergency 
messages or information. 

Cutter, Boruff and Shirley (2003), 
Frigerio and De Amicis (2016), 
McKenzie and Canterford (2016) 

Race and 
Ethnicity  

Individuals of diverse backgrounds may experience 
language and cultural barriers. This impacts their ability to 
respond to or prepare for emergencies. 

Chen et al. (2013), Cutter, Boruff 
and Shirley (2003), 
Frigerio and De Amicis (2016) 

Indigenous  
Indigenous people are more likely to experience socio-
economic disadvantages in relation to health, education 
and employment. 

McKenzie and Canterford (2016), 
Cutter, Boruff and Shirley (2003) 

Infrastructure 
dependence  

Regions with a high dependence on employment in public 
utilities and other government led infrastructure may 
experience greater vulnerability due to the amplified 
effect of economic changes. 

Cutter, Boruff and Shirley (2003) 

Family structure  

This will consider different factors affecting families. In 
larger families, there may be less finances available to 
care for dependents. Single parents may have dependent 
children but they do not have additional support. 

Chen et al. (2013), Cutter, Boruff 
and Shirley (2003), 
Frigerio and De Amicis (2016) 
McKenzie and Canterford (2016) 

Volunteering  
People who volunteer within their community commonly 
have social networks that can support them in times of 
need. 

McKenzie and Canterford (2016) 

New to region  
Individuals or families new to an area may not be familiar 
with the local area and unware of procedures for 
preparing for, or responding to, an emergency. 

McKenzie and Canterford (2016) 

Education   
People with lower levels of education may be less capable 
of understanding information related to risks. Level of 
education also relates to socio-economic status.  

Chen et al. (2013), Cutter, Boruff 
and Shirley (2003), 
McKenzie and Canterford (2016), 
Frigerio and De Amicis (2016) 

Needs 
assistance  

Those who require assistance with self-care are heavily 
reliant on others and more vulnerable as a result.  McKenzie and Canterford (2016) 

Car ownership  Access to a car may be necessary to evacuate in an 
emergency. McKenzie and Canterford (2016) 

Unoccupied 
dwellings  

Absentee owners may be less prepared in the event of a 
hazard as they may not attend local community meetings 
or prepare their property for the event of a hazard.  

McKenzie and Canterford (2016) 

Population 
Growth  

This indicates the degree of urbanisation. Increased 
population growth may cause unbalance between 
population and resources.  

Chen et al. (2013), Cutter, Boruff 
and Shirley (2003), 
Frigerio and De Amicis (2016) 
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The social vulnerability indicators cover different socio-economic characteristics which may affect 

someone’s ability to respond to a hazard. For example, age captures the difficulties that young and 

elderly people would have evacuating by themselves in the event of a hazard, and their dependence 

on other people to evacuate. Education, however, captures the ability of people with lower levels of 

education to understand information related to risk, and their possible reluctance to evacuate or 

undertake mitigation measures as a result of misunderstanding the severity of the risk. The social 

vulnerability indicators also consider socio-economic characteristics which affect the ability of 

someone to recover after a hazard event. For example, personal wealth captures how low-income 

communities have low individual and community financial resources to recover, as well as how low-

income households are also more likely to be un- or under-insured. Regions with large population 

growth may also result in an imbalance between population and resources. The range of Social 

Vulnerability indicators helps to model the complex interaction of socio-economic scenarios and their 

influence on the highly dynamic socio-economic characteristics of Social Vulnerability.  

4.1.1.3 Hazard Likelihood 

Hazard Likelihood is a function of the hazard itself, and its likelihood of occurrence, which encapsulate 

the hazard and exposure elements of risk. Thus, the Hazard Likelihood Model needs to incorporate all 

the climate and socio-economic drivers which affect how likely a hazard is to occur at a particular 

location.  

Climate drivers should be incorporated into the measure of Likelihood, as different climates facilitate 

the occurrence of different natural hazards. For example, tropical climates are more likely to facilitate 

cyclones, while arid climates are more likely to result in drought. The climate drivers are temporally 

dynamic, and so changes in Hazard Likelihood as a result of these climate drivers should be modelled 

using climate scenarios (Reguero et al. 2015; Whitman, Sherren & Rapaport 2015). Natural land 

characteristics, including factors such as topography, soil type and native vegetation, also influence 

the likelihood of a hazard occurring (Esser et al. 2004; Fontaine et al. 2012; Keefer et al. 1987). For 

example, bushfire relies on vegetation to ignite and spread, so the type of vegetation influences the 

likelihood of a bushfire occurring (Esser et al. 2004). Topographic factors, such as slope, are also drivers 

for some natural hazards such as bushfire, landslide and flooding. While land characteristics such as 

slope are dynamic, they can take thousands of years to change. Hence, over the conceptual framework 

timeframe, the expected change is negligible and therefore, the land characteristics are considered as 

static over the temporal scale. The land characteristics are spatially explicit and should be 

incorporated into the model to show how Hazard Likelihood varies spatially.   
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Land use also influences the likelihood of a hazard occurring (Glavovic, Saunders & Becker 2010; 

Schilling et al. 2014). For example, residential areas with large amounts of concrete can increase the 

likelihood of a flood occurring due to high runoff. However, an equivalent amount of water in a vacant 

forest would be less likely to result in a flood, as the soil would need to become fully saturated before 

runoff occurs. Alternatively, a bushfire would not be likely to occur in a residential area due to a lack 

of vegetation, however, it may have a high likelihood of occurring in a vacant forest. Changes in land 

use are a result of changing socio-economic drivers and policy implementation, such as urban sprawl 

due to population growth (Riddell et al. 2015). Socio-economic scenarios should be applied to model 

how changes in land use change the likelihood of a hazard occurring. 

Many Hazard Likelihood models that encapsulate hazard and exposure have been published in 

literature, and thus, it may be appropriate to couple the Social Vulnerability model with an existing 

Hazard Likelihood model for the region being considered.  

4.1.2 Mitigation options 

The conceptual framework facilitates developing an understanding of the drivers of Hazard Risk to 

socially vulnerable areas. From this understanding, drivers which are highly influential in the level of 

Hazard Risk may be identified, and mitigation options may be developed to target these drivers.  

A sensitivity analysis can be used to identify which drivers have a large influence on the dynamics of 

the Hazard Risk. From the results of the sensitivity analysis, plausible mitigation options which may be 

used to target these highly influential drivers can then be identified. The sensitivity of the Hazard 

Likelihood and Social Vulnerability to the drivers may be assessed separately, as the appropriateness 

of a sensitivity analysis method depends on the nature of the model. The Social Vulnerability model 

considers a weighted sum of the Social Vulnerability indicators which are based on recorded statistics. 

Due to the nature of the model, a traditional sensitivity analysis may not be appropriate, particularly 

if the Social Vulnerability indicators are equally weighted. In this case, the Social Vulnerability due to 

each indicator may need to be individually assessed to identify mitigation options.  

The Hazard Likelihood model describes a complex human and natural system; the influence of the 

climate and socio-economic drivers on the overall Hazard Likelihood is much more complex. This 

means that highly influential drivers may not be easily identified by analysing individual driver maps. 

In this case, therefore, a global sensitivity analysis (GSA) is appropriate for testing the sensitivity of the 

Hazard Likelihood output to the dynamic drivers. Complex systems are often characterised by non-

uniform and non-normal distributions, and thus, it is recommended that a density based method be 

used to assess the sensitivity of the Hazard Likelihood model. Density based methods are more 

appropriate for analysing the sensitivity of complex systems (Pianosi & Wagener 2015). An example 
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of a density based sensitivity analysis method is the PAWN method, developed by Pianosi and 

Wagener (2015). The results of the GSA highlight the climate and socio-economic drivers that Hazard 

Likelihood is most sensitive to. For each highly influential driver, the possibility of mitigating for that 

driver can be assessed. 

The feasibility and impact of mitigation options depend on the type of hazard, as noted in Section 

2.1.3, and the way mitigation methods are implemented also has an impact on their efficacy. The best 

mitigation options are those that affect influential inputs, and are feasible in terms of cost and 

implementation. For example, building flood levies which are robust to withstand any flood may also 

be infeasible for the financial capacity of the region being considered. Thus, consultation with experts 

should be used to identify mitigation options. The other issue raised here is that whilst a mitigation 

option could be effective in targeting one hazard, it may be detrimental to another. For example, while 

clearing vegetation can remove the risk of bushfire, it could increase the risk of flooding. This 

motivates the need to include consideration of multiple hazards. 

The socio-economic characteristics of the region may also influence the most appropriate method of 

mitigation. For communities with a large distrust or low support for the government, top-down 

mitigation strategies may be ineffective. As discussed in Section 2.1.3, in small towns with greater 

community connectedness, bottom-up, community based initiatives, may be more effective. Hence, 

the method of implementation should be considered when assessing the feasibility of a mitigation 

option. 

The influence of the plausible mitigation options may be assessed by incorporating their effect on the 

inputs into the Social Vulnerability and Hazard Likelihood models and analysing the resultant changes. 

For example, if increasing local government funding to volunteering organisations to increase rates of 

volunteering is identified as a plausible mitigation option, then the effect that may be achieved by 

implementing this mitigation option may be tested by changing the volunteering rates in the model. 

From this analysis, recommendations may be made about mitigation strategies that could be used to 

effectively target risk of certain areas to particular hazards.  
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5 GREATER ADELAIDE CASE STUDY  

Section 5 applies the conceptual framework to a case study of Social Vulnerability and its effect on 

Hazard Risk in Greater Adelaide using a bushfire hazard. The application to the case study 

demonstrates the process of applying the conceptual framework in order to quantify Social 

Vulnerability, Hazard Likelihood and Hazard Risk and develop an understanding of the important 

drivers of risk to inform plausible mitigation strategies. 

 Background 

Australia has a history of bushfires that have caused major damage to infrastructure and communities. 

To illustrate the value of the contribution this framework can make, the case study of bushfire hazard 

in Greater Adelaide is considered, however other hazards and locales could equally be used. 

Adelaide is the capital city of South Australia, shown in Figure 5-1. With a population of approximately 

1.3 million, it is the fifth most populous city in Australia. Adelaide is situated between the Gulf St 

Vincent to its West, and the Mount Lofty Ranges to its East. This has caused Adelaide to grow 

elongated, stretching approximately 100km from North to South, as illustrated in Figure 5-1. Within 

Greater Adelaide, there are 27 Local Government Areas (LGAs) and 511 State Suburb Codes (SSC), 

which are shown in Figure 5-2. Adelaide’s climate is highly variable and Mediterranean. 

    
Figure 5-1 Map showing the location of the case study (Google Maps 2017), and a satellite image of Greater Adelaide, 
illustrating the sprawl of urban area between the coast and Mt Lofty Ranges (Google Maps 2017) 

Gulf St 
Vincent 

Mount  
Lofty  

Ranges 

Adelaide CBD 
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 (a)         (b) 

Figure 5-2 (a) Local Government Areas (LGAs) in the Greater Adelaide region, and (b) State Suburb Codes (SSCs) in the 
Greater Adelaide region. For the SSC map, a legend is not provided, as there are 511 SSCs within Greater Adelaide. A list of 
these SSCs, however, is provided in Appendix D. 

In recent years, Adelaide has experienced an ageing population, as well as instabilities in its economy 

due to a shift from manufacturing to more service based industries. The projected trends in these 

demographics has led Adelaide’s future Social Vulnerability to be of interest to decision makers. 

Additionally, South Australia and Greater Adelaide have a long history of bushfires. Most recently, the 

2015 Pinery Bushfire was a catastrophic bushfire which occurred primarily in the lower Mid North and 

West Barossa Valley regions, immediately North of Greater Adelaide and the township of Gawler. This 

fire burned from the 25th of November to 2nd December 2015, killing two people and burning 85,000 

hectares of land, which included destroying 91 homes (McLoughlin 2015). Thus, using the conceptual 

framework to assess bushfire risk with a focus on Social Vulnerability in Greater Adelaide is particularly 

relevant given the current and projected future demographics and climate.  

 Framework Development 

5.2.1 Overview 

The general framework presented in Section 4 is adapted for the case study, and allows the sub-

objectives outlined in Figure 5-13 to be achieved. This adapted framework is presented in Figure 5-3, 

and defines the inputs and modelling processes specific to the case study of Greater Adelaide. 
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Figure 5-3 Schematic diagram for the case study application of the conceptual framework to bushfire in Greater Adelaide, adapted from the generic framework outlined in Section 4.1 to include 
the inputs and processes specific to the case study. Hazard Risk is assessed spatially and uses exploratory scenarios to assess temporally dynamic risk under future uncertainty.
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The Hazard Risk Model, indicated in Figure 5-3 by the green envelope, assesses the spatial and 

temporal risk for Greater Adelaide. The model uses a measure of Hazard Likelihood calculated using a 

Bushfire Risk Assessment Model (BRAM) and the Social Vulnerability assessment for each State Suburb 

Code to quantify the Hazard Risk using the Risk Matrix. 

The orange envelope in Figure 5-3 captures how the various spatially explicit inputs impact the Hazard 

Risk Model. The long term external drivers of population, economics, demographics and climate are 

influenced by the socio-economic and climate scenarios to form the dynamic model inputs for the 

Social Vulnerability and Hazard Likelihood Model. Several of the inputs are temporally static and 

therefore remain constant throughout the dynamic assessment of Hazard Risk.  

The results from the Hazard Risk Model informs the areas in Greater Adelaide under the greatest 

hazard risk. Mitigation strategies are tested in the Hazard Risk Model to identify which strategies are 

most suitable to reduce Hazard Risk for the areas of greatest Social Vulnerability. As presented in 

Figure 5-3, sensitivity analyses are used to inform appropriate mitigation strategies. The sensitivity 

analysis identifies the dominant system inputs and allow for application of mitigation strategies that 

effectively reduce Hazard Risk.  The feedback loops enable the impact of the changing external drivers 

and Hazard Risk to be understood in the assessment of the mitigation strategies.  

The proposed case study framework outputs the results of the current and future Hazard Risk Model 

as spatially explicit Hazard Risk maps, as shown in the purple results envelope in Figure 5-3. By testing 

the different socio-economic and climate scenarios and mitigation options, spatially explicit Hazard 

Risk maps for different mitigation strategies can be developed and compared to inform long term 

planning. Table 5-1 outlines which components of the case study framework, presented in Figure 5-3, 

are adapted from other sources, and where further work has been contributed. A summary of the 

Hazard Risk Model inputs for the Greater Adelaide case study and the respective sources of these 

inputs is presented in  Table 5-2. 
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Table 5-1 Break down of the modelling approaches for the case study conceptual framework into the sources of 
information and new contributions made 

Component  Explanation and Source Contribution 
made 

Hazard Risk 
Model Risk Matrix Adopted from AGAGD (2015).  

Social 
Vulnerability 
Model 
 

Social 
Vulnerability 
Indicators 

The indicators are adopted from Chen et al. (2013), 
Cutter, Boruff and Shirley (2003), Frigerio and De Amicis 
(2016), McKenzie and Canterford (2016). Implemented 
as a model using Matlab. 

 

2050 Social 
Vulnerability 

Methodology adapted from (van Delden et al. 2005) 
and developed to be applied to defining social 
vulnerability multipliers. Implemented as a model using 
Matlab.  

✓ 

Hazard 
Likelihood 
Model 
 

Hazard 
Likelihood 
Model 

Adopted from the bushfire risk assessment model 
(BRAM) developed by Van Delden et al. (2017). 
Conceptualisation for Greater Adelaide adopted from 
the Department of Environment, Water and Natural 
Resources (DEWNR) and implemented in Matlab. 

✓ 

Ignition 
Potential 

Statistical Analysis methodology created and performed 
as part of this research for Greater Adelaide.  ✓ 

Global 
Sensitivity 
Analysis 

Hazard 
Likelihood 
Model 

The case study applies the PAWN method using the 
Matlab toolbox, SAFE (Sensitivity Analysis for Everyone) 
(Pianosi, Sarrazin & Wagener 2015). 

✓ 

 
Table 5-2 Break down of the Hazard Risk Model inputs for the case study conceptual framework into the sources of 
information and new contributions made. 

Input Source 
Climate Data Provided by DEWNR and projected in line with RCP 

scenarios. 
Vegetation Data Provided by DEWNR. 
Suppression Capability Provided by DEWNR. 
Land Use Provided by van Delden and Hurkens (2011) for the current 

assessment and adopted from Riddell et al. (2015) for the 
future assessment. 

Social Vulnerability Australian Bureau of Statistics 2011 Census. 
 

5.2.2 Hazard Risk Model 

As detailed in Section 4.1.1, the Hazard Risk Model centres around a risk assessment which quantifies 

Hazard Risk based on the Social Vulnerability and Hazard Likelihood. The spatially explicit nature of 

Hazard Risk is modelled by dividing the area into discrete cells, and then assessing Hazard Risk in each 

of these cells based on the external driver values at that location. Based on the land use data available 

for Greater Adelaide, the Hazard Risk Model divides the region into 100m x 100m cells, over an area 

of 63 km (East-West) and 100 km (North-South). This area is the region recognised as Greater Adelaide, 

shown and contextualised in Figure 5-4. 
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Figure 5-4 The Greater Adelaide region is divided into 100m x 100m cells for the case study so that the spatially explicit 
nature of the hazard risk may be shown by calculating hazard risk in each of these cells. This is a visual representation 
ONLY, and does not show all the cells in the 63km x 100km area. Figure from Google Maps (2017). 

For each cell in Figure 5-4, the Social Vulnerability and Hazard Likelihood are calculated for that 

location, and the risk assessment is then applied. The result of the Hazard Risk Model is a map of the 

risk assessment results from each cell in Greater Adelaide. This idea is conceptualised in Figure 5-5. 

 
Figure 5-5 Conceptualisation of the computational Hazard Risk (HR) Model for bushfire. The model assesses the hazard risk 
in each location using a risk assessment. The risk assessment considers the hazard likelihood and social vulnerability at that 
location at that point in time. The risk assessment is applied to each location in the spatial domain to produce a spatial map 
of hazard risk for the point in time being assessed.  
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5.2.2.1 Social Vulnerability Model 

The case study Social Vulnerability Model assesses the spatially explicit Social Vulnerability using 

fourteen social vulnerability indicators. The methodology for combining these indicators to quantify a 

single measure of Social Vulnerability is outline in Figure 5-6.  

The indicators used in the Social Vulnerability Model in Figure 5-6 to assess social vulnerability for 

each cell in Greater Adelaide are shown in Table 5-3. These indicators are chosen based on the relevant 

indicators from the conceptual framework, outlined in Section 4.1.1.2. For each indicator, a variable – 

which is measured using Census data sourced from the Australian Bureau of Statistics (2017) – is 

selected to quantify the social vulnerability based on that indicator. The final selection of indicators 

used to assess Social Vulnerability was limited by variables included in the Census data.  

 

Figure 5-6 Overview of computational Social Vulnerability Model for bushfire for assessing spatially explicit Social 
Vulnerability.  

2011 Census data are used for the variables outlined in Table 5-3 to measure the current Social 

Vulnerability in Greater Adelaide. 2011 Census data are the most recent Census data available for the 

variables. These data are available on a State Suburb Code (SSC) resolution. Thus, for each cell, the 

indicator variables are calculated based on the value of the indicator variables for the SSC that the cell 

lies in. The map of spatially explicit social vulnerability produced by the Social Vulnerability Model, 

therefore, has a SSC resolution. 
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Table 5-3 Vulnerability indicators and their quantifiable variables, sourced from ABS 

Indicators Variable Units 
Personal wealth  Estimates of Personal Income (weekly) - Median total income   $ 

Age   
Estimated Resident Population - Persons - 0-14 years  % 
Estimated Resident Population - Persons - 65 years and over  % 

Employment  Labour Force Statistics - Unemployment rate  % 
Insufficient English   Proficiency in Spoken English - Not proficient in spoken English  % 
Indigenous  Aboriginal and Torres Strait Islander - Proportion of population  % 

Family structure  Family Structure - Count of dependent children per parent   Dependents 
per parent 

Volunteering  Voluntary Work for an Organisation or Group  % 
New to region  Address One Year Ago - Elsewhere in Australia or Overseas % 
Education   Highest Year of School Completed – Year 12 or equivalent    % 
Need assistance  Need for Assistance to undertake Core Activities  % 
Car ownership  Motor Vehicles – One or more motor vehicles per dwelling  % 

Population Growth  Total Estimated Residential Population in 2011 – Total 
Estimated Residential Population in 2006   % 

Public Housing Number of Dwellings Rented from State Housing Authority  %  
 

As outlined in Figure 5-6, the social vulnerability due to each indicator is evaluated on a scale of 1 to 

5 (Very Low to Very High Social Vulnerability). Ideally, quantified bounds for the Social Vulnerability 

categories should be defined for each indicator variable through stakeholder input. For example, a 

stakeholder may define a 40% of the population being elderly as Very High Social Vulnerability, and so 

this quantified bound would be applied in the Social Vulnerability Model. In the absence of stakeholder 

input, however, the bounds used to define the Social Vulnerability categories are quantified from the 

percentile ranking of that cell’s indicator value in relation to the other cells in the spatial domain. For 

some indicators, a higher value correlates to a higher vulnerability (e.g. unemployment levels), 

however for others, a high value correlates to a low vulnerability (e.g. median income). Thus, in the 

absence of stakeholder input for an indicator where a higher indicator value means higher Social 

Vulnerability, the 20th percentile corresponds to the upper bound for Very Low Social Vulnerability, 

and the 40th, 60th and 80th percentiles corresponds to the upper bounds for Low, Medium and High 

Social Vulnerability, respectively. Indicators above the 80th percentile are categorised as Very High 

Social Vulnerability. Table 5-4 summarises this definition of Social Vulnerability category bounds using 

percentiles. 
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Table 5-4 Process for quantifying the value of a vulnerability indicator to generate an indicator score 

Percentile Range – depends on indicator type: Level of vulnerability for the indicator 

High value indicates 
high vulnerability 

High value indicates low 
vulnerability Qualitative Quantitative 

0% – 20% 80% - 100% Very low 1 
20% - 40% 60% - 80% Low 2 
40% - 60 % 40% - 60 % Medium 3 
60% - 80% 20% - 40% High 4 

80% - 100% 0% – 20% Very high 5 
 

Social Vulnerability is also dependent on the land use type at each location. The Social Vulnerability 

Model assumes zero risk for bodies of water, vacant and forest areas, on the basis that Social 

Vulnerability does not apply where there are no people. Therefore, where the land use is residential 

and community land use types (e.g. residential, rural residential, commercial, and public institutions 

including education) the calculated Social Vulnerability is applied. For all other land uses, the Social 

Vulnerability is zero, as shown in the penultimate step in Figure 5-6. 

5.2.2.2 Hazard Likelihood Model 

The Hazard Likelihood Model, presented in Figure 5-7, calculates the likelihood of bushfire in each cell 

location in Greater Adelaide. The Hazard Likelihood Model is based on a bushfire risk assessment 

model (BRAM) developed by Van Delden et al. (2017) following work by Taylor and Wallace (2011) in 

conjunction with DEWNR Fire. The BRAM is currently used by the Tasmanian Fire Service to evaluate 

the likelihood of a bushfire occurring. The model couples the assessment of exposure and hazard in 

its evaluation of Hazard Likelihood. The Hazard Likelihood Model, detailed in Figure 5-7, considers 

Ignition Potential (IP), Suppression Capability (SC) and Fire Behaviour (FB) as the three components of 

Bushfire Likelihood. The Ignition Potential in Figure 5-7 considers the likelihood of a fire starting due 

to lightning or being man lit, using historical data to assess the potential of either occurrence. The 

Suppression Capability is related to how quickly a fire is detected and suppressed. The head fire 

intensity is used for the Fire Behaviour and is a function of climate data, rate of spread, vegetation, 

and slope. These factors are combined to produce a spatial assessment of the likelihood of a bushfire 

occurring. Where there is no vegetation, the Bushfire Likelihood is assumed to be zero. 
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Figure 5-7 Overview of Bushfire Risk Assessment Model (BRAM) used to assess the spatially explicit bushfire Hazard 
Likelihood in Greater Adelaide 

Ignition Potential 

The Hazard Likelihood Model calculates the Ignition Potential for a given cell (𝐼𝐼𝑃𝑃𝑥𝑥𝑥𝑥) based on a 

summation of the Ignition Potential (Eq.  1) due to land use (𝐼𝐼𝑃𝑃𝐿𝐿𝐿𝐿,𝑥𝑥𝑥𝑥) and the Ignition Potential due 

to vegetation type (𝐼𝐼𝑃𝑃𝑉𝑉,𝑥𝑥𝑥𝑥). These parameters are quantified by converting land use and vegetation 

to an equivalent Ignition Potential (Eq.  2 and Eq.  3).  

 𝐼𝐼𝑃𝑃𝑥𝑥𝑥𝑥 = 𝐼𝐼𝑃𝑃𝐿𝐿𝐿𝐿,𝑥𝑥,𝑦𝑦 + 𝐼𝐼𝑃𝑃𝑉𝑉,𝑥𝑥,𝑦𝑦 Eq.  1 

 𝐼𝐼𝑃𝑃𝐿𝐿𝐿𝐿,𝑥𝑥𝑥𝑥 = 𝑓𝑓(𝐿𝐿𝐿𝐿) Eq.  2 

 𝐼𝐼𝑃𝑃𝑉𝑉,𝑥𝑥𝑥𝑥 = 𝑓𝑓(𝑉𝑉) Eq.  3 

This conversion is developed from a statistical analysis of historic data for land use and vegetation at 

the points of ignition. For the case study, this statistical analysis is carried out on data provided by 

DEWNR from 2011-2016 in Greater Adelaide. In the data, there are 2045 samples. The analysis 

considers the average number of fires per year per unit area of each vegetation and land use type in 

Greater Adelaide as a measure of the propensity to ignite. 
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The results from the statistical analysis are used to inform the conversion of qualitative land use and 

vegetation types into quantitative measures of their Ignition Potential. Figure 5-8 and Figure 5-9 show 

the results for the average number of fires per year per unit area of each vegetation and land use type. 

As an example, shown in Eq.  4, to calculate the Ignition Potential for Vacant land, in 2011-2012 there 

were 23 fires on Vacant land in Greater Adelaide, and 8572ha of Vacant land: 

 𝐼𝐼𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑈𝑈𝑈𝑈𝑈𝑈: 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉,11−12 =
23

8572
= 0.0027 Eq.  4 

However in 2012-2013, there were 110 fires on Vacant land, and 8598ha of Vacant land, and the 

calculation would be as in Eq.  7: 

 𝐼𝐼𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑈𝑈𝑈𝑈𝑈𝑈: 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉,12−13 =
110

8598
= 0.0128 Eq.  5 

Continuing this for the years 2013-2014, 2014-2015, and 2015-2016, the number of fires per area of 

land use is calculated for each year; these are the blue bars shown in Figure 5-8. The mean of these 

values is taken, as calculated in Eq.  6, to determine the mean number of fires per year per area of 

land use or vegetation type. This value is used as the Ignition Potential conversion factor, and shown 

as a green bar on Figure 5-8. 

 𝐼𝐼𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑈𝑈𝑈𝑈𝑈𝑈:𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 =
0.0027 + 0.0128 + 0.0058 + 0.0041 + 0.005

5
= 0.0061 Eq.  6 

 
Figure 5-8 Graph of the ignitions per year per land use per area of land use used to determine the ignition potential for 
each land use type 
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From Figure 5-8, it is observed that while the highest number of fires per year per unit area of land 

use type occurred for Vacant land in 2012-2013, the mean highest number of fires per year per unit 

area was for Vacant Residential land use. As such, the Vacant Residential land use has the Ignition 

Potential. Vacant land use has the second highest Ignition Potential. Residential showed no recorded 

ignitions, and as such had an Ignition Potential of 0. Agriculture, Mines and Quarries, Forestry, 

Livestock and Horticulture all showed low average numbers of fires per year per unit area of land use. 

The assessment for Ignition Potential of vegetation types used the same approach as land use, with 

the results shown in Figure 5-9. The Mallee woodlands have the highest mean number of fires per 

year per unit area of Eucalyptus woodland, however in 2012-2013, 2013-2014, and 2014-2015, there 

was only 1 fire in each year. It is because of the low amount of area that this has been described as 

highly prone to ignition. A similar trend is seen for Coastal Shrubland. Acacia Shrubland has no 

recorded fires for the 2011-2012 period, causing its Ignition Potential of 0. By contrast, Grasses have 

an average of 280 fires per year, but account for 380441ha of Greater Adelaide, which makes its 

Ignition Potential almost negligible. 

 

Figure 5-9 Graph of the ignitions per year by vegetation per area of vegetation type used to determine the ignition 
potential for each vegetation type 
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Where there is no vegetation, there is no Ignition Potential, therefore areas with no vegetation are 

given an overriding Ignition Potential of zero. Using the results of this statistical analysis, the Ignition 

Potential of the Greater Adelaide area is determined. 

The resultant Ignition Potentials for each vegetation and land use type in Greater Adelaide using the 

statistical analysis are presented in Table 5-5 and Table 5-6.  

Table 5-5 Ignition Potential (IgPot) for each land use type in Greater Adelaide determined using statistical analysis historical 
data provided by DEWNR. 

Land use 
Ignition Potential for 
land use (mean fires 

per ha per year) 

 
Land use 

Ignition Potential for 
land use (mean fires 

per ha per year) 
Residential 0.000  Non-private residential 0.241 
Agriculture 0.036  Rural residential 0.153 
Livestock 0.041  Commercial 0.212 
Mine and quarry 0.054  Education 0.178 
Forestry 0.076  Reserve 0.245 
Horticulture 0.071  Recreation 0.306 
Golf 0.135  Ret commercial 0.425 
Food industry 0.155  Vacant 0.958 
Public institution 0.128  Vacant residential 0.832 
Utilities industry 0.140    

Table 5-6 Ignition Potential (IgPot) for each vegetation type in Greater Adelaide determined using statistical analysis 
historical data provided by DEWNR. 

Vegetation 
code 

Ignition Potential for 
vegetation (mean 

fires per ha per year) 
Description 

0 0.006 Mixed chenopod, samphire or forblands 
1 0.677 Eucalyptus woodlands 
2 0.000 Acacia shrublands 
3 0.002 Eucalyptus mallee forest and mallee woodland 
4 0.000 Shrubland, coastal shrubland 
5 N/A Casuarina and allocasuarine forests and woodlands 
6 0.589 Grasses  

 

Suppression Capability 

The Suppression Capability indicates the probability of an initial response to bushfire being successful, 

and the bushfire having no significant consequence. Suppression Capability is determined by how 

quickly a fire may be detected and suppressed. For Greater Adelaide, the Suppression Capability is 

determined using data on the number of fire stations or towers, road access, and presence of air 

support for fire suppression. The Suppression Capability was supplied for each cell in Greater Adelaide 

by DEWNR. For each cell, the Suppression Capability is rated from a score of 1 to 5 based on factors 
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which affect the aircraft response time, brigade response time, accessibility to the site and the fire 

detection. To calculate the aircraft response time, priority response times and airbase locations are 

assessed. The brigade locations and road network determine the brigade response time. To rate the 

accessibility level, the slope, rockiness and other access issues are assessed. Finally, the detection is 

based on population density, tower locations, land use and vegetation. 

Fire Behaviour 

Fire Behaviour is the energy intensity per cell (kW/m), and takes into consideration different Fire 

Behaviours for grassland �𝐹𝐹𝐵𝐵𝐺𝐺,𝑥𝑥𝑥𝑥� and woodland �𝐹𝐹𝐵𝐵𝑊𝑊,𝑥𝑥𝑥𝑥� (Eq.  7). The Bushfire Likelihood Model 

classifies a vegetation type as woodland or grassland. The Fire Behaviour for grassland and woodland 

areas are a function of the climate variables and spatial characteristics (Eq.  8 and Eq.  9). 

 𝐹𝐹𝐵𝐵𝑥𝑥𝑥𝑥 = 𝐹𝐹𝐵𝐵𝐺𝐺,𝑥𝑥𝑥𝑥 + 𝐹𝐹𝐵𝐵𝑊𝑊,𝑥𝑥𝑥𝑥 Eq.  7 

 𝐹𝐹𝐵𝐵𝐺𝐺,𝑥𝑥𝑥𝑥 = 𝑓𝑓(𝑈𝑈10,𝑇𝑇90,𝑅𝑅𝑅𝑅,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, 𝐿𝐿𝐿𝐿) Eq.  8 

 𝐹𝐹𝐵𝐵𝑊𝑊,𝑥𝑥𝑥𝑥 = 𝑓𝑓(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇,𝑈𝑈10,𝑅𝑅𝑅𝑅,𝑇𝑇90,𝑇𝑇min) Eq.  9 

The Bushfire Attack Levels (BAL) from Table 3.1 in AS3959-2009 are used to categorise the energy 

intensity to values from 1 to 5 (Very Low intensity to Very High intensity). The BAL levels are 

determined using Radiant Heat Flux. To convert the Fire Behaviour of each cell to Radiant Head Flux 

Eq. 7 is used.  The BAL levels used to define the levels of Fire Behaviour are summarised in Table 5-7. 

 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑥𝑥𝑥𝑥 = 60(1 − e−

𝐹𝐹𝐵𝐵,𝑥𝑥𝑥𝑥
30000) 

Eq.  10 

Table 5-7 BAL levels used as upper and lower bounds to define categories of Fire Behaviour (very low to very high Fire 
Behaviour) in the Hazard Likelihood Model 

Fire Behaviour Category Lower bound BAL level (kW/m2) Upper bound BAL level (kW/m2) 

Very High 40 ∞ 
High 28 40 

Medium 14 28 
Low 7 14 

Very Low 0 7 

 

5.2.3 External drivers 

For the case study framework, Hazard Risk is affected by four external drivers – population, climate, 

demographic and economic. These external drivers impact the model inputs for Social Vulnerability 

and Hazard Likelihood. From Figure 5-3, the inputs are spatially explicit and can be either temporally 

static or dynamic. In order to account for the temporally dynamic nature of the external drivers, 

exploratory scenarios are used.  



 

39 
 

5.2.3.1 Socio-economic external drivers 

Exploratory scenarios are driven by external drivers and emulate multiple plausible futures. Five 

alternate futures scenarios exist for Greater Adelaide that consider the changes from 2013 to 2050, 

as developed by members of South Australia’s State Mitigation Advisory Group (SMAG) (Riddell et al. 

2015). The socio-economic scenarios allow for an understanding of how the external drivers of 

population, economic and demographic may change in the future. These scenarios focus on the future 

state of Greater Adelaide under different levels of challenges to mitigation and resilience (Riddell et 

al. 2015), as illustrated in Figure 5-10. The stakeholder engagement process determined that 

mitigation and resilience are considered as the main approaches to minimising natural disaster risk 

(Riddell et al. 2015). Mitigation is conceptualised as a top-down approach and resilience is 

conceptualised as a bottom-up approach. The SMAG participants determined that together this was 

an effective method to reduce disaster risk in Greater Adelaide (Riddell et al. 2015).  

 

Figure 5-10 Exploratory scenarios S.1 – S.5 illustrated by their relative future challenges to mitigation and resilience 

The purpose of the socio-economic scenarios for Greater Adelaide is to assist decision makers in 

strategically considering multiple plausible futures (Riddell et al. 2015). To elicit the scenarios, the 

process considered the critical elements in hazard risk reduction and how this will change in the future. 

The Greater Adelaide socio-economic scenarios focus on the challenges and the opportunities for 

Greater Adelaide as it manages Hazard Risk in the future (Riddell et al. 2015). These scenarios provide 

an understanding on how the dynamic external drivers may change, which will influence Hazard Risk 

and Social Vulnerability (Riddell et al. 2015). 

Figure 5-11 presents an overview of the main scenario drivers and outcomes for the Greater Adelaide 

Socio Economic scenarios and demonstrates how and where each scenario differs from the others. It 

compares each of the five scenarios on key drivers for the future of Greater Adelaide in 2050 as 

determined by SMAG, including population, land use planning, economics and education and 
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awareness. For most of the key scenario drivers the performance for Greater Adelaide is measured 

from weak to strong or low to high, as indicated by the legend in Figure 5-11. 

 

Figure 5-11 The main scenario drivers and outcomes for the 5 socio-economic exploratory scenarios for Greater Adelaide 
(Riddell et al. 2015).  

The narrative storylines presented in Riddell et al. (2015) outline the differences and similarities 

between each socio-economic scenario and provdes an insight into how Greater Adelaide will look in 

2050. Silicon Hills represents the best case, where future challenges to mitigation and resilience are 

both low. In this scenario, Greater Adelaide moves into a well-balanced economy with highly skilled 

immigrants and engaged locals (Riddell et al. 2015). Cynical Villagers represents a future with low 

challenges to resilience and high challenges to mitigation. In the Cynical Villagers scenario there is low 

population growth, with an aging population and the community is less connected and more 

vulnerable (Riddell et al. 2015).  Ignorance of the Lambs represents the situation where there are low 

future challenges to mitigation but high future challenges to resilience, due to an increased commuter 

lifestyle and increased population growth (Riddell et al. 2015). The Appetite for Change scenario 

narrative details slow population growth and Greater Adelaide continuing on its current trajectory of 

mixed socio-economic status and an ageing population (Riddell et al. 2015). Appetite for Change 

represents a future with moderate challenges to resilience and mitigation. The Internet of Risk 

represents the worst case of high challenges to resilience and mitigation. This scenario sees a future 

where Greater Adelaide experiences a loss of connectedness, low population growth and high 

inequality (Riddell et al. 2015). The results in this study are presented for three scenarios: Ignorance 

of the Lambs, Silicon Hills, and Cynical Villagers. These scenarios represent the best-case scenario 
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(Silicon Hills), worst-case scenario for challenges to mitigation (Cynical Villagers), and worst-case 

scenario for challenges for resilience (Ignorance of the Lambs). 

The socio-economic scenarios for Greater Adelaide also cause changes in the land use spatially and 

over time. Land use is influenced by external drivers and affects Social Vulnerability, as areas which 

are not a residential or urban land use type (e.g. vacant forests) do not contain people, and so are not 

considered socially vulnerable. Similarly, the land use type will affect the Hazard Likelihood, as land 

uses which do not have vegetation (e.g. industry) will not be able to burn and so are considered to 

have no hazard likelihood. To understand how the socio-economic scenarios influence the land use in 

Greater Adelaide, a land use model is applied. 

A previously developed land use model for Greater Adelaide (van Delden & Hurkens 2011) enables 

the assessment of land use changes over time under different plausible future scenarios to develop 

the Greater Adelaide land use model. The Greater Adelaide Land Use Model is a cellular automata 

model, which is common in hazard modelling as they represent geographic space in grid form. The 

cells of the grid may transition between land use states due to decisions related directly to changes in 

the neighbourhood environment caused by external drivers to the system (Clarke 2014; Hosseinali, 

Alesheikh & Nourian 2014). Thus, the dynamic nature of the system as a result of changing external 

drivers may be modelled. 

The plausible future land use scenarios are defined by changes in external drivers, policy, and 

infrastructure decisions, among other possible inputs. Land use changes are driven by an area’s 

attractiveness to people and business. The attractiveness is dependent on several factors, including 

existing activity in neighbouring cells, and local characteristics, like accessibility. Land use changes are 

also determined by socio-economic factors, biophysical factors, and policy options. 

The land use model for Greater Adelaide was calibrated using historic land changes. The outputs have 

a spatial resolution of 100mx100m, and a temporal resolution of 1 year. The land use changes for 

Greater Adelaide are simulated from 2013 to 2050, for each socio-economic scenario considered.  

5.2.3.2 Climate external drivers 

The external driver of climate influences the likelihood of a bushfire hazard occurring. This external 

driver is dynamic, and highly uncertain into the future. Representative Concentration Pathways (RCP), 

which provide several possible greenhouse gas concentration trajectories resulting from different 

anthropogenic futures, give 4 different possible scenarios for the global climate in the future. Using 

RCP projections is a well-recognised and established method to understand how the climate may alter 

in the future. Figure 5-12 presents the expected CO2 concentrations for the next 100 years for each of 
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the four scenarios.  RCP 4.5 and RCP 8.5 are used to determine the climate data for the case study of 

Greater Adelaide. These two RCP scenarios are used as they represent a worst-case scenario (RCP 8.5) 

and a moderate case (RCP 4.5). 

 
Figure 5-12 Representative Concentration Pathways for climate change (IPCC 2017) 

 Framework application  

5.3.1 Overview  

The case study framework presented in Section 5.2 can be used to assist real world decision making 

about natural Hazard Risk and mitigation. The flowchart in Figure 5-13 outlines the sub-objectives of 

the case study framework (shaded blue) and the results of each of these sub-objectives (shaded 

green). 

 

Figure 5-13 Flowchart of the knowledge tree that is built to gain a thorough understanding of the system of hazard risk. 
Blue bubbles show the sub-objectives of the case study, and the green bubbles show the results that will be presented to 
demonstrate this understanding. 
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To achieve the first sub-objective of developing an understanding of the current Hazard Risk, the 

current Social Vulnerability and Hazard Likelihood in Greater Adelaide are assessed by applying the 

Social Vulnerability and Hazard Likelihood models under current conditions, as outlined in Section 

5.3.2.1 for Social Vulnerability and Section 5.3.2.2 for Hazard Likelihood. How these components 

influence the current Hazard Risk in Greater Adelaide is also assessed using the Hazard Risk Model 

under current conditions, as described in Section 5.3.2.3. 

The second sub-objective of developing an understanding of the dynamic nature of Hazard Risk looks 

at the temporal variability of the Hazard Risk components. The dynamic nature of Social Vulnerability 

is assessed by comparing the Social Vulnerability indicators for each State Suburb Code (SSC) in 2006 

and 2011 using Census data sourced from the Australian Bureau of Statistics (2017), as outlined in 

Section 5.3.3.1. The dynamic nature of Hazard Likelihood is assessed using a sensitivity analysis on the 

Hazard Likelihood Model, as outlined in Section 5.3.3.2.  

To achieve the third sub-objective of assessing future Hazard Risk, changes in Social Vulnerability, 

Hazard Likelihood and Hazard Risk between now and 2050 are examined using exploratory scenarios. 

The application of socio-economic scenarios to assess possible changes in Social Vulnerability is 

outlined in Section 5.3.4.1. The application of climate and socio-economic scenarios to assess possible 

changes in Hazard Likelihood is outlined in Section 5.3.4.2. 

The final sub-objective of assessing the impact of mitigation on Hazard Risk is achieved by modelling 

the influence of mitigation strategies which target Social Vulnerability and Hazard Likelihood, and 

comparing the results of the risk assessment with and without mitigation. The methodology for 

achieving this sub-objective is detailed in Section 5.3.5. 

5.3.2 Understanding of current Hazard Risk  

5.3.2.1 Social Vulnerability 

 To assess the Social Vulnerability under current conditions, the framework developed for the case 

study application is used, as outlined in Section 5.2.2.1. The result of this is a spatially explicit map of 

Social Vulnerability, and 14 spatially explicit maps of Social Vulnerability due to the 14 selected 

indicators that were discussed in Section 5.2.2.1. Through assessing and comparing these component 

indicators, trends, areas of concern, and any indicators of influence can be found. 

5.3.2.2 Hazard Likelihood  

To understand Hazard Likelihood for the current time, the framework developed for the case study is 

applied, as described in Section 5.2.2.2. The result is a spatially explicit map of Hazard Likelihood, and 

maps generated in the process of producing this for: Fire Behaviour, Ignition Potential, and 
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Suppression Capability. These maps are able to be analysed, alongside the maps of the inputs of 

Vegetation, Land Use, and Slope Degree. By comparing these maps, a better understanding may be 

formed about the influencing factors and trends seen in the results.  

5.3.2.3 Hazard Risk  

Section 0 outlines how Social Vulnerability and Hazard Likelihood are brought together in the case 

study to assess Hazard Risk. The result of this will be a spatially explicit map of Hazard Risk, which can 

be assessed in conjunction with the maps of Social Vulnerability, Hazard Likelihood, and their 

components. By building on the comparisons made from the results of current Social Vulnerability and 

Hazard Likelihood, the result of Hazard Risk ties together all the inputs, adding another layer of 

observations. These observations ultimately build our understanding of current Hazard Risk. 

5.3.3 Understanding of dynamic nature of Hazard Risk  

5.3.3.1 Social Vulnerability  

To understand the temporal dynamics of Social Vulnerability, historic Census data are used to assess 

the variability of each Social Vulnerability indicator. The difference between the 2006 and 2011 Census 

data for each indicator is calculated for each LGA within Greater Adelaide. An LGA resolution is 

considered to assess the indicator dynamics as it allows a more valuable visual representation of these 

dynamics.  

The dynamic assessment of Social Vulnerability is used to identify indicators which have the potential 

to vary greatly in the future, and thus should be projected using the socio-economic scenarios. For 

example, indicators which show high variability between 2006 and 2011 across the majority of the 

SSCs are assumed to also be highly dynamic in the future. Therefore, analysing historic indicators 

separately can assist in developing an understanding of the spatial variance of Social Vulnerability in 

the future. The assessment identifies which indicators are of particular interest in the future projection 

in line with socio-economic scenarios. Conversely, it is assumed that the indicators which are not 

highly variable from 2006 to 2011 across the suburbs will vary less into the future and thus will not 

cause significant changes in the Social Vulnerability in 2050. For this reason, they are of less interest. 

Ideally a GSA is used to understand the dominant controls of the system to better inform mitigation 

options. However, a GSA is not worthwhile for the Social Vulnerability Model as the assessment of 

Social Vulnerability for the case study of bushfire in Greater Adelaide considers an equal weighting of 

vulnerability indicators. 

The result of this analysis are graphs showing a comparison of the indicator in 2006 and 2011. The 

proportions used to calculate each indicator are compared for positive or negative changes between 
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2006 and 2011, except for population growth, family structure and personal wealth indicators. Family 

structure and population growth are excluded as there are no relevant data available for 2006. 

Personal wealth is ignored due to the influence of inflation on median incomes over time. By 

comparing the fluctuations observed for each indicator, a better understanding of the indicators that 

are likely to change into the future can be achieved. 

5.3.3.2 Hazard Likelihood  

To understand the drivers of Hazard Likelihood, a GSA of the Hazard Likelihood Model is used to assess 

which model inputs are most influential in promoting changes to the output Hazard Likelihood. 

The case study uses the density based PAWN method to undertake a GSA on the Hazard Likelihood 

Model component of the conceptual framework. From the GSA, an understanding of the dominant 

controls of the Hazard Likelihood system is developed. The PAWN method can be implemented using 

the Matlab toolbox, SAFE (Sensitivity Analysis for Everyone) (Pianosi, Sarrazin & Wagener 2015). Table 

5-8 details the various sub-components of Hazard Likelihood, and identifies where sensitivity analyses 

are appropriate or not appropriate. 

Table 5-8 Reason for the inclusion or exclusion of sensitivity analyses for model components of the Hazard Likelihood 
Model 

Component Sub-Component Sensitivity 
analysis Reasoning 

Hazard 
Likelihood 

Fire Behaviour 
(FB) ✔ 

It is worthwhile to undertake a sensitivity 
analysis to determine the most sensitive Fire 
Behaviour inputs. This will inform the 
development of mitigation strategies to be 
targeted to the most sensitive inputs. 

Suppression 
Capability (SC) ✖ 

A sensitivity analysis would not be valuable on 
this sub-component of the model; it only has 
one input, which is constant through time. 

Ignition Potential 
(IP) ✔ 

Performing a sensitivity analysis on Ignition 
Potential is beneficial to determine the most 
sensitive inputs. 

Hazard Likelihood 
(total) ✔ 

A sensitivity analysis on Hazard Likelihood is 
worthwhile to understand which components 
(FB, SC, IP) are more sensitive. 

 

The PAWN method requires a range to be specified for each model parameter. The sensitivity of a 

model output to uncertainty in the model parameters can be strongly influenced by the ranges used 

(Shin et al. 2013; Wang et al. 2013). Thus, it is important that these parameter sets contain values 

which are plausible (Shin et al. 2013). The model parameter ranges used in the sensitivity analysis are 

based on the minimum and maximum values of the 2015 climate and spatial data, as shown in Table 
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5-9. For the Land Use and Vegetation variables, the bounds of 0 to 16 and 0 to 7, respectively, refer to 

discrete Land Use or Vegetation types, which are defined as an input to the model. 

Table 5-9 Variables changed for the sensitivity analyses, and the ranges of values used, for each of the sensitivity analyses 
conducted 

Component to be 
analysed 

Variables 
Variable upper 

bound 
Variable lower 

bound 

Fire Behaviour 

Ambient air temperature (T90) (°C) 28 33 
Relative humidity (%) 35.607 39.877 
10m wind speed (m/s) 21 50 
Minimum wind temperature (°C) 5 9 
Vegetation type 0 7 
Land use 0 16 
Slope degree (%) 0 36.542 
Time Since Last Fire (years) 0 65 

Ignition Potential 
Land Use  0 16 
Vegetation 0 6 

Hazard 
Likelihood 

Ambient air temperature (T90) (°C) 28 33 
Relative humidity (%) 35.607 39.877 
10m wind speed (m/s) 21 50 
Minimum wind temperature (°C) 5 9 
Vegetation type 0 7 
Land use 0 16 
Slope degree (%) 0 36.542 
Time Since Last Fire (years) 0 65 
Suppression Capability 0 5 

 

5.3.4 Assessment of future Hazard Risk  

5.3.4.1 Social Vulnerability 

The Social Vulnerability model considers changes in the future by quantifying projections in Social 

Vulnerability indices for each of the five socio-economic scenarios considered for Greater Adelaide. 

The methodology for quantifying Social Vulnerability projections for the case study is summarised in 

Figure 5-14. This methodology is adapted from the blue-highlighted steps in the conceptual 

framework methodology for Social Vulnerability detailed in Figure 4-3. 

In the methodology outlined in Figure 5-14, the indicator values for each scenario are projected to 

2050, using multipliers applied to the 2011 Social Vulnerability data. The multipliers are aligned with 

each of the five socio-economic scenarios for each Social Vulnerability indicator. The socio-economic 

scenario narrative storylines, however, describe changes to general regions of Greater Adelaide, and 

do not provide detailed analysis for each state suburb area. Hence, the dynamic assessment of 
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vulnerability for the case study uses multipliers applied to five areas for Greater Adelaide – East, West, 

North, South and Hills, as illustrated in Figure 5-15. 

 
Figure 5-14 Overview of quantification procedures for determination of future vulnerability indicator multipliers for the case 
study 

 
Figure 5-15 Delineation of Greater Adelaide into the five areas used to project Social Vulnerability 

The multipliers that are used for Social Vulnerability indicators in the case study are presented here 

for the indicators of interest. The remaining multipliers are presented for each socio-economic 

scenario in Appendix D.   
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Figure 5-16 shows the multipliers that are applied to the indicator of Unemployment for 2050, 

representing factor increases (red) or decreases (green) in the proportion of unemployed people.  

 

 
Figure 5-16 Multipliers applied to project changes in the proportion of people who are unemployed for (a) Cynical Villagers, 

(b) Ignorance of the Lambs, and (c) Silicon Hills scenarios 

Figure 5-17 shows the multipliers that are applied to the indicator of English Proficiency for 2050, 

representing factor increases (red) or decreases (green) in the proportion of people with very low 

English proficiency.  

 

 
Figure 5-17 Multipliers applied to project changes in the proportion of people with very low English proficiency for (a) 

Cynical Villagers, (b) Ignorance of the Lambs, and (c) Silicon Hills scenarios 
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Figure 5-18 shows the multipliers that are applied to the indicator of Education for 2050, representing 

factor increases (green) or decreases (red) in the proportion of people finishing year 12.  

 

 
Figure 5-18 Multipliers applied to project changes in the proportion of people who have completed year 12 for (a) Cynical 

Villagers, (b) Ignorance of the Lambs, and (c) Silicon Hills scenarios 

Figure 5-19 shows the multipliers that are applied to the indicator of Proportion of Elderly People for 

2050, representing factor increases (red) or decreases (green) in the proportion of elderly people 

people who are new to the area.  

 

 
Figure 5-19 Multipliers applied to project changes in the proportion of elderly people for (a) Cynical Villagers, (b) Ignorance 

of the Lambs, and (c) Silicon Hills scenarios 
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Figure 5-20 shows the multipliers that are applied to the indicator of Recently Moved to the Area for 

2050, representing factor percentage increases (red) or decreases (green) in the proportion of people 

who are new to the area. 

 

 
Figure 5-20 Multipliers applied to project changes in the proportion of people who have recently moved to the area for (a) 

Cynical Villagers, (b) Ignorance of the Lambs, and (c) Silicon Hills scenarios 

Following quantification of projected Social Vulnerability indices, a spatial assessment using the 

methodology in Figure 5-6 is undertaken for each socio-economic scenario. In the absence of 

stakeholder input, the bounds defining the categories of Social Vulnerability (Very Low to Very High 

Social Vulnerability) are quantified from the percentile ranking of that cell’s indicator value in relation 

to the other cells in both the spatial and temporal domains, as detailed in Section 5.2.2.1. The effect 

of changes in land use under the socio-economic scenarios on Social Vulnerability in the future are 

also considered in the penultimate step of Figure 5-6. 

The dynamic assessment of Social Vulnerability produces maps of Social Vulnerability in Greater 

Adelaide in 2050 for each socio-economic scenario. The changes between the current Social 

Vulnerability and the 2050 Social Vulnerability are presented as change maps, showing increases or 

decreases in 2050 relative to the current Social Vulnerability. Like in Section 5.3.2.1, where an 

understanding of current Social Vulnerability is built, these changes can be broken down into the 

component indicators, to assess how the overall Social Vulnerability is affected, and observe any 

trends. 
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5.3.4.2 Hazard Likelihood 

The Hazard Likelihood Model considers changes in Hazard Likelihood in the future by applying the 

climate and socio-economic scenarios for Greater Adelaide to the temporally dynamic Hazard 

Likelihood inputs. 

The temporally dynamic drivers for Hazard Likelihood are the climate variables (U10, T90, RH and Tmin), 

time since last fire (TSLF), and land use. The climate variables and TSLF are inputs to Fire Behaviour 

only, while land use is an input to Fire Behaviour and Ignition Potential – thus, both these measures 

of Hazard Likelihood are temporally dynamic. The changes in land use are informed by the five socio-

economic scenarios for Greater Adelaide, while the changes in the climate variables are informed by 

the RCP climate scenarios. In the base case without mitigation, TSLF is assumed to increase by one 

year each year, i.e. it is assumed that no fires occur between now and 2050. 

Some inputs to the Hazard Likelihood Model, however, remain temporally static, such as the slope. 

This is a spatially explicit variable, and only one input map of the slope on a 100mx100m resolution is 

used. Suppression Capability is also static, as it is dependent on accessibility and the ability to notice 

and supress a fire. This limits the assessment of Hazard Likelihood into the future as it is likely that 

changing the land use and the effects of urban sprawl and infill will affect Suppression Capability.  

The Hazard Likelihood Model in Figure 5-7 is applied using the variables for each combination of 

climate and socio-economic scenarios. Thus, the results of the dynamic assessment of Hazard 

Likelihood are hazard likelihood maps for Greater Adelaide in 2050 under each of the climate and 

socio-economic scenarios.  

5.3.5 Assessment of impact of mitigation options 

Mitigation and risk reduction strategies which target Social Vulnerability and Hazard Likelihood in 

Greater Adelaide are identified using the process outlined in Figure 5-21, and discussed in Section 

5.3.5.1 and Section 5.3.5.2, respectively. 
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Figure 5-21 Outline of the process used to identify mitigation/risk reduction strategies which target Hazard Likelihood and 
Social Vulnerability to reduce Hazard Risk  

5.3.5.1 Social Vulnerability 

It is not realistic to implement mitigation options that directly change Social Vulnerability to hazards, 

such as decreasing unemployment in an area. Social Vulnerability, however, can be reduced as a co-

benefit of social policies. For example, to increase the proportion of people who complete year 12 

(Education indicator) in socially vulnerable areas, more funding can be allocated to schools within 

these areas to improve education programs that encourage students to stay at school. An additional 

co-benefit of increasing the level of education could be a decrease in unemployment and an increase 

in personal wealth. Therefore, mitigation strategies targeting Social Vulnerability take the form of 

indirect policies. 

There is a circular relationship between social policies, and the narrative storylines of the socio-

economic scenarios. Thus, the possible influence of social policies on Social Vulnerability in the future 

may not be modelled using the socio-economic scenarios for Greater Adelaide. Instead, they are 

assessed under current Social Vulnerability conditions for Greater Adelaide, as described in Figure 

5-21. The current spatial map of Social Vulnerability is used to identify areas of high Social 
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Vulnerability, and the spatial maps of each individual indicator are analysed to identify which 

indicators contribute to these areas of high total Social Vulnerability. From these influential indicators, 

those which may be changed by indirect policies are identified. Changes in these indicators from 

indirect policies are modelled by reducing the Social Vulnerability of these indicator values by a 

plausible amount, in consultation with experts and stakeholders. These results are coupled with 

current Hazard Likelihood to assess the potential changes that may be achieved in Hazard Risk under 

current conditions due to the influence of indirect policies on Social Vulnerability. The mitigation tests 

implemented to assess the potential influence of indirect policies on Social Vulnerability are shown in 

Table 5-10. 

Table 5-10 Mitigation tests implemented to assess the potential influence of indirect policies on Social Vulnerability and 
Hazard Risk 

Target Indicator Aim Strategy 

Education Increase levels of 
education 

Increase the education indicator (proportion of people 
who have completed year 12) by 10% in all areas 

Volunteering Increase levels of 
volunteering 

Increase the volunteering indicator (proportion of 
people who volunteer) by 10% in all areas 

Personal 
Wealth 

Increase personal 
wealth 

Increase the personal wealth indicator (median 
income) by 10% in all areas 

Young People Decrease proportion 
of young people 

Decrease the young people indicator (proportion of 
young people) by 10% in all areas 

 

5.3.5.2 Hazard Likelihood  

The influence of mitigation on Hazard Likelihood is assessed in 2050 under each of the climate and 

socio-economic scenarios. As described in Figure 5-21, the results from the GSA of the Hazard 

Likelihood Model are used to identify the drivers which are most influential in promoting changes in 

Hazard Likelihood. From these high influence drivers, feasible mitigation options are identified 

through consultation with experts. For the case study, consultation with Mike Wouters, a Senior Fire 

Ecologist from DEWNR, is undertaken to develop feasible mitigation strategies and implementation 

locations for bushfire in Greater Adelaide. Potential changes to Hazard Likelihood because of these 

mitigation strategies are assessed by changing the model inputs to reflect the mitigation strategy. 

These changes are analysed in the results of the Hazard Likelihood Model for 2050 under the climate 

and socio-economic scenarios in comparison to the results without mitigation. The influence of these 

mitigation strategies on Hazard Risk in 2050 is assessed by combining the results of Hazard Likelihood 

under mitigation, with the Social Vulnerability in 2050 under each scenario without mitigation. The 

influence of planned burning as a mitigation strategy to reduce the influential Time Since Last Fire 

driver is assessed by implementing a planned burn in 2049 to all eucalyptus woodland areas.   



 

54 
 

6 RESULTS AND DISCUSSION 

 Current Risk 

The results for the case study are presented for the current case, and broken down into the 

components of Hazard Risk, in order to analyse the impacts of different factors.  

6.1.1 Current Social Vulnerability  
The current Social Vulnerability map for Greater Adelaide is shown in Figure 6-1. The Social 

Vulnerability across Greater Adelaide is highly variable. Social Vulnerability does not apply where 

there are no people and these areas are scattered over Greater Adelaide. Figure 6-1 illustrates that 

the Eastern region and the Hills have the lowest overall Social Vulnerability. The Western regions have 

the greatest density of areas with High or Very High Social Vulnerability.  In the Northern region of 

Greater Adelaide, Social Vulnerability is greatly varied, ranging from Very Low to Very High Social 

Vulnerability. 

 

Figure 6-1  Current Social Vulnerability for Greater Adelaide using an SSC resolution and based on equal weighting of the 
vulnerability indicators. 

Social Vulnerability for the Greater Adelaide case study is comprised of 14 indicators. Figure 6-2 and 

Figure 6-3 illustrate the variable impact of the different indicators on the overall Social Vulnerability.
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Proportion of Unemployment 

 

Proportion of Public Housing 

 

Proportion of Elderly People 

 

Proportion of Young People 

 

(a) (b) (c) (d) 
Proportion of Individuals Needing Assistance 

 

Proportion of Low Education 

 

Proportion of Low English Proficiency 

 

 
 
 
 

 

(e) (f) (g)  

Figure 6-2 Spatially distributed social vulnerability for Greater Adelaide under current socio-economic conditions due to individual social vulnerability indicators, where red indicates very high social 
vulnerability and green indicates very low social vulnerability.  
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Proportion of Car Ownership 

 

Proportion of Individuals Recently Moved to 
the Area 

 

Proportion of Indigenous Population 

 

Personal Wealth 

 

(a) (b) (c) (d) 
Proportion of Volunteers 

 

Family Structure 

 

Net Population Growth 

 

 
 
 
 

 

(e) (f) (g)  
Figure 6-3 Spatially distributed social vulnerability for Greater Adelaide under current socio-economic conditions due to individual social vulnerability indicators, where red indicates very high social vulnerability 
and green indicates very low social vulnerability. 
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The 14 indicators presented in Figure 6-2 and Figure 6-3 illustrate that Social Vulnerability is highly 

spatially variable in Greater Adelaide. Several of the regions of Greater Adelaide experience a High 

Social Vulnerability due to multiple indicators. For example, High Social Vulnerability in the Western 

region occurs in several indicators, including Proportion of Elderly, Proportion of Individuals Needing 

Assistance, Proportion of low English Proficiency and Proportion of Public Housing. The low overall 

Social Vulnerability experienced in the Eastern region is due to Low Vulnerability from Car Ownership, 

Volunteering, Indigenous, Personal Wealth, Education and Young People indicators. The Volunteering, 

Car Ownership, English Proficiency, Needs Assistance, Elderly People, Public Housing and 

Unemployment indicators all present Low Vulnerability in the Hills and hence, cause an overall Low 

Social Vulnerability. The large variance in overall Social Vulnerability in the North and South of Greater 

Adelaide is due to the large differences in the Vulnerability levels between suburbs for most of the 

Social Vulnerability indicators.  

Several of the Social Vulnerability maps indicate relationships between two or more indicators. The 

Proportion of Unemployment, presented in Figure 6-2(a), shows High and Very High Vulnerability 

areas align with the High and Very High regions for Proportion of Public Housing (Figure 6-3(b)). For 

both indicators, there is High Vulnerability in the Western, Northern, CBD and coastal Southern 

regions of Greater Adelaide. For Unemployment, the Adelaide Hills show varying Social Vulnerability 

ranging from Very Low to Medium, with few areas indicating High Vulnerability. For Public Housing, 

the Hills, outer Northern and outer Southern regions show mostly Very Low Social Vulnerability.  

The Proportion of Elderly people has an inverse relationship to the Proportion of Young People, 

presented in Figure 6-2(c) and Figure 6-3(d), respectively. For the Proportion of Elderly People, the 

Western, CBD, Eastern and inner Northern regions show High Vulnerability. However, for the 

Proportion of Young People, the Northern, Hills and Southern regions have the highest Vulnerability. 

The Proportion of Individuals Needing Assistance in Figure 6-2(e) shows that the Western, Northern, 

inner Southern and Mount Barker regions of Greater Adelaide have High to Very High Vulnerability. 

The Hills region has a mostly Low Vulnerability for people needing assistance.  

The inner Greater Adelaide region presented low Social Vulnerability for Education, while the outer 

regions, North, South and Hills, had High to Very High Social Vulnerability, as shown in Figure 6-2(f). 

The areas experiencing the highest vulnerability due to low education were the Northern and 

Southern regions. The CBD and Eastern suburbs have Very Low Social Vulnerability for Education.  

The Proportion of Low English Proficiency, presented in Figure 6-2(g), causes High Vulnerability 

concentrated in the inner Northern and Western regions and the vulnerability progressively lowers as 



 

58 
 

the distance to the CBD increases. The Vulnerability due to English Proficiency varies from Very Low 

to Low for the Southern, outer Northern and Hills regions of Greater Adelaide. The regions of Greater 

Adelaide have little variance in their Social Vulnerability due to low English Proficiency.  

The Proportion of Car Ownership in Greater Adelaide causes high spatial variance of Social 

Vulnerability, illustrated in Figure 6-3(a). The Western suburbs and CBD have High Vulnerability due 

to lower proportions of Car Ownership. There are also small areas in the Southern, Northern, Eastern 

and Hills regions that experience a High Vulnerability, however these areas mostly have Very Low and 

Low Vulnerabilities.  

The Proportion of Individuals who have Recently Moved to the Area, in Figure 6-3(b), causes High and 

Very High Social Vulnerability to be experienced in the Western suburbs, CBD and in the Mount Barker 

area of the Adelaide Hills. A small number of suburbs in the Southern and Northern regions also 

experience High Social Vulnerability. The remaining regions of Greater Adelaide have a varied Social 

Vulnerability, from Very Low to Medium. 

The Proportion of Indigenous Peoples has a variable impact on Social Vulnerability, shown in Figure 

6-3(c). In all regions of Greater Adelaide there are areas with High and Very High Vulnerability, and 

areas in near proximity with Very Low and Low Vulnerability.  The regions with the highest 

vulnerability due to the indigenous population are the inner Northern and Western suburbs.  

The Social Vulnerability due to Personal Wealth for Greater Adelaide in Figure 6-3(d), shows that most 

areas experience either a High or a Low Vulnerability. The Northern, Western and Southern regions 

have mostly High or Very High Vulnerability, whilst the CBD and Eastern regions show Low 

Vulnerability. The Adelaide Hills have patches of Low Vulnerability and patches of High Vulnerability. 

The Social Vulnerability caused by the Proportion of Volunteers is low in the CBD, Eastern and Hills 

regions of Greater Adelaide as presented in Figure 6-3(e). The Northern suburbs appear most 

vulnerable due to this indicator. The Western and Southern regions experience greater spatial 

variance in Social Vulnerability, with these areas varying from low to high vulnerability.  

High variance in Social Vulnerability is experienced for the Family Structure and Net Population 

Growth indicators, shown in Figure 6-3(f) and Figure 6-3(g), respectively. All regions of Greater 

Adelaide have a mixture of very low, low, medium and high vulnerability. For both indicators, the Hills 

region, followed by the Northern suburbs has the greatest density of very high and high social 

vulnerability. The Western regions experience mostly a medium or high Social Vulnerability for the 

Net Population Growth. 
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6.1.2 Current Hazard Likelihood  
To understand the current spatial distribution of Hazard Likelihood for Greater Adelaide, it is analysed 

in conjunction with its components, Fire Behaviour, Ignition Potential and Suppression Capability.  

6.1.2.1 Hazard Likelihood 

  

Figure 6-4 Current Hazard Likelihood for Greater Adelaide. 

Hazard Likelihood is the summation of Fire Behaviour, Ignition Potential and Suppression Capability, 

as shown in Figure 6-4. The Bushfire Hazard Likelihood Model uses a higher weighting on Fire 

Behaviour (0.5) than Ignition Potential (0.25) and Suppression Capability (0.25). 

From Figure 6-4, very few areas seem to have a high Hazard Likelihood, however, these high Likelihood 

areas appear to be where the component parts are all high. For example, Onkaparinga National Park 

and the Eucalyptus Woodlands in the Adelaide Hills. These areas have fuel, and have low accessibility, 

which influence Ignition Potential and Fire Behaviour, and Suppression Capability, respectively. 

The Northern regions have a medium Hazard Likelihood, and appears to be the regions with the 

highest density of medium Likelihood in Greater Adelaide. These areas correspond to medium Fire 

Behaviour and Suppression Capability, and low to very low Ignition Potential.  

6.1.2.2 Fire behaviour 

Figure 6-5 presents the spatial distribution of Fire Behaviour for Greater Adelaide. The use of Bushfire 

Attack Level scales the bushfire intensity from Very Low to Very High for each cell.  

Onkaparinga National Park 
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Figure 6-5 Current Fire Behaviour for Greater Adelaide 

Fire Behaviour considers different energy intensities for grassland and woodland vegetation types. 

Areas without vegetation are assumed to have zero Fire Behaviour.  

The Vegetation map in Figure 6-6 shows the spatial distribution of vegetation types. It shows that 

inner Greater Adelaide contains mostly no vegetation.  

 

Figure 6-6 Current Vegetation map of Greater Adelaide 

Comparing Figure 6-5 and Figure 6-6, the spatial correlation between Eucalyptus Woodlands with Very 

Low Fire Behaviour and Grasses with Medium Fire Behaviour can be seen. Figure 6-6 also shows a 

large amount of grass and eucalyptus woodland in the Hills, Northern and Southern regions of Greater 

Adelaide.  
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The areas of Eucalyptus Woodlands correspond mostly to areas with Very Low values of Fire Behaviour 

in Figure 6-5, however there seem to be more areas with High or Very High intensity in the Eucalyptus 

woodlands regions compared to Grassland. However, the reason for this could be due to another input 

in the Fire Behaviour Model.  

Figure 6-7 shows the spatial variance of slope in Greater Adelaide. Steep slopes are seen in the 

Adelaide Hills and Mount Barker regions corresponding to areas of woodland and grassland, which are 

two vegetation types where fires can occur. The areas of steep slopes have a greater variance in Fire 

Behaviour values, from very low to very high. Low sloped areas generally appear to have a more 

consistent Fire Behaviour rating.  

 

Figure 6-7 Spatial variance of slope in Greater Adelaide, measured in degrees 

The spatial variance of Time Since Last Fire for Greater Adelaide is presented in Figure 6-7. The areas 

of high Time Since Last Fire do not correspond to a High Fire behaviour, from Figure 6-5, but instead 

produce a range of Fire Behaviour levels. The areas with low Time Since Last Fire appear to produce 

more spatially consistent Fire Behaviour levels.  
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Figure 6-8 Current Spatial variance of Time Since Last Fire for Greater Adelaide, measured in years 

6.1.2.3 Ignition potential 

As detailed in Section 5.2.2.2, Ignition Potential, shown in Figure 6-9, was developed using the results 

of the statistical analysis of historical ignitions’ land use and vegetation characteristics.  

 

Figure 6-9 Current Ignition Potential for Greater Adelaide 

The Ignition Potential map in Figure 6-9 shows that much of Greater Adelaide has Low or Very Low 

Ignition Potential areas, however there are pockets of High Ignition Potential among these areas. 

When compared to the map of vegetation introduced in Figure 6-6, it can be seen that many areas of 

High Ignition Potential risk coincide with eucalyptus woodlands. These High Ignition Potential pockets 

correspond to areas with a Forest land use, as seen in Figure 6-10.  
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Figure 6-10 Current Land use map of Greater Adelaide 

6.1.2.4 Suppression capability 

The third component of the Hazard Likelihood, as introduced in Section 5.2.2.2, is Suppression 

Capability, shown in Figure 6-11. 

 

Figure 6-11  Current Suppression Capability for Greater Adelaide 

The metropolitan area has High Suppression Capability, due to the ease of access by road and ability 

to detect and report fires. Outside of the Greater Adelaide metropolitan area, there are lower 
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Suppression Capabilities due to increased vegetation, more difficulty of access, and lower density of 

fire stations. 

Assessing the Suppression Capability alongside the vegetation map in Figure 6-6, the Eucalyptus 

Woodlands areas are in similar areas to the Very Low suppression, which is a function of the poor 

access and detection in a woodland. 

6.1.3 Current Hazard Risk 

Current Bushfire Hazard Risk is shown in Figure 6-12. This risk is comprised of the Social Vulnerability 

and Hazard Likelihood.  

 

Figure 6-12 Current Bushfire Hazard Risk for Greater Adelaide taken from the summation of the Social Vulnerability and 
Hazard Likelihood. 

The Bushfire Hazard Risk is spatially varied, ranging from Very Low to Very High. In this case study, the 

areas of no risk correspond to where there is no Hazard Likelihood or no Social Vulnerability. For 

example, Onkaparinga National Park is a High Likelihood area, but as there are no people in this area, 

Social Vulnerability is zero, and as such, the area has been accorded a zero hazard risk. Areas of High 

Hazard Risk are seen in the North, South and Hills of Greater Adelaide. Most of the Hills region 

experiences a Very Low to Medium Hazard Risk, however there are several spots with a High Hazard 

Risk. In the North and South of Greater Adelaide, the Hazard Risk is mostly Medium or High. The inner 

metropolitan region of Greater Adelaide mostly experiences no Bushfire Hazard Risk due to negligible 

Hazard Likelihood.  

Onkaparinga National Park 
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 Understanding the Dynamics of Hazard Risk 

To understand the dynamic nature of the Hazard Risk, the temporal variability of the Hazard Risk 

components are assessed and presented for Social Vulnerability in Section 6.2.1 and Hazard Likelihood 

in Section 6.2.2. 

6.2.1 Understanding the Dynamics of Social Vulnerability 

To understand the dynamics of Social Vulnerability the 2006 and 2011 ABS census data for the 

vulnerability indicators for each LGA in Greater Adelaide are compared, as discussed in Section 5.3.3.1.  

 

Figure 6-13 Difference in proportion of people unemployed between 2011 and 2006 for each Local Government Area in 
Greater Adelaide.  

 

Figure 6-14 Difference in the proportion of households with access to at least one car in 2011 and 2006 for each Local 
Government Area in Greater Adelaide.  
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Figure 6-15 Difference between the proportions of elderly people (aged > 65) in 2011 and 2006 for each Local Government 
Area in Greater Adelaide.  

 

Figure 6-16 Difference between the proportions of young people (aged < 15) in 2011 and 2006 for each Local Government 
Area in Greater Adelaide.  

 

Figure 6-17 Difference between the proportions of dwellings that are owned by the State of Territory Housing Authority in 
2011 and 2006 for each Local Government Area in Greater Adelaide.  
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Figure 6-18 Difference between proportions of people who volunteer in 2011 and 2006 for each Local Government Area in 
Greater Adelaide.  

 

Figure 6-19 Difference between the proportions of people who have completed year 12 in 2011 and 2006 for each Local 
Government Area in Greater Adelaide.  

 

Figure 6-20 Difference between proportions of people who are Indigenous in 2011 and 2006 for each Local Government Area 
in Greater Adelaide.  
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Figure 6-21 Difference between proportions of people who have insufficient English proficiency in 2011 and 2006 for each 
Local Government Area in Greater Adelaide.  

 

 

Figure 6-22 Difference between proportions of people who need assistance in 2011 and 2006 for each Local Government 
Area in Greater Adelaide.  

 

Figure 6-23 Difference between proportions of people who are new to the region in 2011 and 2006 for each Local 
Government Area in Greater Adelaide. 
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From Figure 6-13 to Figure 6-23, the Unemployment, Car Ownership, Education, Needs Assistance, 

Public Housing, English Proficiency and Indigenous Vulnerability Indicators all show the greatest 

change from 2006 to 2011. As the case study considers an equal weighting of all 14 indicators to 

evaluate Social Vulnerability, the future Social Vulnerability of Greater Adelaide is likely to be highly 

dynamic due to the variable nature of the vulnerability inputs. Most indicators showed a negative 

increase between 2006 and 2011, except for the Young People (Figure 6-16), Public Housing (Figure 

6-17) and Education (Figure 6-19) indicators which showed a decreased Social Vulnerability.  

From Figure 6-13, the Unemployment indicator showed a significant increase between 2006 and 2011. 

Therefore, it is an indicator of interest and should be further investigated for how it may influence 

future changes in Social Vulnerability. For each Local Government Area in Greater Adelaide, there was 

an increase in unemployment between 2006 and 2011 and hence, an increase in Social Vulnerability. 

The LGAs of Adelaide, Alexandrina, Mount Barker, Playford, Salisbury and Unley showed the greatest 

historic increase in the proportion of unemployed people. 

The difference in proportion of households with access to a car from 2006 and 2011, shown in Figure 

6-14, showed significant increase for all LGAs historically. The increase occurs for all LGAs, except the 

changes range from approximately 5% to 25%. Hence, this is an indicator of interest for understanding 

the future changes in Social Vulnerability. The LGAs of Adelaide, Campbelltown, Charles Sturt, Holdfast 

Bay, Norwood Payneham and St Peters, Port Adelaide Enfield and West Torrens showed the greatest 

historic increase in the Car Ownership indicator. 

Figure 6-17 shows the difference between the proportions of public housing dwellings between 2006 

and 2011. There is high variability between 2006 and 2011 for this indicator and hence, it is an 

indicator of interest for the dynamic assessment of Social Vulnerability. Most LGAs showed a 

significant decrease in the proportion of dwellings that are owned by the State and Territory Housing 

Authority, except for Adelaide Hills, Mallala and Yankalilla, all which are rural regions of Greater 

Adelaide.  

For the Education Vulnerability Indicator, all LGAs, except Adelaide, showed a significant increase in 

the proportion of people who completed year 12 from 2006 and 2011, as shown in Figure 6-19. The 

increase in Education levels was mostly consistent between the LGAs, with most LGAs showing 

approximately a 5% increase. However, the Adelaide Hills showed a much greater increase of 25% 

between 2006 and 2011. The historic changes in the proportion of individuals who have completed 

year 12 indicate that the Education indicator is one of interest and its influence of Social Vulnerability 

in 2050 should be assessed. 
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From Figure 6-20, the Indigenous indicator showed significant variability between 2006 and 2011. 

Therefore, to understand the future state of Social Vulnerability, the impact of the proportion of 

indigenous people should be analysed in the future. Adelaide Hills, Alexandrina, Burnside, Gawler, 

Light, Mallala, Marion, Mitcham, Onkaparinga, Playford, Port Adelaide Enfield, Salisbury, Tea Tree 

Gully, Walkerville and Yankalilla all showed varying increases in the proportion of Indigenous people. 

There was a decrease from 2006 to 2011 experienced in Adelaide, Barossa, Campbelltown and 

Prospect.  

The English Proficiency Indicator showed high variability between 2006 and 2011, shown in Figure 

6-21 and hence, it is an indicator of interest for the future assessment of Social Vulnerability. Most 

areas showed an increase in Social Vulnerability due to insufficient English from 2006 and 2011. 

However, there was a minimal decrease experienced in Adelaide, Barossa, Charles Sturt, Mount 

Barker, Norwood Payneham and St Peters and Yankalilla.  

Figure 6-22 presents the difference between the proportion of people who need assistance from 2006 

and 2011. This indicator experiences high variability historically, hence an assessment on the impact 

of the proportion of people who need assistance on future Social Vulnerability is worthwhile. Most 

LGAs show an increase in the Needs Assistance Indicator between 2006 and 2011. However, a 

decrease is experienced in Adelaide, Burnside, Holdfast Bay and Mitcham. 

The Vulnerability indicators for Elderly People, Young People, Volunteering and New to Region showed 

little variability between 2006 and 2011, as presented in Figure 6-15, Figure 6-16, Figure 6-18 and 

Figure 6-23, respectively. Therefore, they are not indicators of interest as they do not present 

significant historical changes. Hence, an investigation into changes that may occur to these indicators 

into the future and their influence on future Social Vulnerability is not worthwhile. 

6.2.2 Understanding the Drivers of Bushfire Likelihood 

As discussed in Section 5.3.3.2, sensitivity analyses are required to determine the most sensitive model 

inputs and create a better understanding of the system’s behaviour. The results of the sensitivity 

analysis undertaken for Fire Behaviour, shown in Figure 6-24, indicate that Fire Behaviour is most 

sensitive to Vegetation (V), Slope Degree (SlopeD) and Time Since Last Fire (TSLF).  

The high sensitivity of Fire Behaviour to Vegetation is reasonable, as areas without Vegetation have 

zero fire risk. Additionally, the type of vegetation also dictates the behaviour of the fire. These results 

also show that Fire Behaviour is least sensitive to the climate dependent variables. To separate out 

the climate variables, the sensitivity analysis shown in Figure 6-25 considers the sensitivity of Fire 

Behaviour only to the climate variables. 
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Figure 6-24 Sensitivity analysis of Fire Behaviour 

 
Figure 6-25 Sensitivity analysis of Fire Behaviour to climate variables 

Considering only changes in the climate variables, the sensitivity analysis shows that Fire Behaviour is 

sensitive to the wind speed at 10m, however, it is not largely sensitive to other climate variables. Thus, 

future climate scenarios have little impact on changes in Fire Behaviour. As Fire Behaviour is the only 

component of Hazard Likelihood containing climate dependent variables, the future climate scenarios 

will have little influence on Hazard Likelihood in 2050. 

The results of the sensitivity analysis undertaken for Ignition Potential, shown in Figure 6-26, indicate 

that Ignition Potential is highly sensitive to vegetation type, and has low sensitivity to Land Use. The 

high sensitivity of Vegetation compared to Land Use is likely due to Ignition Potential being 0 where 

there is no Vegetation.  
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Figure 6-26 Sensitivity analysis of the ignition potential model 

Figure 6-27 shows the results of a sensitivity analysis conducted on Hazard Likelihood. The high 

sensitivity of Vegetation (V) is partially attributable to its dual influences on Fire Behaviour and Ignition 

Potential. Other highly sensitive inputs are Suppression Capability (SC), Slope Degree (SD) and the 

Time Since Last Fire (TSLF).  

 
Figure 6-27 Sensitivity Analysis of Hazard Likelihood 

Mitigation options which target these sensitive variables may be more influential in reducing Bushfire 

Likelihood in Greater Adelaide, and thus Bushfire Hazard Risk in Greater Adelaide.  

 Future Hazard Risk 

The results of future Social Vulnerability, Hazard Likelihood and Hazard Risk in 2050 under the 

Ignorance of the Lambs, Silicon Hills and Cynical Villagers socio-economic scenarios and the RCP 8.5 

climate scenario are shown in Section 6.3.1, Section 6.3.2 and Section 6.3.3, respectively. The results 

of future Hazard Likelihood and Hazard Risk under RCP 4.5 are not shown, as they showed negligible 
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difference to the results for RCP 8.5. This is due to the very low sensitivity of the Hazard Likelihood 

Model to the temporally dynamic climate variables, as discussed in the results in Section 6.2.2. 

6.3.1 Social Vulnerability in 2050 

The changes in the total measure of Social Vulnerability between now and 2050 under the Ignorance 

of the Lambs, Silicon Hills and Cynical Villagers scenarios are shown in Figure 6-28. 

 

Figure 6-28 Change in Social Vulnerability between now and 2050 under the (a) Cynical Villagers, (b) Ignorance of the 
Lambs, and (c) Silicon Hills scenarios 

The Cynical Villagers and Ignorance of the Lambs scenarios predominantly show an increase in Social 

Vulnerability, while the Silicon Hills scenario shows a larger number of areas where Social Vulnerability 

decreases. This is to be expected for Silicon Hills, as it is the best-case scenario, however, changes in 

the indicators under this scenario still cause increases in Social Vulnerability in some locations. In 

general, this is due to changes in land use where a location is changed to having a community based 

land use in 2050. For example, under current conditions a location does not have a Social Vulnerability 

associated with it, however, due to changes in the land use type, in 2050 there is a Social Vulnerability 

assigned to the location. The Ignorance of the Lambs scenario shows the largest magnitude of change 

and the largest number of locations where there is an increase in Social Vulnerability in 2050. 

There are no distinct areas that show an increase in Social Vulnerability across all three scenarios. If 

this were so, it would give cause to investigate what might be a problem area. The Ignorance of the 

Lambs scenario shows areas of high increase in Social Vulnerability for pockets in the North, Hills and 
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South areas, due to the increase in rural residential land and urban sprawl. These are areas that could 

be new problem areas. 

The indicators which had the highest observed variability in 2006-2011 were unemployment levels, 

level of English proficiency, proportion of people living in public housing, proportion of indigenous 

people, level of education, proportion of dwellings with access to a car, proportion of people who 

have completed year 12 and proportion of people needing assistance. Due to this variability, the 

changes in these indicators are important to consider in the future. However, the scenario driven 

approach relied on adequate information to determine the future changes in these indicators. 

Of these higher variability indicators, only unemployment levels, level of education, and level of 

English proficiency were adequately described in the scenarios, and the results are presented below. 

Also shown are the results for the indicators of proportion of elderly people, and proportion of 

recently moved to the area, as these are both integral to the different scenario story lines. These 

indicators are also important in the context of Greater Adelaide, which has an ageing population, and 

is seeing a loss of certain industries and businesses. 

6.3.1.1 Unemployment 

Figure 6-29 shows the changes in Social Vulnerablity due to Unemployment in 2050 as an increase or 

decrease relative to their current levels. 

 

 
Figure 6-29 Changes in Social Vulnerability due to the proportion of people who are unemployed for (a) Cynical Villagers, 

(b) Ignorance of the Lambs, and (c) Silicon Hills scenarios 
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For the proportion of unemployment, decreases in Social Vulnerability due to this indicator are 

observed for the Silicon Hills scenario, more prominently in the East, West, and Hills regions. The green 

pockets in the Hills region are where the indicator decreases from “Medium” to “Low” vulnerability.  

In the Cynical Villagers scenario, the scattered changes in Social Vulnerability due to unemployment 

that can be seen are due to changes in land use for the scenario. In contrast, the Ignorance of the 

Lambs scenario, which poses high future challenges for resilience, has increases in the proportion of 

unemployed people, and hence Figure 6-29(b) shows whole suburbs that have an increase in Social 

Vulnerability due to changes in unemployment. 

6.3.1.2 English Proficiency 

Figure 6-30 shows the changes in Social Vulnerablity due to English Proficiency in 2050 as an increase 

or decrease relative to their current levels. 

 

Figure 6-30 Changes in Social Vulnerability due to the proportion of people with very low English proficiency for (a) Cynical 
Villagers, (b) Ignorance of the Lambs, and (c) Silicon Hills scenarios 

The proportion of people with insufficient English increases by a small amount for all regions in the 

Cynical Villagers scenario, which causes the small increases in Social Vulnerability due to lack of English 

Proficiency in all areas. In general, the scattered changes seen in Figure 6-30(a) are due to the changing 

land uses rather than an impact on the magnitude of vulnerability. In the Ignorance of the Lambs 

scenario the percentage increase in the indicator is higher for the North, South and Hills regions. This 

creates changes in the Social Vulnerability due to insufficient English of whole suburbs, as seen from 
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the clumped changes in Figure 6-30(b). Finally, the Silicon Hills scenario shows mixed changes in Social 

Vulnerability due to this indicator. The more positive percentage indicator change in the East and West 

regions affects positive changes in these regions, shown in Figure 6-30(c). The smaller change in the 

North, South and Hills regions does not influence change in the Social Vulnerability of suburbs; the 

increases in Social Vulnerability in these regions can be explained by the changes in land use from a 

non-vulnerable to a vulnerable land use (i.e. from vacant to residential). 

6.3.1.3 Education 

Figure 6-31 shows the changes in Social Vulnerablity due to Education in 2050 as an increase or 

decrease relative to their current levels. 

 

 
Figure 6-31 Change in Social Vulnerability due to the proportion of people who have completed year 12 for (a) Cynical 

Villagers, (b) Ignorance of the Lambs, and (c) Silicon Hills scenarios 

The proportion of education, measured by the completion of year 12, is distinctly different across the 

different socio-economic scenarios. In the Cynical Villagers scenario, the proportion of people who 

have completed year 12 remains constant. The scattered changes seen in the Cynical Villagers scenario 

reflect land use changes within the scenario. Vulnerability due to education in the Ignorance of the 

Lambs scenario had the highest density increase of Social Vulnerability due to education, with the 

highest increases notably in the Hills region as a large portion of migrants and refuges moves towards 

these low-cost development areas. The decreases in education are enough to affect change in 

Vulnerability of many suburbs. The Silicon Hills scenario explores a situation where enrolments and 
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investment in public schools are increased, causing an increase in education. In the Silicon Hills 

scenario, this translates to a relatively dense decrease in vulnerability due to education throughout 

the GA region, except for the upper North area – which shows a sparse high increase in vulnerability. 

The middle-band of the Hills also shows sparse high increases in vulnerability.  

6.3.1.4 Proportion of Elderly People 

Figure 6-32 shows the changes in social vulnerablity due to Elderly People in 2050 as an increase or 

decrease relative to their current levels. 

 
Figure 6-32 Changes in Social Vulnerability due to the proportion of elderly people for (a) Cynical Villagers, (b) Ignorance of 

the Lambs, and (c) Silicon Hills scenarios 

Greater Adelaide has an ageing population, which is captured by the growing proportion of elderly 

people in all areas under each scenario. All three scenarios experience relatively dense increases in 

Social Vulnerability due to the increasing proportion of elderly people, however depending on the 

lifestyle choices of the scenarios, the spatial distribution of this was different. The Ignorance of the 

Lambs scenario shows some small pockets in the Hills and South regions of high increases in Social 

Vulnerability due to this indicator, which is due to the changing land use and commuter villages.  

6.3.1.5 Recently Moved to the Area 

Figure 6-33 shows the changes in social vulnerablity due to Recently Moved to the Area in 2050 as an 

increase or decrease relative to their current levels. 
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Figure 6-33 Change in Social Vulnerability due to the proportion of people who have recently moved to the area for (a) 

Cynical Villagers, (b) Ignorance of the Lambs, and (c) Silicon Hills scenarios 

For the Cynical Villagers scenario, there are dense areas of increased Social Vulnerability due to high 

proportions of new arrivals in the Hills region, as the ageing population move to the Hills to retire. The 

Ignorance of the Lambs scenario shows a high density of changes in Social Vulnerability due to new 

arrivals in the area throughout the North, South and Hills regions. This is due to the expansion of 

residential land use and increasing commuter lifestyle, which attests to the pockets of increased new 

arrivals to the area. By contrast, there are relatively low density increases in vulnerability in Silicon 

Hills scenario throughout Greater Adelaide as a large portion of new residents migrate from overseas. 

6.3.2 Hazard Likelihood in 2050 

Future Hazard Likelihood is dependent on changes in the dynamic variables of Fire Behaviour and 

Ignition Potential. Change maps are used to show how Hazard Likelihood and its components change 

in 2050 under the different scenarios compared to the current situation.  

Figure 6-34 highlights the changes in the Fire Behaviour between now and 2050 under Cynical 

Villagers, Ignorance of the Lambs and Silicon Hills scenarios.  
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Figure 6-34 Changes in Fire Behaviour between now and 2050 under the (a) Cynical Villagers, (b) Ignorance of the Lambs, 
and (c) Silicon Hills scenarios 

From the sensitivity analysis, it was observed that Fire Behaviour is not highly sensitive to climate 

variables, therefore only the socio-economic scenario results are shown. Vegetation and Slope Degree 

are constant, and as these are two sensitive inputs to Fire Behaviour, the little change in Fire Behaviour 

across the scenarios could be attributed to this. Land Use and Time Since Last Fire are the only 

variables changing for each scenario, which is why there are only small areas of change. The increase 

in Time Since Last Fire, however, is constant across all three scenarios, while the changes in Land Use 

are different for each scenario – and thus Land Use is attributed to the difference in Fire Behaviour 

between the scenarios. For example, in (b) Ignorance of the Lambs, there is a rise in commuter 

suburbs, which explains the scattered increase in Fire Behaviour in the Mount Barker and Adelaide 

Hills regions relative to scenarios (a) and (c).  

Changes in the 2050 Ignition Potential from the current Ignition Potential under Cynical Villagers, 

Ignorance of the Lambs and Silicon Hills scenarios are illustrated in Figure 6-35. Ignition Potential is a 

function of vegetation and land use type. However, Vegetation is considered constant, so changes in 

Ignition Potential are only due to changes in Land Use. As was similarly seen in Fire Behaviour, 

Ignorance of the Lambs considers commuter suburbs and urban sprawl into the Hills, North and South, 

so results in the greatest increase in rural residential land use. Thus, this scenario produced the highest 

increase in Ignition Potential. 
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Figure 6-35 Changes in Ignition Potential between now and 2050 for (a) Cynical Villagers, (b) Ignorance of the Lambs, and 

(c) Silicon Hills scenarios 

Changes in 2050 Hazard Likelihood from the current Hazard Likelihood for the three scenarios are 

illustrated in Figure 6-36. 

 
Figure 6-36 Change in Hazard Likelihood between now and 2050 for (a) Cynical Villagers, (b) Ignorance of the Lambs, and 

(c) Silicon Hills scenarios 
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For all three scenarios, similar changes in Hazard Likelihood for the eastern suburbs of Greater 

Adelaide and along the north-western border of the Adelaide Hills are observed. The Hazard 

Likelihood decreases within the Eastern areas, but increases along the North-Western border of the 

Adelaide Hills, similar to the changes in Fire Behaviour, depicted in Figure 6-34.  This is due to changes 

in Land Use and their influence on Ignition Potential and Fire Behaviour. Ignorance of the Lambs shows 

the largest number of areas with increases in Hazard Likelihood within the Hills, North and South. This 

can be attributed to the urban sprawl within these areas. 

6.3.3 Hazard Risk in 2050 

The Hazard Risk for the three exploratory scenarios is shown in Figure 6-37. 

 

Figure 6-37 Change maps for Hazard Risk for (a) Cynical Villagers, (b) Ignorance of the Lambs, and (c) Silicon Hills scenarios 

The Cynical Villagers socio-economic scenario shows the least change in Hazard Risk for 2050. As 

Cynical Villagers is the high community resilience scenario, the lowest impact on Social Vulnerability 

would be expected. The scenario details low population growth and increased urban sprawl. The 

increased urban sprawl is shown through the increased Hazard Risk in the Hills region. Ignorance of 

the Lambs has the greatest change in hazard risk, with this change being mostly negative. As the 

scenario is the low community resilience scenario, a large shift in Social Vulnerability would be 

expected. Ignorance of the Lambs centres around high population growth and a shift towards 

increasingly commuter lifestyle. 



 

82 
 

This increased population growth and decline in rural living will mean that more people are living in 

areas that were previously rural, hence increasing the total area in Greater Adelaide susceptible to 

hazards. Hazard risk is seen in the Hills, South and North for present and 2050, due to the lack of 

vegetation in the inner regions of Greater Adelaide. 

Hazard Likelihood shows minimal differences between the three scenarios, as shown in Figure 6-51. 

This suggests that the changes in Social Vulnerability, shown in Figure 6-28, drives these differences 

between the scenarios. The comparison of changes in Social Vulnerability between present and 2050, 

Figure 6-28, and changes in Hazard risk between present and 2050, Figure 6-37, have correlation 

between the areas of reduced risk and areas of increased risk. 

The Ignorance of the Lambs scenario shows areas of high increase in Hazard Risk for pockets in the 

North, Hills and South areas, due to the increase in rural residential land and urban sprawl. These are 

areas that could be new problem areas. The pockets of low increase in Hazard Risk seen in the Cynical 

Villagers scenario also indicate potential problem areas. These are originally low and very low risk 

areas, shown in Figure 6-12, which only increase by one level, so their severity is not as great as the 

problem areas in the Ignorance of the Lambs scenario. There areas are marked on Figure 6-37 that 

show correlating increases in Hazard Risk across the Cynical Villagers and Ignorance of the Lambs 

scenarios, which suggests another set of potential problem areas. 

 Mitigation 

As detailed in Section 5.3.5, the deeper understanding of the system of natural hazard risk obtained 

from these results can be used to develop mitigation options. 

6.4.1 Mitigation options targeting Social Vulnerability 

The process outlined in Figure 5-21, was used to identify effective risk reduction measures targeting 

Social Vulnerability for the case study. From the current Social Vulnerability map and the current 

Bushfire Hazard Risk map, the areas of interest (socially vulnerable areas with an associated risk) were 

identified predominantly in the North, lower South and the Hills, as shown in Figure 6-38.  



 

83 
 

  

 

    (a)¶    (b) 

Figure 6-38 Areas of interest, hence socially vulnerable areas with an associated risk (a) current Social Vulnerability, (b) 
current Bushfire Hazard Risk 

The current Social Vulnerability and the change in current Social Vulnerability as a result of a 10% 

increase in the Level of Education is shown in Figure 6-39 (a) and Figure 6-39 (b) respectively. Figure 

6-40 (a) and Figure 6-40 (b) show the subsequent current Hazard Risk and change in current Hazard 

Risk compared to the no mitigation case, respectively.  

  

  

(a) (b) 

Figure 6-39 Social Vulnerability due to Level of Education with mitigation causing a 10% increase in Education, shown as (a) 
the Vulnerability with mitigation, (b) the change in Vulnerability compared to the no mitigation case 
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(a) (b) 

Figure 6-40 Hazard risk due to Level of Education with mitigation causing a 10% increase in Education, shown as (a) the risk 
with mitigation, (b) the change in risk compared to the no mitigation case 

Increasing the Level of Education by 10% across the whole of Greater Adelaide decreases the Social 

Vulnerability of several suburbs, as seen in Figure 6-39 (b). However, the very low decrease indicates 

a change by one increment only. From Figure 6-39 (a) the suburbs in the Hills region decreased from 

Low to Very Low Social Vulnerability. However, in the South, West and North regions, many of the one 

increment decreases are from high to medium or very high to high. 

From Figure 6-40 (b), the change in Hazard Risk following an increase in Education is small. This is 

because the majority of suburbs which experienced a reduction in Social Vulnerability due to a 10% 

increase in Education are located in areas with no vegetation or high suppression capability, and thus 

have no risk to bushfire. However, the suburbs that did experience a change in Hazard Risk, particularly 

the country towns of Montacute and Dawesley, reduced from low to very low Hazard Risk, as seen 

from Figure 6-40 (a) and Figure 6-40 (b), respectively. Therefore, in the context of the case study, 

implementing a policy that would increase the proportion of people completing year 12 by 10% is not 

particularly effective in reducing the Hazard Risk to socially vulnerable populations. 

The current Social Vulnerability and the change in current Social Vulnerability as a result of a 10% 

increase in the proportion of people volunteering is shown in Figure 6-41 (a) and Figure 6-41 (b) 

respectively. The subsequent current Hazard Risk and change in current Hazard Risk compared to the 

no mitigation case are shown in Figure 6-42 (a) and Figure 6-42 (b), respectively.  

Montacute 

Dawesley 
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(a)   (b) 

Figure 6-41 Social Vulnerability due to Level of Volunteering with mitigation causing a 10% increase in Volunteering, shown 
as (a) the Vulnerability with mitigation, (b) the change in Vulnerability compared to the no mitigation case 

  

  

(a) (b)  

Figure 6-42 Hazard risk due to Level of Volunteering with mitigation causing a 10% increase in Volunteering, shown as (a) 
the risk with mitigation, (b) the change in risk compared to the no mitigation case 

From Figure 6-41 (b), a one level reduction in Social Vulnerability due to a 10% increase in the 

proportion of people volunteering is experienced by several suburbs, particularly in the North and 

West regions. The Social Vulnerability of the majority of these suburbs was reduced to medium or high 

levels as seen from Figure 6-41 (a). Similar to increasing the Level of Education, most of the suburbs 

Kuitpo 

MacDonald Park 

Evanston Park 
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affected by this risk reduction measure are located in areas with no vegetation or high suppression 

capability, and thus have a zero Hazard Risk, which is seen in Figure 6-42 (b). However, both the Social 

Vulnerability and the Bushfire Hazard Risk is reduced in Kuitpo, a suburb in the South, from low to 

very low. The Social Vulnerability and subsequently the Hazard Risk was reduced from medium to low 

in MacDonald Park, and from High to Medium in Evanston Park, both of which are suburbs in the 

North. Therefore, to reduce the risk of Bushfire Hazard to the most vulnerable populations through 

increasing the proportion of people volunteering, the relevant policy would need to be targeted in the 

areas of MacDonald Park and Evanston Park.  

The Social Vulnerability due to a 10% increase in Personal Wealth and the change in vulnerability 

compared with the no mitigation case is shown in Figure 6-43 (a) and Figure 6-43 (b), respectively. The 

subsequent Hazard Risk and the change in Hazard Risk compared to the no mitigation case is shown 

in  Figure 6-44 (a) and Figure 6-44 (b). 

  

  

(a) (b) 

Figure 6-43 Social Vulnerability due to Level of Wealth with mitigation causing a 10% increase in Wealth, shown as (a) the 
Vulnerability with mitigation, (b) the change in Vulnerability compared to the no mitigation case  
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(a) (b) 

Figure 6-44 Hazard risk due to Level of Wealth with mitigation causing a 10% increase in Wealth, shown as (a) the risk with 
mitigation, (b) the change in risk compared to the no mitigation case 

From Figure 6-43 (b), increasing the Personal Wealth by 10% across Greater Adelaide results in a 

decrease in Social vulnerability by one increment within a number of suburbs, mainly in the West, East 

and North – with a small number in the Hills and South. The Social Vulnerability for most of the 

affected suburbs in the West was reduced from High to Medium or from Very High to High. However, 

due to the high suppression capability and little to no vegetation in the Western suburbs, the Bushfire 

Hazard Risk in these suburbs is zero regardless, as seen in Figure 6-44 (b). Therefore, increasing 

Personal Wealth in these suburbs would not impact the level of Bushfire Hazard Risk.  

Similar to a 10% increase in the Level of Education, a 10% increase in Personal Wealth reduced the 

Social Vulnerability of Montacute and Dawesley from Low to Very Low, and subsequently reduced 

their Hazard Risk by one increment, from Low to Very Low. A 10% increase in Personal Wealth did 

reduce the Bushfire Hazard Risk in these areas, however, they are not considered socially vulnerable 

suburbs. Thus it would not be worthwhile implementing a policy to increase Personal Wealth in these 

areas, in terms of hazard risk reduction. 

A 10% increase in Personal Wealth reduced the Bushfire Hazard Risk in a small number of suburbs. 

The Social Vulnerability and Bushfire Hazard Risk was reduced by one increment, from High to Medium 

in Evanston Park, and Medium to low in MacDonald Park. In Hackham and The Range, the Social 

Vulnerability was reduced from Very High to High and High to Medium, respectively. The subsequent 

Hazard Risk in both suburbs was reduced from High to Medium. A policy that increases Personal 

Wealth by 10% in these areas would reduce the risk to Bushfire Hazards to vulnerable populations. 

MacDonald Park 

Montacute 

Dawesley 

Evanston Park 

Hackham 

The Range 
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The Social Vulnerability due to a 10% decrease in the proportion of Young People and subsequent 

change in Social Vulnerability compared with the no mitigation case are show in Figure 6-45 (a) and 

Figure 6-45 (b), respectively. The resulting Hazard Risk and change in Hazard Risk compared with the 

no mitigation case are show in Figure 6-46 (a) and Figure 6-46 (b), respectively 

  

  

(a) (b) 

Figure 6-45  Social Vulnerability due to Level of Young People with mitigation causing a 10% decrease in Young People, 
shown as (a) the Vulnerability with mitigation, (b) the change in Vulnerability compared to the no mitigation case 

  

  

(a) (b) 

Figure 6-46 Hazard risk due to Level of Young People with mitigation causing a 10% decrease in Young People, shown as (a) 
the risk with mitigation, (b) the change in risk compared to the no mitigation case 

MacDonald Park 

Montacute 

Evanston Park 
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The Range 
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Reducing the proportion of young people (0-14 years) by 10% has a similar effect to increasing 

Personal Wealth by 10%. Social Vulnerability is mainly decreased in the Western and Eastern suburbs 

with fewer decreased in the South, North and Hills as seen in Figure 6-45 (b). However, the reduction 

in Social Vulnerability in the Western suburbs is not translated through to the Hazard Risk map shown 

in, Figure 6-46. This is due to the high suppression capability and little to no vegetation in those areas.  

The Social Vulnerability and Hazard Risk in Montacute, an Adelaide Hills suburb, decreased from low 

to very low. It is not an area with a vulnerable population and thus decreasing the proportion of young 

people in this suburb would not be worthwhile. Both the Social Vulnerability and Bushfire Hazard Risk 

was reduced from High to Medium in Evanston Park and from Medium to Low in MacDonald Park, 

two Northern suburbs. The Social Vulnerability in Hackham and The Range, two Southern suburbs, 

was reduced from Very High to High and High to Medium, respectively, and the Hazard Risk in both 

suburbs were reduced from High to Medium. Therefore, it would be worthwhile implementing a policy 

to reduce the proportion of young people. An example of such a policy would be one that encourages 

young families in these areas to move to areas that have a zero Hazard Risk, i.e. the Western suburbs.  

Figure 6-47 and Figure 6-48 shows the effect of increasing Level of Education, Volunteering and 

Personal Wealth by 10%, and decreasing Young People by 10%. The Social Vulnerability and change in 

Social Vulnerability compared with the no mitigation case are show in Figure 6-47 (a) and Figure 6-47 

(b), respectively. The Hazard Risk and change in Hazard Risk compared with the no mitigation case are 

show in Figure 6-48 (a) and Figure 6-48 (b), respectively. 

  

  

(a) (b) 
Figure 6-47 Social Vulnerability with mitigation for the 4 indicators, shown as (a) the Vulnerability with mitigation, (b) the 
change in Social Vulnerability compared to the no mitigation case 
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(a) (b) 

Figure 6-48 Hazard risk with mitigation for the 4 indicators, shown as (a) the risk with mitigation, (b) the change in risk 
compared to the no mitigation case 

When changing all four Indicators simultaneously, the Social Vulnerability and Hazard Risk are still only 

reduced by one risk level as seen in Figure 6-47 (b) and Figure 6-48 (b), respectively. Therefore, for the 

suburbs where the Hazard Risk can be reduced using a single indicator, the additional benefit of 

affecting change for other indicators would have to be considered, as minimal additional risk reduction 

is achieved. Other factors, such as cost, time, resources, and co-benefits, would play into this decision. 

However, changing all four indicators has reduced the Social Vulnerability and Hazard Risk in a number 

or areas that were not previously effected when the indicators were changed independently. For 

example, the Social Vulnerability and Hazard Risk in Virginia, a Northern suburb, and Lobethal, a 

suburb in the Adelaide Hills, were reduced by one risk level from high to medium when all four Social 

Vulnerability indicators were changed. The Social Vulnerability of Sellicks Beach, a suburb in the South, 

was also reduced by one increment from very high to high and the Hazard Risk was reduced from high 

to medium, when changing all four indictors. Several other suburbs where effected when changing all 

four indictors, however, they were areas of low vulnerability and low risk and thus were not of 

significance.  

Therefore, implementing polices to increase Education, Personal Wealth and the Proportion of People 

Volunteering and decrease the Proportion of Young People in Virginia, Lobethal, and Sellicks Beach, 

the Hazard Risk of vulnerable populations will decrease. 

Lobethal & Montacute 

Dawesley 

Virginia 

Hackham 

Sellicks Beach 

The Range 
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The socially vulnerable suburbs effected by the risk reduction measures imposed, as identified above, 

are summarised in Table 6-1. This summary table aids decision makers in identify what indicators of 

interest can be altered to reduce the risk in targeted areas. The areas of low Social Vulnerability and 

Hazard Risk which resulted in risk reductions are not included in Table 6-1, as these areas are not 

considered areas of interest. Table 6-1 also identifies the approximate population of the effected 

suburbs, which provides an approximation of the potential number of people that a risk reduction 

measure can influence.  

Table 6-1 Summary of the socially vulnerable suburbs effected by the risk reduction measures imposed 

Suburb 
(areas to 
target) 

Indicator 

Level of Social 
Vulnerability Level of Hazard Risk Approximate 

number of 
people 

effected 

No risk 
reduction 
measure 

With risk 
reduction 
measure 

No risk 
reduction 
measure 

With risk 
reduction 
measure 

MacDonald 
Park 

Proportion of 
People 
Volunteering 

Medium Low Medium Low 

456 
 

Personal Wealth Medium Low Medium Low 
Proportion of 
Young people Medium Low Medium Low 

All four 
indicators Medium Low Medium Low 

Evanston 
Park 

Proportion of 
people 
Volunteering 

High Medium High Medium 

4003 
 

Personal Wealth High Medium High Medium 
Proportion of 
Young people High Medium High Medium 

All four 
indicators High Medium High Medium 

Hackham Personal Wealth Very high High High Medium 

4103 
 

Proportion of 
Young people Very high High High Medium 

All four 
indicators Very high High High Medium 

The Range Personal Wealth High Medium High Medium 

217 
Proportion of 
Young people High Medium High Medium 

All four 
indicators High Medium High Medium 

Virginia All four 
indicators High Medium High Medium 1747 

Lobethal All four 
indicators High Medium High Medium 2343 

Sellicks 
Beach 

All four 
indicators Very high High High Medium 2337 
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From Table 6-1, it is clear that the Hazard Risk within MacDonald Park, Evanston Park, Hackham and 

The Range can be reduced by changing multiple vulnerability indicator by 10%, however, for each 

indictor the Social Vulnerability and Hazard Risk in each of the suburbs is reduced by the same amount. 

Therefore, only one indicator needs to be targeted in these suburbs to reduce their Bushfire Hazard 

Risk. However, Virginia, Lobethal and Sellicks Beach, require all four indicators to be changed to cause 

a risk reduction. Furthermore, Evanston Park and Hackham have the largest populations, and only 

require one indictor to be changed to cause a reduction in risk, therefore, targeting these two suburbs 

can potentially reduce the risk of bushfire to a large number of people using fewer resources. 

Compared to Virginia, Lobethal and Sellicks Beach which have fewer residents and require all four 

indictors of interest to be changed to yield a reduction in risk. MacDonald Park only has approximately, 

456 residents and has the lowest risk compared to the other suburbs, therefore is less of a priority. 

6.4.2 Mitigation options targeting Bushfire Likelihood  

As previously discussed, the sensitivity analyses undertaken on Bushfire Likelihood and its 

components indicate that Bushfire Likelihood is most sensitive to Vegetation, Slope Degree, and Time 

Since Last Fire.  

Vegetation type and Slope Degree are spatially explicit, but are constant over the temporal scale 

considered. In terms of mitigation strategies, vegetation type at a particular location may not be 

changed, i.e. it is infeasible to change an area with Eucalyptus Woodland vegetation to coastal 

vegetation. While clearing vegetation would reduce the Bushfire Likelihood to zero, this mitigation 

option is unreasonable for the spatial scales considered in the case study, and would be opposed by 

communities for environmental, aesthetic and tourism reasons. Reducing the Slope Degree in Greater 

Adelaide by cut and fill methods is an unreasonable mitigation option for the spatial scale. These 

parameters strongly influence the spatial distribution of Bushfire Likelihood, but may not be 

reasonably changed.  

The Time Since Last Fire, however, is spatially explicit and temporally dynamic. Hence, the results of 

the sensitivity analysis indicate that mitigation options which directly influence the Time Since Last 

Fire, such as planned burning, may be beneficial in reducing Bushfire Hazard Risk in the future. The 

impacts of planned burning to woodland areas in 2049 are shown in Figure 6-50 to Figure 6-52. Time 

Since Last Fire affects the Fire Behaviour of woodland vegetation. Figure 6-49 (a) shows the time since 

last fire for all woodland areas in Greater Adelaide in 2050 without mitigation, while Figure 6-49 (b) 

shows the Time Since Last Fire for all woodland areas in Greater Adelaide with the mitigation option 

of a single planned burn to all woodland areas in 2049. Although this is an unrealistic strategy, it is 

used here to obtain an upper bound estimate of what could be achieved with prescribed burning. 
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Figure 6-49 Time Since Last Fire in 2050 for all areas with woodland vegetation in Greater Adelaide in (a) without planned 
burning mitigation, (b) considering the mitigation option of planned burning all woodland areas in 2049. 

Change maps for the three scenarios, comparing the Fire Behaviour, Hazard Likelihood, and Hazard 

Risk in 2050 with mitigation to the case with no mitigation in 2050, are shown in Figure 6-50, Figure 

6-51, Figure 6-52, respectively. 

 

 

Figure 6-50 Changes in Fire Behaviour in 2050 for the (a) Cynical Villagers, (b) Ignorance of the Lambs, (c) Silicon Hills 
scenarios with a planned burn in 2049 where green shows a decrease, and red shows an increase, relative to the case 
without mitigation 
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Figure 6-51 Changes in Hazard Likelihood in 2050 for the (a) Cynical Villagers, (b) Ignorance of the Lambs, (c) Silicon Hills 
scenarios with a planned burn in 2049 where green shows a decrease, and red shows an increase, relative to the case 
without mitigation 

 

Figure 6-52 Changes in Hazard Risk in 2050 for the (a) Cynical Villagers, (b) Ignorance of the Lambs, (c) Silicon Hills scenarios 
with a planned burn in 2049 where green shows a decrease, and red shows an increase, relative to the case without 
mitigation 
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From  Figure 6-50, this mitigation option is successful in decreasing the Fire Behaviour in a number of 

locations along the Mount Lofty Range by one “standardised level” for all three scenarios. Figure 6-51 

shows that this reduction in Fire Behaviour results in a decrease in the Hazard Likelihood at most of 

the same locations by one risk level, for example from low to very low. However, the density of change 

is less than that for Fire Behaviour due to the influence of Ignition Potential and Suppression Capability 

at these locations.  

Figure 6-52, however, shows that the mitigation option of planned burning all woodland areas in 2049 

has little effect on Hazard Risk. This is because the majority of the woodland areas affected by the 

planned burning are not areas with “community” land use, and thus these locations do not have a 

social vulnerability associated with them. Hence, when Hazard Likelihood is combined with Social 

Vulnerability at these locations, the risk is considered to be zero.  

This is an intuitive result, as it is not reasonable to plan burn residential properties, and thus, this result 

highlights the importance of selecting mitigation options which influences Hazard Likelihood in a 

manner that is applicable to “community” land use areas.  
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7 LIMITATIONS 

The limitations of the framework primarily arise during its application to the case study. The following 

sections outline the limitations associated with components of the framework when applied to the 

case study.  

 Social Vulnerability 

The Social Vulnerability Model calculates the vulnerability for Greater Adelaide. This application uses 

vulnerability indicators that are more applicable to Western countries. This is acceptable for the case 

study as it demonstrates how the framework can be tailored to different locations. Equal weightings 

are applied to each vulnerability indicator in calculating Social Vulnerability, however stakeholder 

input might suggest that some indicators of vulnerability are more influential than others. This would 

imply that the weightings should not be equal, thus limiting the current assessment of Social 

Vulnerability. Furthermore, the Social Vulnerability Model uses percentiles to assess relative Social 

Vulnerability rather than absolute Social Vulnerability. The absolute and relative risks have different 

applications and meaning to a decision maker; in some cases, the relatively higher vulnerability areas 

may be of more interest than only areas that meet a certain threshold of vulnerability. It is unknown 

how sensitive the results are to these assumptions, which constitutes a limitation of the results.  

 Hazard Likelihood  

The Hazard Likelihood Model does not account for the rate of spread of a bushfire between cells. The 

rate of spread is calculated, but the direction and flow is not considered for a greater distance than 

100m. The literature, however, highlights the importance of considering the rate of spread as a 

component of understanding bushfire behaviour and resultant risk (Beer 1991; Cruz et al. 2015). The 

Hazard Likelihood Model, therefore, is limited in its assessment of bushfire risk as it considers the 

likelihood of a fire occurring in each cell in isolation and does not distinguish between whether a fire 

originated or spread to that area.  

Additionally, a sensitivity analysis to assess the influence of how uncertainty in the Hazard Likelihood 

Model input data effects the results, of has not been undertaken. Environmental data is subject to 

natural variability and the data may be influenced by biased measurements or imprecision, which 

creates uncertainty in the inputs. The effect of these data on the model outputs should be 

investigated. Furthermore, projections of this data in line with RCP trends is also subject to local 

uncertainty. 
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 Hazard Risk  

Objective 2, to apply the framework to a case study of Bushfire Hazard Risk in Greater Adelaide, is 

limited by the ability of the model to adequately reflect reality. The Hazard Likelihood and Social 

Vulnerability Models are idealised models used to describe complex natural processes and 

anthropogenic characteristics.  

Throughout the framework, in the assessing of the components of Hazard Risk, 5 intervals have been 

used to scale components from Very Low to Very High. By increasing the number of intervals used, 

better resolution could be achieved to identify the most at risk areas. 

Expert knowledge and judgement inform many aspects of the case study. In addition to the previously 

discussed weighting of indicators in the Social Vulnerability assessment, other decisions can reflect 

the decision makers’ or experts’ opinions. Examples of these decisions include: the customisation of 

the Hazard Risk Matrix in Figure 4-2; the weighting of Ignition Potential, Suppression Capability and 

Fire Behaviour; the Ignition Potential conversion tables; the choice of bounds that are absolute rather 

than relative for Social Vulnerability indicators and other standardising tables. The conceptual 

framework facilitates these decisions to be made, and allows for customisation of the framework to 

suit the decision maker. 

Furthermore, the case study has only considered a single hazard in the assessment of Hazard Risk. To 

develop more informed planning and mitigation strategies that reduce the risk of socially vulnerable 

populations to natural hazards, multiple hazards should be considered.  

 Mitigation Strategies  

The assessment of the impact of mitigation strategies targeted to Social Vulnerability is limited. 

Mitigation strategies appropriate for Social Vulnerability take the form of policies and community 

resilience. Whilst the nature of exploratory scenarios is not policy driven, there are inevitably 

situations which could only be achieved through policy decisions. For example, a future in which there 

are zero carbon emissions will rely on policy incentives to achieve this, hence only policy which is in 

line with this agenda can make sense when combined with the scenario. This creates a circular 

relationship between social mitigation strategy implementation and the future projections. To avoid 

this, the mitigation strategies related to Social Vulnerability were tested independently from the socio-

economic projections. Hence, the influence of mitigation targeted to Social Vulnerability was not 

assessed for the Hazard Risk in 2050. When applying the generic framework, this interaction of policy 

and scenarios must be considered. 
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8 POTENTIAL FOR FUTURE RESEARCH 

Due to the nature of the conceptual framework, there are several opportunities for refinement and 

for widening the application domain. Several components of the framework are in a developing stage, 

and would benefit from additional research to refine the methodology and explore new areas of 

innovation. 

 Social Vulnerability 

The implementation of the Social Vulnerability would benefit from input by experts to identify the 

importance and relevance of each indicator.  Furthermore, a sensitivity analysis can be undertaken to 

assess the influence of assigning weights to each indicator on the overall Social Vulnerability. 

 Hazard Likelihood  

To account for the rate of spread in the Hazard Likelihood Model, the Hazard Likelihood Model can be 

coupled with a more detailed Fire Behaviour Model which considers the rate of spread. Furthermore, 

a sensitivity analysis can be used to understand the effect of the uncertainty in the Hazard Likelihood 

Model input data on the results.  

 Hazard Risk 

To achieve a better resolution of Hazard Risk across Greater Adelaide, or any region under analysis, 

the risk matrix within the framework can be defined with more than 5 discrete intervals to measure 

Hazard Likelihood and Social Vulnerability. 

 Multi-Hazard Conceptual Framework  

The literature review also revealed that few multi-hazard assessments have been carried out. An 

extension of the framework could include incorporating multiple hazards, and assessing if and how 

cost saving measures can be made through mitigation. A key interest in this area would be looking at 

Social Vulnerability and how vulnerable areas that are susceptible to multiple hazards can be put at 

lower risk. 

 Mitigation Strategies 

This research demonstrated how mitigation can be informed by the sensitivity analyses and 

implemented into the Hazard Risk Model. Changes in the Hazard Risk due to mitigation have been 

discussed, however a development of the methodology could be made to rank and compare 

mitigation strategies. This would require creating a method to quantify the total benefit of a mitigation 

strategy. 



 

99 
 

Also, further consultation is required to assess the plausibility of mitigation strategies, especially in 

relation to policies that can affect social vulnerability. 

The literature review also uncovered that little work had been done to implement and assess adaptive 

mitigation strategies. The creation of a methodology to assess adaptive mitigation strategies would 

increase the usefulness of the framework as a decision making tool. This would require being able to 

rank strategies, determine turning points at which strategies need to be changed, and allowing for 

feedback to the model that would be used to decide between changing or continuing a mitigation 

strategy. The exploratory scenario approach, which is already incorporated in the framework, will 

assist in the integration of adaptive mitigation. 
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9 CONCLUSION AND RECOMMENDATIONS 

To assist in improving decisions regarding mitigation for natural hazards, tools to inform and evaluate 

these decisions are required. As set out to achieve in Objective 1, the conceptual framework presents 

a method to breakdown and understand natural hazard risk. The framework incorporates hazard, 

exposure, and vulnerability to evaluate current risk, and employs an exploratory scenario approach to 

evaluate future risk. The conceptual framework details a methodology for understanding the drivers 

of Hazard Risk using sensitivity analyses, and uses the identified drivers to inform targeted and 

practical mitigation options for long term planning. The incorporation of mitigation feedback loops 

into the Hazard Risk Models enables the impact of applying mitigation options on reducing Hazard 

Risk to be observed. 

The second objective demonstrated how the conceptual framework could be tailored to a specific 

hazard and location through the case study application to Greater Adelaide. The case study was used 

to develop an understanding of the influence of Social Vulnerability on Hazard Risk by considering a 

bushfire hazard, with the aim of developing an understanding of the drivers of Hazard Risk. The case 

study results showed an understanding of the current and dynamic nature of Hazard Risk. Investigating 

the dynamic nature of the components informed an understanding of how to approach evaluating the 

future risk for 2050. The future risk was explored using three socio-economic scenarios for Greater 

Adelaide, all which indicated that the Hazard Risk is altered for Greater Adelaide in 2050.   

A trial of planned burning mitigation showed that little impact was imparted on the Hazard Risk. This 

was due to the almost mutual exclusivity of eucalyptus woodland areas and community land use types. 

Although there was an improvement in Hazard Likelihood due to the strategy, it did not impact any 

areas with Social Vulnerability, therefore the mitigation option did not significantly reduce Hazard 

Risk. By contrast, co-benefit social policies that positively impacted Social Vulnerability indicators had 

a positive effect in reducing Hazard Risk. The mitigation and co-benefit strategies need refining, and 

consultation with industry would allow for more targeted approaches. However, these trials have 

demonstrated how mitigation options can be assessed using the conceptual framework. 

In future applications, closer consultation with industry, experts, and decision makers will enable a 

more comprehensive implementation of the Hazard Risk Model. Given its ability to be tailored to a 

particular geographical location, hazard, and decision maker’s priorities, each application of the 

framework will yield different results. At the centre of each application, however, will be a deepened 

and more fluent understanding of the drivers of natural hazard risk, and how these can be harnessed 

to improve the approach to natural hazard risk reduction.  
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APPENDIX A – BUSHFIRE MODEL CODE 

Bushfire Hazard Risk Model Main Code 

clear all       % clears variables 

clc             % clears command window 

clf             % clears figure 

F17W37 HONOURS 2017 BUSHFIRE HAZARD RISK MODEL 

This program will determine risk to natural disasters varying in both spatial and temporal dimensions 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Constant Maps Input 

ExploratoryScenarios % Calculates and imports data about Exploratory Scenarios that does not 

need re-calculation in each loop 

% INPUT STATIC MAP AND CLIMATE DATA 

InputConstantMaps 

% figure 

% imagesc(AdelInOut) 

Bushfire Model Loops for each cell at time t 

for YearNum = [2015 2050]% 2020 250] % 2020 2050];  % This will need to be changed after more 

input files are created 

    YearNum; 

    for rcp = [45] 

        rcp; 

        % INPUT DYNAMIC MAP AND CLIMATE DATA 

        [RH,T90,Tminwin,TSLF]=InputMaps(YearNum,rcp,nrow,ncol,TSLF_0); 

    if YearNum == 2015 

        for ScenNum = [1 2 4] 

            % Annual Time Loop to update LU map and climate inputs 

            Scenario_name= Scenario(ScenNum); 

 

            % Create "field" name to save structured matrices 

            if YearNum == 2015 

                field = 'GA2015'; 

            elseif YearNum == 2050 

                if ScenNum == 1 

                    field = 'CynicalVillagers'; 

                elseif ScenNum == 2 

                    field = 'IgnorangeoftheLambs'; 

                elseif ScenNum == 3 

                    field = 'InternetofRisk'; 

                elseif ScenNum == 4 

                    field = 'SiliconHills'; 

                elseif ScenNum == 5 
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                    field = 'AppetiteforChange'; 

                end 

            end 

 

            % INPUTS 

            % Input LU map for current scenario and current year 

            % inputs: Scenario, ScenNum, YearNum, LUtype, nLUtype 

            % outputs; LU 

             LU = InputLUMaps(Scenario,ScenNum,YearNum,nLUtype,LUTypeLabels,LUtype); 

 

            % IGNITION POTENTIAL 

            % inputs: LU, V 

            % outputs are: IP (standardised) 

            IgPotStd = IgnitionPotential(LU,V,nrow,ncol,AdelInOut); 

            for r = 1:1000 

                for c = 1:630 

                    if AdelInOut(r,c) == 0 

                        IgPotStd(r,c) = -1; 

                    end 

                end 

            end 

            IgPotStd_struct.(field).(strcat('rcp',num2str(rcp))) = IgPotStd; % used as input 

to MCK 

            filename = strcat('Ignition Potential',{' '},num2str(YearNum),'.asc'); 

            fid = fopen(char(filename),'wt'); 

            fprintf(fid,'%s','ncols'); 

            fprintf(fid,'  %s\n','630'); 

            fprintf(fid,'%s','nrows'); 

            fprintf(fid,' %s\n','1000'); 

            fprintf(fid,'%s','xllcorner'); 

            fprintf(fid,' %s\n','1310000'); 

            fprintf(fid,'%s','yllcorner'); 

            fprintf(fid,' %s\n','1620000'); 

            fprintf(fid,'%s','cellsize'); 

            fprintf(fid,' %s\n','100'); 

            fprintf(fid,'%s','NODATA_value'); 

            fprintf(fid,' %s\n','-1'); 

            fclose(fid); 

            dlmwrite(char(filename),IgPotStd,'delimiter',' ','newline','pc','-append'); 

 

 

            % SUPPRESSION CAPABILITY 

            % inputs: SC 

            % outputs: SC (standardised) 

            SCStd= SuppressionCapability(SC,nrow,ncol,AdelInOut,V); 

            filename = strcat('Suppresion Capability',{' '},num2str(YearNum),'.asc'); 

            fid = fopen(char(filename),'wt'); 

            fprintf(fid,'%s','ncols'); 

            fprintf(fid,'  %s\n','630'); 

            fprintf(fid,'%s','nrows'); 

            fprintf(fid,' %s\n','1000'); 

            fprintf(fid,'%s','xllcorner'); 

            fprintf(fid,' %s\n','1310000'); 

            fprintf(fid,'%s','yllcorner'); 

            fprintf(fid,' %s\n','1620000'); 

            fprintf(fid,'%s','cellsize'); 

            fprintf(fid,' %s\n','100'); 

            fprintf(fid,'%s','NODATA_value'); 
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            fprintf(fid,' %s\n','-1'); 

            fclose(fid); 

            dlmwrite(char(filename),SCStd,'delimiter',' ','newline','pc','-append'); 

 

            % FIRE BEHAVIOUR 

            %inputs: LU, V, RH, U10, Tminwin, CureDeg, SlopeDeg, T90, TSLF 

            % outputs: FBehav (standardised) 

            FBehavStd = 

Firebehaviour(CuringD,T90,RH,U10,Tminwin,V,LU,SlopeD,TSLF,nrow,ncol,AdelInOut); 

            for r = 1:1000 

                for c = 1:630 

                    if AdelInOut(r,c) == 0 

                        FBehavStd(r,c) = -1; 

                    end 

                end 

            end 

            FBehavStd_struct.(field).(strcat('rcp',num2str(rcp))) = FBehavStd; %used as input 

to MCK 

            filename = strcat('Fire Behaviour',{' '},num2str(YearNum),'.asc'); 

            fid = fopen(char(filename),'wt'); 

            fprintf(fid,'%s','ncols'); 

            fprintf(fid,'  %s\n','630'); 

            fprintf(fid,'%s','nrows'); 

            fprintf(fid,' %s\n','1000'); 

            fprintf(fid,'%s','xllcorner'); 

            fprintf(fid,' %s\n','1310000'); 

            fprintf(fid,'%s','yllcorner'); 

            fprintf(fid,' %s\n','1620000'); 

            fprintf(fid,'%s','cellsize'); 

            fprintf(fid,' %s\n','100'); 

            fprintf(fid,'%s','NODATA_value'); 

            fprintf(fid,' %s\n','-1'); 

            fclose(fid); 

            dlmwrite(char(filename),FBehavStd,'delimiter',' ','newline','pc','-append'); 

 

            % HAZARD LIKELIHOOD 

            % inputs: standardised IP, SC, FBehav 

            % outputs: standardised Hazard Likelihood 

            HazLikeStd = HazardLikelihood(IgPotStd,SCStd,FBehavStd,LU,nrow,ncol); 

            for r = 1:1000 

                for c = 1:630 

                    if AdelInOut(r,c) == 0 

                        HazLikeStd(r,c) = -1; 

                    end 

                end 

            end 

            HazLikeStd_struct.(field).(strcat('rcp',num2str(rcp))) = HazLikeStd; %used as 

input to MCK 

            filename = strcat('Hazard Likelihood',{' '},num2str(YearNum),'.asc'); 

            fid = fopen(char(filename),'wt'); 

            fprintf(fid,'%s','ncols'); 

            fprintf(fid,'  %s\n','630'); 

            fprintf(fid,'%s','nrows'); 

            fprintf(fid,' %s\n','1000'); 

            fprintf(fid,'%s','xllcorner'); 

            fprintf(fid,' %s\n','1310000'); 

            fprintf(fid,'%s','yllcorner'); 

            fprintf(fid,' %s\n','1620000'); 
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            fprintf(fid,'%s','cellsize'); 

            fprintf(fid,' %s\n','100'); 

            fprintf(fid,'%s','NODATA_value'); 

            fprintf(fid,' %s\n','-1'); 

            fclose(fid); 

            dlmwrite(char(filename),HazLikeStd,'delimiter',' ','newline','pc','-append'); 

 

            % Hazard Consequence 

            HazConsStd = Vulnerability(LU,nrow,ncol,YearNum,ScenNum); 

 

            for r = 1:1000 

                for c = 1:630 

                    if AdelInOut(r,c) == 1 

                        if LU(r,c) == 2 || LU(r,c) == 3 || LU(r,c) == 4 || LU(r,c) == 5 || 

LU(r,c) == 7  % only areas where people are present are vulnerable 

                            HazConsStd(r,c) = HazConsStd(r,c); 

                        else 

                            HazConsStd(r,c) = 0; 

                        end 

                    elseif AdelInOut(r,c) == 0 % out of Greater Adelaide 

                        HazConsStd(r,c) = -1; 

                    else 

                        HazConsStd(r,c) = 0; 

                    end 

                end 

            end 

            HazConsStd_struct.(field) = HazConsStd; 

            filename = strcat('Hazard Consequence',{' '},num2str(YearNum),'.asc'); 

            fid = fopen(char(filename),'wt'); 

            fprintf(fid,'%s','ncols'); 

            fprintf(fid,'  %s\n','630'); 

            fprintf(fid,'%s','nrows'); 

            fprintf(fid,' %s\n','1000'); 

            fprintf(fid,'%s','xllcorner'); 

            fprintf(fid,' %s\n','1310000'); 

            fprintf(fid,'%s','yllcorner'); 

            fprintf(fid,' %s\n','1620000'); 

            fprintf(fid,'%s','cellsize'); 

            fprintf(fid,' %s\n','100'); 

            fprintf(fid,'%s','NODATA_value'); 

            fprintf(fid,' %s\n','-1'); 

            fclose(fid); 

            dlmwrite(char(filename),HazConsStd,'delimiter',' ','newline','pc','-append'); 

 

            % HAZARD RISK 

 

            HazRiskMatrix = HazardRisk(AdelInOut,LU,HazLikeStd,YearNum,nrow,ncol,HazConsStd); 

 

            HazRisk_struct.(field).(strcat('rcp',num2str(rcp))) = HazRiskMatrix; 

 

            filename = strcat('Hazard Risk',{' '},num2str(YearNum),'.asc'); 

            fid = fopen(char(filename),'wt'); 

            fprintf(fid,'%s','ncols'); 

            fprintf(fid,'  %s\n','630'); 

            fprintf(fid,'%s','nrows'); 

            fprintf(fid,' %s\n','1000'); 

            fprintf(fid,'%s','xllcorner'); 

            fprintf(fid,' %s\n','1310000'); 
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            fprintf(fid,'%s','yllcorner'); 

            fprintf(fid,' %s\n','1620000'); 

            fprintf(fid,'%s','cellsize'); 

            fprintf(fid,' %s\n','100'); 

            fprintf(fid,'%s','NODATA_value'); 

            fprintf(fid,' %s\n','-1'); 

            fclose(fid); 

            dlmwrite(char(filename),HazRiskMatrix,'delimiter',' ','newline','pc','-append'); 

 

        end 

    elseif YearNum == 2050 

        for ScenNum = 1:5 

            % Annual Time Loop to update LU map and climate inputs 

            Scenario_name= Scenario(ScenNum); 

 

            % Create "field" name to save structured matrices 

            if YearNum == 2015 

                field = 'GA2015'; 

            elseif YearNum == 2050 

                if ScenNum == 1 

                    field = 'CynicalVillagers'; 

                elseif ScenNum == 2 

                    field = 'IgnorangeoftheLambs'; 

                elseif ScenNum == 3 

                    field = 'InternetofRisk'; 

                elseif ScenNum == 4 

                    field = 'SiliconHills'; 

                elseif ScenNum == 5 

                    field = 'AppetiteforChange'; 

                end 

            end 

 

            % INPUTS 

            % Input LU map for current scenario and current year 

            % inputs: Scenario, ScenNum, YearNum, LUtype, nLUtype 

            % outputs; LU 

             LU = InputLUMaps(Scenario,ScenNum,YearNum,nLUtype,LUTypeLabels,LUtype); 

 

            % IGNITION POTENTIAL 

            % inputs: LU, V 

            % outputs are: IP (standardised) 

            IgPotStd = IgnitionPotential(LU,V,nrow,ncol,AdelInOut); 

            for r = 1:1000 

                for c = 1:630 

                    if AdelInOut(r,c) == 0 

                        IgPotStd(r,c) = -1; 

                    end 

                end 

            end 

            IgPotStd_struct.(field).(strcat('rcp',num2str(rcp))) = IgPotStd; % used as input 

to MCK 

            filename = strcat('Ignition Potential',{' '},char(Scenario_name),{' 

'},num2str(YearNum),'.asc'); 

            fid = fopen(char(filename),'wt'); 

            fprintf(fid,'%s','ncols'); 

            fprintf(fid,'  %s\n','630'); 

            fprintf(fid,'%s','nrows'); 

            fprintf(fid,' %s\n','1000'); 
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            fprintf(fid,'%s','xllcorner'); 

            fprintf(fid,' %s\n','1310000'); 

            fprintf(fid,'%s','yllcorner'); 

            fprintf(fid,' %s\n','1620000'); 

            fprintf(fid,'%s','cellsize'); 

            fprintf(fid,' %s\n','100'); 

            fprintf(fid,'%s','NODATA_value'); 

            fprintf(fid,' %s\n','-1'); 

            fclose(fid); 

            dlmwrite(char(filename),IgPotStd,'delimiter',' ','newline','pc','-append'); 

 

 

            % SUPPRESSION CAPABILITY 

            % inputs: SC 

            % outputs: SC (standardised) 

            SCStd= SuppressionCapability(SC,nrow,ncol,AdelInOut,V); 

 

            % FIRE BEHAVIOUR 

            %inputs: LU, V, RH, U10, Tminwin, CureDeg, SlopeDeg, T90, TSLF 

            % outputs: FBehav (standardised) 

            FBehavStd = 

Firebehaviour(CuringD,T90,RH,U10,Tminwin,V,LU,SlopeD,TSLF,nrow,ncol,AdelInOut); 

            for r = 1:1000 

                for c = 1:630 

                    if AdelInOut(r,c) == 0 

                        FBehavStd(r,c) = -1; 

                    end 

                end 

            end 

            FBehavStd_struct.(field).(strcat('rcp',num2str(rcp))) = FBehavStd; %used as input 

to MCK 

            filename = strcat('Fire Behaviour',{' '},char(Scenario_name),{' 

'},num2str(YearNum),'.asc'); 

            fid = fopen(char(filename),'wt'); 

            fprintf(fid,'%s','ncols'); 

            fprintf(fid,'  %s\n','630'); 

            fprintf(fid,'%s','nrows'); 

            fprintf(fid,' %s\n','1000'); 

            fprintf(fid,'%s','xllcorner'); 

            fprintf(fid,' %s\n','1310000'); 

            fprintf(fid,'%s','yllcorner'); 

            fprintf(fid,' %s\n','1620000'); 

            fprintf(fid,'%s','cellsize'); 

            fprintf(fid,' %s\n','100'); 

            fprintf(fid,'%s','NODATA_value'); 

            fprintf(fid,' %s\n','-1'); 

            fclose(fid); 

            dlmwrite(char(filename),FBehavStd,'delimiter',' ','newline','pc','-append'); 

 

            % HAZARD LIKELIHOOD 

            % inputs: standardised IP, SC, FBehav 

            % outputs: standardised Hazard Likelihood 

            HazLikeStd = HazardLikelihood(IgPotStd,SCStd,FBehavStd,LU,nrow,ncol); 

            for r = 1:1000 

                for c = 1:630 

                    if AdelInOut(r,c) == 0 

                        HazLikeStd(r,c) = -1; 

                    end 
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                end 

            end 

            HazLikeStd_struct.(field).(strcat('rcp',num2str(rcp))) = HazLikeStd; %used as 

input to MCK 

            filename = strcat('Hazard Likelihood',{' '},char(Scenario_name),{' 

'},num2str(YearNum),'.asc'); 

            fid = fopen(char(filename),'wt'); 

            fprintf(fid,'%s','ncols'); 

            fprintf(fid,'  %s\n','630'); 

            fprintf(fid,'%s','nrows'); 

            fprintf(fid,' %s\n','1000'); 

            fprintf(fid,'%s','xllcorner'); 

            fprintf(fid,' %s\n','1310000'); 

            fprintf(fid,'%s','yllcorner'); 

            fprintf(fid,' %s\n','1620000'); 

            fprintf(fid,'%s','cellsize'); 

            fprintf(fid,' %s\n','100'); 

            fprintf(fid,'%s','NODATA_value'); 

            fprintf(fid,' %s\n','-1'); 

            fclose(fid); 

            dlmwrite(char(filename),HazLikeStd,'delimiter',' ','newline','pc','-append'); 

 

            % Hazard Consequence 

            HazConsStd = Vulnerability(LU,nrow,ncol,YearNum,ScenNum); 

 

            for r = 1:1000 

                for c = 1:630 

                    if AdelInOut(r,c) == 1 

                        if LU(r,c) == 2 || LU(r,c) == 3 || LU(r,c) == 4 || LU(r,c) == 5 || 

LU(r,c) == 7  % only areas where people are present are vulnerable 

                            HazConsStd(r,c) = HazConsStd(r,c); 

                        else 

                            HazConsStd(r,c) = 0; 

                        end 

                    elseif AdelInOut(r,c) == 0 % out of Greater Adelaide 

                        HazConsStd(r,c) = -1; 

                    else 

                        HazConsStd(r,c) = 0; 

                    end 

                end 

            end 

            HazConsStd_struct.(field) = HazConsStd; 

            filename = strcat('Hazard Consequence',{' '},char(Scenario_name),{' 

'},num2str(YearNum),'.asc'); 

            fid = fopen(char(filename),'wt'); 

            fprintf(fid,'%s','ncols'); 

            fprintf(fid,'  %s\n','630'); 

            fprintf(fid,'%s','nrows'); 

            fprintf(fid,' %s\n','1000'); 

            fprintf(fid,'%s','xllcorner'); 

            fprintf(fid,' %s\n','1310000'); 

            fprintf(fid,'%s','yllcorner'); 

            fprintf(fid,' %s\n','1620000'); 

            fprintf(fid,'%s','cellsize'); 

            fprintf(fid,' %s\n','100'); 

            fprintf(fid,'%s','NODATA_value'); 

            fprintf(fid,' %s\n','-1'); 

            fclose(fid); 
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            dlmwrite(char(filename),HazConsStd,'delimiter',' ','newline','pc','-append'); 

 

            % HAZARD RISK 

 

            HazRiskMatrix = HazardRisk(AdelInOut,LU,HazLikeStd,YearNum,nrow,ncol,HazConsStd); 

 

            HazRisk_struct.(field).(strcat('rcp',num2str(rcp))) = HazRiskMatrix; 

 

            filename = strcat('Hazard Risk',{' '},char(Scenario_name),{' 

'},num2str(YearNum),'.asc'); 

            fid = fopen(char(filename),'wt'); 

            fprintf(fid,'%s','ncols'); 

            fprintf(fid,'  %s\n','630'); 

            fprintf(fid,'%s','nrows'); 

            fprintf(fid,' %s\n','1000'); 

            fprintf(fid,'%s','xllcorner'); 

            fprintf(fid,' %s\n','1310000'); 

            fprintf(fid,'%s','yllcorner'); 

            fprintf(fid,' %s\n','1620000'); 

            fprintf(fid,'%s','cellsize'); 

            fprintf(fid,' %s\n','100'); 

            fprintf(fid,'%s','NODATA_value'); 

            fprintf(fid,' %s\n','-1'); 

            fclose(fid); 

            dlmwrite(char(filename),HazRiskMatrix,'delimiter',' ','newline','pc','-append'); 

        end 

    end 

 

    end 

end 

Map Comparison 

save map comparisons for each variable, and for each socio-economic and climate scenario 

for ScenNum = [1 2 4] 

    for rcp = [45] 

        if ScenNum == 1 

            field = 'CynicalVillagers'; 

            f2 = 'Cynical Villagers'; 

        elseif ScenNum == 2 

            field = 'IgnorangeoftheLambs'; 

            f2 = 'Ignorance of the Lambs'; 

        elseif ScenNum == 3 

            field = 'InternetofRisk'; 

            f2 = 'Internet of Risk'; 

        elseif ScenNum == 4 

            field = 'SiliconHills'; 

            f2 = 'Silicon Hills'; 

        elseif ScenNum == 5 

            field = 'AppetiteforChange'; 

            f2 = 'Appetite for Change'; 

        end 

 

        % Hazard Risk 
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        f1 = 'Hazard Risk'; 

        

MapComparison(f1,HazRisk_struct.(field).(strcat('rcp',num2str(rcp))),f2,HazRisk_struct.GA2015

.(strcat('rcp',num2str(rcp))),AdelInOut); 

        % Hazard Likelihood 

        f1 = 'Hazard Likelihood'; 

        

MapComparison(f1,HazLikeStd_struct.(field).(strcat('rcp',num2str(rcp))),f2,HazLikeStd_struct.

GA2015.(strcat('rcp',num2str(rcp))),AdelInOut); 

        % Hazard Consequence 

        f1 = 'Hazard Consequence'; 

        MapComparison(f1,HazConsStd_struct.(field),f2,HazConsStd_struct.GA2015,AdelInOut); 

        % Ignition Potential 

        f1 = 'Ignition Potential'; 

        

MapComparison(f1,IgPotStd_struct.(field).(strcat('rcp',num2str(rcp))),f2,IgPotStd_struct.GA20

15.(strcat('rcp',num2str(rcp))),AdelInOut); 

        % Fire Behaviour 

        f1 = 'Fire Behaviour'; 

        

MapComparison(f1,FBehavStd_struct.(field).(strcat('rcp',num2str(rcp))),f2,FBehavStd_struct.GA

2015.(strcat('rcp',num2str(rcp))),AdelInOut); 

 

    end 

end
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Ignition Potential Function 

calculates the ignition potential based on the land use and vegetation % 

function [IgPotStd] = IgnitionPotential(LU,V,nrow,ncol,AdelInOut) 

Convert land use map to ignition potential due to land use using a conversion 

table (hardcoded) 

LUtoIPconv = [1 0.006296; 2 0.001849; 3 0.001026; 4 0.001100; 5 0.002885; 6 0.001450; 7 

0.002073; 8 0.001007; 9 0.000265; 10 0.000511; 11 0.000281; 12 0; 13 0; 14 0; 15 0.000304; 16 

0; 17 0]; 

 

for k=1:ncol %loop along columns of LU matrix 

    for j=1:nrow %loop along rows of LU matrix 

        for i=1:17 % loop along rows on conversion matrix to perform "lookup function" 

            if AdelInOut(j,k) == 0 

                IP_LU(j,k) = 0; 

            elseif V(j,k) == 0 || V(j,k) == 255 

                IP_LU(j,k) = 0; 

            elseif LU(j,k) == LUtoIPconv(i,1) 

                IP_LU(j,k) = LUtoIPconv(i,2);%new ignition potential due to land use matrix 

created 

            end 

        end 

    end 

end 

% figure 

% colormap(hot(30)) 

% imagesc(IP_LU) 

Convert vegetation map to ignition potential due to vegetation using a conversion 

table (hardcoded) 

VtoIPconv = [0 0; 1 0.001; 2 0; 3 0.0054; 4 0.0032; 5 0.0054; 6 0.0007; 255 0]; 

 

for k=1:ncol %loop along columns of LU matrix 

    for j=1:nrow %loop along rows of LU matrix 

        for i=1:8 % loop along rows on conversion matrix to perform "lookup function" 

            if AdelInOut(j,k) == 0 

                IP_V(j,k) = 0; 

            elseif V(j,k) == 0 || V(j,k) == 255 

                IP_V(j,k) = 0; 

            elseif V(j,k) == VtoIPconv(i,1) 

                IP_V(j,k) = VtoIPconv(i,2);% new ignition potential due to vegetation matrix 

created 

            end 

        end 

    end 

end 

% figure 
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% colormap(hot(30)) 

% imagesc(IP_V) 

Calculate total ignition potential (IP) due to land use ignition potential (IP_LU) 

and vegetation ignition potential (IP_V) 

IP = 1000 * (IP_LU + IP_V); 

% figure 

% colormap(hot(30)) 

% imagesc(IP) 

Standardise total ignition potential using conversion table for total ignition 

potential 

StdIPconv = [-1000 0 0; 0.0001 1.5 1; 1.5 3.5 2; 3.5 5.5 3; 5.5 8 4; 8 12 5]; 

% standardising matrix is currently hardcoded in^^^ 

for k=1:ncol %loop along columns of LU matrix 

    for j=1:nrow %loop along rows of LU matrix 

        for i=1:6 % loop along rows on conversion matrix to perform "lookup function" 

            if (IP(j,k) >= StdIPconv(i,1))&&(IP(j,k) <= StdIPconv(i,2)) 

                IgPotStd(j,k) = StdIPconv(i,3);% Calculate standardised total ignition 

potential 

            end 

        end 

    end 

end 

% figure 

% colormap(hot(30)) 

% imagesc(IgPotStd) 

Fire Behaviour Function 

calculates the fire behaviour                                          

function [FBehavStd] = 

Firebehaviour(CuringD,T90,RH,U10,Tminwin,V,LU,SlopeD,TSLF,nrow,ncol,AdelInOut) 

Grass 

GRASS 1. Curing Coefficient [when CuringD = 100%, CureCoeff = 1] 

for k=1:ncol % loop along columns of CuringD matrix 

    for j=1:nrow % loop along rows of CuringD matrix 

        CureCoeff(j,k)=(1.036/(1+103.99*exp(-0.0996*(CuringD(j,k)-20)))); % calculating the 

curing coefficient 

    end 

end 

 

%  GRASS 2. Dead Fuel Moisture Content of grassland at t=0 [f(T90,RH)] 
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for k=1:ncol % loop along columns of T90 matrix and RH matrix 

    for j=1:nrow % loop along rows of T90 matrix and RH matrix 

        DFMCgrass(j,k) = 9.58 - 0.205*T90(j,k) + 0.138*RH(j,k); 

    end 

end 

 

%  GRASS 3. Fuel Moisture Coefficient [FMC = dep on DFMC and U10, using if statement] 

for k=1:ncol % loop along columns of DFMCg matrix and U10 matrix 

    for j=1:nrow % loop along rows of DFMCg matrix and U10 matrix 

        if (DFMCgrass(j,k)>=12) && (U10(j,k)<10)        % if DFMCg >= 12% and U10 < 10km/h 

            FMC(j,k)=0.684-0.0342*DFMCgrass(j,k); 

        elseif (DFMCgrass(j,k)>=12) && (U10(j,k)>=10)  % if DFMCg >= 12% and U10 >= 10km/h 

            FMC(j,k)=0.547-0.0228*DFMCgrass(j,k); 

        else                                        % if DFMCg < 12% 

            FMC(j,k)=exp(-0.108*(9.58 - 0.205*T90(j,k) + 0.138*RH(j,k))); 

        end 

    end 

end 

 

%  GRASS 4. check if cell grazed or ungrazed 

%convert Landuse to grass type conversion table below 

LUtoGTconv = [0 1; 1 1; 2 2; 3 2; 4 2; 5 2; 6 2; 7 2; 8 2; 9 2; 10 2; 11 2; 12 2; 13 2; 14 2; 

15 1; 16 1]; % checking if LU type is grazed or ungrazed 

            % 1 => ungrazed 

            % 2 => grazed 

 

for k=1:ncol % loop along columns of LU matrix 

    for j=1:nrow % loop along rows of LU matrix 

         if(V(j,k)==6)    %First check Vegetation layer to identify which cells are grassland 

             for i=1:16 % loop along rows of conversion matrix to perform 'lookup function' 

                if(LU(j,k)== LUtoGTconv(i,1)) %Then check the grassland cells in the LU model 

to identify if it is grazed(2) or ungrazed(1) 

                    GT(j,k)= LUtoGTconv(i,2); % check whether cell is grazed or ungrazed 

based on LU type 

                end 

             end 

         else 

             GT(j,k) = 0; 

         end 

    end 

end 

 

% GRASS 5. Rate of Spread 

for k=1:ncol % loop along cloumns of U10 matrix 

    for j=1:nrow % loop along rows of U10 matrix 

       %---ROS for ungrazed grassland---% 

       if(GT(j,k)==1) && (U10(j,k)<5) 

           ROSgrass(j,k)=(0.054+0.269*U10(j,k))*FMC(j,k)*CureCoeff(j,k); 

       elseif(GT(j,k)==1) && (U10(j,k)>=5) 

           ROSgrass(j,k)=(1.4+0.838*(U10(j,k)-5)^0.844)*FMC(j,k)*CureCoeff(j,k); 

       %---ROS for grazed grassland---% 

       elseif(GT(j,k)==2) && (U10(j,k)<5) 

           ROSgrass(j,k)=(0.054+0.209*U10(j,k))*FMC(j,k)*CureCoeff(j,k); 

       elseif(GT(j,k)==2) && (U10(j,k)>=5) 

           ROSgrass(j,k)=(1.1+0.715*(U10(j,k)-5)^0.844)*FMC(j,k)*CureCoeff(j,k); 

       else 

           ROSgrass(j,k)=0; 

       end 
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    end 

end 

 

% GRASS 6. Rate of Spread for the grassland adapted for the slope of the location 

for k=1:ncol % loop along cloumns of U10 matrix 

    for j=1:nrow % loop along rows of U10 matrix 

        ROSDeg(j,k)=ROSgrass(j,k)*exp(0.069*SlopeD(j,k)); 

    end 

end 

 

% GRASS 7. Grassland Fire Behaviour 

for k=1:ncol % loop along cloumns of LU matrix 

    for j=1:nrow % loop along rows of LU matrix 

        FBehavgrass(j,k)=1550*ROSDeg(j,k); 

    end 

end 

Woodland 

for k=1:ncol % loop along columns of T90 matrix and RH matrix 

    for j=1:nrow % loop along rows of T90 matrix and RH matrix 

% WOOD 1. Dead Fuel Moisture Content of Woodland [f(RH,T90)] 

        DFMCwood(j,k)=5.658+0.04651*RH(j,k)+((0.0003151*RH(j,k)^3)/T90(j,k))-

0.184*T90(j,k)^0.77; 

 

% WOOD 2. Forest Fire Danger Index for Woodland [FFDI=(DFMCwood, U10)] - 

% with drought factor assumed 10 

        FFDI(j,k)=337.8*DFMCwood(j,k)^(-2.1)*exp(0.0234*U10(j,k)); 

 

% WOOD 3. Wood Fuel Load 

% The fuel load (t/ha) for eucalyptus woodland 

%inputs to FuelEW 

    % A =(TSLF-30)>= 0 

        if ((TSLF(j,k)-30)>= 0) 

           A(j,k)= TSLF(j,k)-30; 

        else 

           A(j,k)=0; 

        end 

    %B = (TSLF-31)>=0 

        if ((TSLF(j,k)-31)>= 0) 

           B(j,k)= TSLF(j,k)-31; 

        else 

           B(j,k)=0; 

        end 

    %C = (Tminwin-6.44014)>=0 

        if ((Tminwin(j,k)-6.44014)>= 0) 

           C(j,k)= Tminwin(j,k)-6.44014; 

        else 

           C(j,k)=0; 

        end 

    %D = (31-TSLF)>=0 

        if((31-TSLF(j,k))>=0) 

           D(j,k)=31-TSLF(j,k); 

        else 

           D(j,k)=0; 

        end 
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    %E = (Tminwin-4.81713)>=0 

        if ((Tminwin(j,k)-4.81713)>= 0) 

           E(j,k)= Tminwin(j,k)-4.81713; 

        else 

           E(j,k)=0; 

        end 

    % Where FuelEW = 7.3566465+6.7698529*A-7.0113239*B+3.7082631*C-0.0888925*D*E 

 

    % Wood Fuel Load Calculation 

    if(TSLF(j,k)==0); 

       Fuel(j,k)=0; 

    elseif (V(j,k)==1);             % The fuel load (t/ha) for eucalyptus woodland 

       Fuel(j,k)=7.3566465+6.7698529*A(j,k)-7.0113239*B(j,k)+3.7082631*C(j,k)-

0.0888925*D(j,k)*E(j,k); 

    elseif(V(j,k)==2 || V(j,k)==3 || V(j,k)==4 || V(j,k)==5); % The fuel load (t/ha) for 

woodland 

       Fuel(j,k)=2.192*log(TSLF(j,k))+3.6; 

    else 

       Fuel(j,k)=0; 

    end 

 

% WOOD 4. Rate of Spread 

            ROSwood(j,k) = 0.0012*FFDI(j,k)*Fuel(j,k); 

 

% WOOD 5. Rate of Spread for the woodland adapted for the slope of the location 

            ROSwoodDeg(j,k)=ROSwood(j,k)*exp(0.069*SlopeD(j,k)); 

 

% WOOD 6. Woodland Fire Behaviour 

            FBehavwood(j,k) = 516.7*Fuel(j,k)*ROSwoodDeg(j,k); 

    end 

end 

Calculate Fire Behaviour for Grassland & Woodland  

FBehav = FBehavgrass + FBehavwood; 

% figure 

% imagesc(FBehav) 

% Standardise total fire behaviour using BAL 

 

%Convert FBehav=Intensity into Radiant Heat Flux 

 

FBehav=60*(1-exp(-FBehav/30000)); %Equation provided by Graeme 

 

 

StdFBconv = [0 7 1; 7 14 2; 14 28 3; 28 40 4; 40 1000 5]; % Conversion matrix using BAL 

Levels (12.5=1,19=2,29=3,40=4,FZ=5) 

for k=1:ncol %loop along columns of LU matrix 

    for j=1:nrow %loop along rows of LU matrix 

        if AdelInOut(j,k) == 0 

            FBehavStd(j,k) = 0; % outside Greater Adelaide so not considering 

        elseif V(j,k) == 0 || V(j,k) == 255 

            FBehavStd(j,k) = 0; % no vegetation so no fire 

        else        % convert Fire Behaviour to a standard likelihood 

            for i=1:5 % loop along rows on conversion matrix to perform "lookup function" 

                if (FBehav(j,k) >= StdFBconv(i,1))&&(FBehav(j,k) <= StdFBconv(i,2)) 

                    FBehavStd(j,k) = StdFBconv(i,3); % Calculate standardised total fire 



 

122 
 

behaviour 

 

                end 

            end 

        end 

    end 

end 

Hazard Likelihood Standardise Function 

calculates the hazard likelihood from the ignition potential, suppression capability and fire behaviour              

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [HazLikeStd] = HazardLikelihood(IgPotStd,SCStd,FBehavStd,LU,nrow,ncol) 

 

% Input the significance factors (these are used to imply whether the factors are included in 

the analysis 

%HARDCODED ATM WILL NEED TO CHANGE IN FUTURE 

 

IgPotSig=1;    %0=not included, 1=included 

SCSig=1;       %0=not included, 1=included 

FBehavSig=1;   %0=not included, 1=included 

 

% Input weighted averages for ignition potential,suppression capability and fire behaviour 

influence of the likelihood 

%HARDCODED ATM WILL NEED TO CHANGE IN FUTURE 

 

IgPotWeight=0.25; 

SCWeight=0.25; 

FBehavWeight=0.5; 

 

WeightCondn=IgPotWeight+SCWeight+FBehavWeight; %calculation of total weightings to check they 

equal to 1 

 

%if statement to tell user that Weight Condition has not been met 

if (WeightCondn~=1); 

    disp('ERROR!! The summation of the weightings for the ignition potential, suppression 

capabilities and fire behaviour do not equal 1') 

end 

 

% Loop to calculate the Hazard Likelihood for each cell using the weightings and signifcance 

factors for Ignition Potential, Suppression 

% Capability and Fire Behaviour 

for k=1:ncol %loop along columns of LU matrix 

    for j=1:nrow %loop along rows of LU matrix 

        

HazLike(j,k)=IgPotSig*IgPotWeight*IgPotStd(j,k)+SCWeight*SCSig*SCStd(j,k)+FBehavSig*FBehavWei

ght*FBehavStd(j,k); %calculation of Hazard Likelihood 

    end 

end 

% figure 

% imagesc(HazLike) 

% title('HazLike') 

 

%%%%%%%%%%%%%%%% Standardise hazard Likelihood %%%%%%%%%%%%%%%% 
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for k=1:ncol %loop along columns of HazLike Matrix 

    for j=1:nrow %loop along rows of HazLike Matrix 

        if (HazLike(j,k)>=0.5)&&(HazLike(j,k)<1.5); 

            HazLikeStd(j,k)=1; 

        elseif (HazLike(j,k)>=1.5)&&(HazLike(j,k)<2.5); 

            HazLikeStd(j,k)=2; 

        elseif (HazLike(j,k)>=2.5)&&(HazLike(j,k)<3.5); 

            HazLikeStd(j,k)=3; 

        elseif (HazLike(j,k)>=3.5)&&(HazLike(j,k)<4.5); 

            HazLikeStd(j,k)=4; 

        elseif (HazLike(j,k)>=4.5); 

            HazLikeStd(j,k)=5; 

        else 

            HazLikeStd(j,k)=0; 

        end 

    end 

end 

% figure 

% imagesc(HazLikeStd) 

% title('HazLikeStd') 

 

end 

Social Vulnerability for each SSC Function 

Read in vulnerability indicators for 2015 based on ABS 2011 census data Reads in vulnerability 

multipliers for 2050 that align with the 5 scenarios defined for Greater Adelaide Determine 

consequence (1 - 5) for each indicator Determine combined indicator consequence (1 - 5) 

clc 

clear 

%clf 

Define Council Areas 

Used later to align suburbs in each council with scenario multipliers 

LGA = dlmread('lga_100m.asc'); %read in council boundaries 

LGA = LGA + 1; %add 1 to each council area (to make Adelaide 1) 

 

% Make Ocean 28 

for r = 1:1000 

    for c = 1:630 

        if LGA(r,c)==-9998 

            LGA(r,c) = 28; 

        end 

    end 

end 

 

% Define Council plot labels 

CouncilLabels = importdata('Councils.txt'); %import list of councils names 
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nLGA = size(CouncilLabels); 

nLGA = nLGA(1); %add extra 'council area' to include ocean 

for i = 1:(nLGA) %convert struc matrix to array of text strings 

    LG(i) = CouncilLabels(i); 

    LGA_number_code(i) = i; % to be used later in defining SSC_number_code 

                            % will be used to code council number for each 

                            % suburb 

end 

 

nLGA = nLGA + 1; %consider ocean as extra "council area" 

LG(nLGA)={'Outside Greater Adelaide'}; %add extra text label for ocean 

LGA_number_code(nLGA) = 28; 

 

% Adelaide IN/OUT map 

AdelInOut = textread('reg100m.asc','','headerlines',6); 

% Assess nrows & ncols for use in loops 

NRowCol = textread('reg100m.asc','%s'); 

ncol = str2num(NRowCol{2}); 

nrow = str2num(NRowCol{4}); 

NRowCol = []; 

AdelInOut = AdelInOut(1:nrow,1:ncol);   % Removing excess rows/cols 

 

for r = 1:1000 

    for c = 1:630 

        if AdelInOut(r,c) == 0 

            LGA(r,c) = 28; % Outside Greater Adelaide 

        end 

    end 

end 

 

% % Plot council boundaries 

% figure 

% imagesc(LGA) 

% title('LGAs of Greater Adelaide') 

% colormap(colorcube(nLGA)); %define colour bar and corresponding text 

% labels = LG; 

% lcolorbar(labels); 

Define State Suburb (SCC) Areas 

SSC = imread('GA_SSC_2.tif'); %read in council boundaries 

SSC = SSC + 1; %add 1 to each council area (to make Aberfoyl Park 1) 

 

% Make Outside Greater Adelaide 

for r = 1:1000 

    for c = 1:630 

        if AdelInOut(r,c) == 0 

            SSC(r,c) = 512; 

         elseif SSC(r,c) >= 1000 

             SSC(r,c) = 512; 

        end 

    end 

end 

 

% Plot council boundaries from SSC to LGA conversion 

% figure 
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% imagesc(SSC) 

% title('SSCs of Greater Adelaide') 

 

% Create matrix "SSC_data" to convert Suburb to LGA map 

                         % col 1: SSC (suburb) names 

                         % col 2: LGA of SSC (filled in later) 

                         % col 3: # code for SSC 

                         % col 4: # code for LGA (filled in later) 

% Define Suburb (SSC) list 

SSC_importlist = importdata('SSC.csv'); % read in list of SSC considered in GA 

LGA_importlist = importdata('LGA.csv'); % read in list of LGAs corresponding to the list of 

SSCs 

for r = 1:size(SSC_importlist) 

    SSC_names(r,1) = SSC_importlist(r); % input SSC name 

    SSC_names(r,2) = LGA_importlist(r); % input LGA name 

    SSC_number_code(r,1) = r; % tiff # for SSC 

end 

 

% Define number of SSCs 

nSSC = size(SSC_importlist); 

nSSC = nSSC(1); % 511 SSCs 

 

% Read in code numbers for LGAs 

for r = 1:nSSC 

    for i = 1:nLGA 

        if strcmp(SSC_names(r,2),LG(i))==1 % match LGA name in SSC list to LGA name in LG 

list 

            SSC_number_code(r,2)=LGA_number_code(i); % Assign the code # for that LGA 

        end 

    end 

end 

 

% Check SSC and LGA matching using a plot 

LGA_from_SSC = zeros(1000,630); 

for r = 1:1000 

    for c = 1:630 % two outer loops -> loop through SSC map 

        for i = 1:nSSC % loop through the list of SSCs 

             if SSC(r,c) == SSC_number_code(i,1) % Identify SSC 

                 LGA_from_SSC(r,c) = SSC_number_code(i,2);  % Plot LGA to new map 

             end 

        end 

    end 

end 

 

for r = 1:1000 

    for c = 1:630 

        if AdelInOut(r,c) == 0 

            LGA_from_SSC(r,c) = 28; % Outside Greater Adelaide 

        elseif LGA_from_SSC(r,c) == 0 

            LGA_from_SSC(r,c) = 20; % Assign Torrens Island LGA 

        end 

    end 

end 

 

% Plot council boundaries from SSC to LGA conversion 

% figure 

% imagesc(LGA_from_SSC) 

% title('LGAs of Greater Adelaide (based on SSC)') 
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% colormap(colorcube(nLGA)); %define colour bar and corresponding text 

% labels = LG; 

% lcolorbar(labels); 

Read in indicator conversions (North, South, East, West, Hills) for 2050 for each 

scenario 

Indicators are (in order of rows): Median Income Proportion Young (0-14 years) (%) Proportion Elderly 

(65 and over) (%) Unemployment (%) Migrant English Proficiency (%) Indigenous population (%) Family 

Structure (%) Volunteer rates (%) Internal Migration/ Arrivals (%) Education (%) Disabilities (%) Car 

Ownership Net Population Growth (%) Public Housing (%) 

% These indicator spreadsheets record conversion factors based on: NORTH, SOUTH, EAST, WEST, 

HILLS 

% NOTE: row -> indicator, column -> region (north, east etc.) 

 

ic_internet_of_risk = (xlsread('indicator_conversions_Internet of Risk.csv')); 

ic_appetite_for_change = (xlsread('indicator_conversions_Appetite for Change.csv')); 

ic_cynical_villagers = (xlsread('indicator_conversions_Cynical Villagers.csv')); 

ic_silicon_hills = (xlsread('indicator_conversions_Silicon Hills.csv')); 

ic_ignorance_of_the_lambs = (xlsread('indicator_conversions_Ignorance of the Lambs.csv')); 

Define multipliers based on councils 

Convert indicator conversion tables from North/South/East/West/Hills to each council NOTE: 

Alexandrina, Barossa, Light, Mallala, Mid Murray, Murray Bridge and Yankalilla are not assigned 

indicator conversion factors as these councils are outside Greater Adelaide 

    % EAST: Adelaide 

          % Burnside 

          % Campbeltown 

          % Noorwood Paynem Saint Peters 

          % Prospect 

          % Unley 

          % Walkerville 

for i = [1 5 6 17 21 24 25] % assign EAST multipliers to these councils 

    indicator_conversion_internet_of_risk_LGA(:,i) = ic_internet_of_risk(:,1); 

    indicator_conversion_appetite_for_change_LGA(:,i) = ic_appetite_for_change(:,1); 

    indicator_conversion_cynical_villagers_LGA(:,i) = ic_cynical_villagers(:,1); 

    indicator_conversion_silicon_hills_LGA(:,i) = ic_silicon_hills(:,1); 

    indicator_conversion_ignorance_of_the_lambs_LGA(:,i) = ic_ignorance_of_the_lambs(:,1); 

end 

 

    % WEST: Charles Sturt 

          % Port Adelaide Enfield ( ASSUME port adelaide enfield in west rather than north) 

          % West Torrens 

for i = [ 7 20 26] % assign WEST multipliers to these councils 

    indicator_conversion_internet_of_risk_LGA(:,i) = ic_internet_of_risk(:,2); 

    indicator_conversion_appetite_for_change_LGA(:,i) = ic_appetite_for_change(:,2); 
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    indicator_conversion_cynical_villagers_LGA(:,i) = ic_cynical_villagers(:,2); 

    indicator_conversion_silicon_hills_LGA(:,i) = ic_silicon_hills(:,2); 

    indicator_conversion_ignorance_of_the_lambs_LGA(:,i) = ic_ignorance_of_the_lambs(:,2); 

end 

 

    % SOUTH: Holdfast Bay 

          % Marion 

          % Mitcham 

          % Onkaparinga 

for i = [9 12 14 18] % assign SOUTH multipliers to these councils 

    indicator_conversion_internet_of_risk_LGA(:,i) = ic_internet_of_risk(:,3); 

    indicator_conversion_appetite_for_change_LGA(:,i) = ic_appetite_for_change(:,3); 

    indicator_conversion_cynical_villagers_LGA(:,i) = ic_cynical_villagers(:,3); 

    indicator_conversion_silicon_hills_LGA(:,i) = ic_silicon_hills(:,3); 

    indicator_conversion_ignorance_of_the_lambs_LGA(:,i) = ic_ignorance_of_the_lambs(:,3); 

end 

 

    % NORTH: Gawler 

          % Playford 

          % Salisbury 

          % Tea Tree Gully 

for i = [4 8 10 11 19 22 23] % assign NORTH multipliers to these councils 

    indicator_conversion_internet_of_risk_LGA(:,i) = ic_internet_of_risk(:,4); 

    indicator_conversion_appetite_for_change_LGA(:,i) = ic_appetite_for_change(:,4); 

    indicator_conversion_cynical_villagers_LGA(:,i) = ic_cynical_villagers(:,4); 

    indicator_conversion_silicon_hills_LGA(:,i) = ic_silicon_hills(:,4); 

    indicator_conversion_ignorance_of_the_lambs_LGA(:,i) = ic_ignorance_of_the_lambs(:,4); 

end 

 

    % HILLS: Adelaide Hills 

          % Mount Barker 

for i = [2 15] % assign HILLS multipliers to these councils 

    indicator_conversion_internet_of_risk_LGA(:,i) = ic_internet_of_risk(:,5); 

    indicator_conversion_appetite_for_change_LGA(:,i) = ic_appetite_for_change(:,5); 

    indicator_conversion_cynical_villagers_LGA(:,i) = ic_cynical_villagers(:,5); 

    indicator_conversion_silicon_hills_LGA(:,i) = ic_silicon_hills(:,5); 

    indicator_conversion_ignorance_of_the_lambs_LGA(:,i) = ic_ignorance_of_the_lambs(:,5); 

end 

Define multipliers based on SSCs 

for i = 1:nSSC 

    for j = 1:nLGA 

        if SSC_number_code(i,2) == j 

            indicator_conversion_internet_of_risk_SSC(:,i) = 

indicator_conversion_internet_of_risk_LGA(:,j); 

            indicator_conversion_appetite_for_change_SSC(:,i) = 

indicator_conversion_appetite_for_change_LGA(:,j); 

            indicator_conversion_cynical_villagers_SSC(:,i) = 

indicator_conversion_cynical_villagers_LGA(:,j); 

            indicator_conversion_silicon_hills_SSC(:,i) = 

indicator_conversion_silicon_hills_LGA(:,j); 

            indicator_conversion_ignorance_of_the_lambs_SSC(:,i) = 

indicator_conversion_ignorance_of_the_lambs_LGA(:,j); 

        end 



 

128 
 

    end 

end 

Read in indicators for each SSC 

Indicators are (in order of rows in multiplier tables): Median Income Proportion Young (0-14 years) 

(%) Proportion Elderly (65 and over) (%) Unemployment (%) Migrant English Proficiency (%) 

Indigenous population (%) Family Structure (%) Volunteer rates (%) Internal Migration/ Arrivals (%) 

Education (%) Disabilities (%) Car Ownership Net Population Growth (%) Public Housing (%) 

i1 = 'Median Income.csv'; 

i2 = 'Young population.csv'; 

i3 = 'Elderly Population.csv'; 

i4 = 'Unemployment.csv'; 

i5 = 'English Proficiency.csv'; 

i6 = 'Indigenous Population.csv'; 

i7 = 'Family Structure.csv'; 

i8 = 'Volunteering.csv'; 

i9 = 'New to region.csv'; 

i10 = 'Education.csv'; 

i11 = 'Need Assistance.csv'; 

i12 = 'Car Ownership.csv'; 

i13 = 'Population Growth.csv'; 

i14 = 'Public Housing.csv'; 

 

% If changing number of indicatorsL: 

            % add in extra i(#) 

            % change nIndicators 

            % add in i(#) to loop for str 

 

nIndicators = 14; % number of indicators 

 

current_indicator = zeros(nIndicators,nSSC); % matrix of current indicator values 

                                  % rows -> indicator 

                                  % columns -> SSC number 

j = 0; 

for str = {i1, i2, i3, i4, i5, i6, i7, i8, i9, i10, i11, i12, i13, i14} 

    j = j+1; 

    indicator_i = xlsread(str{1}); % read in csv for current indicator 

    for r = 1:size(indicator_i) 

        current_indicator(j,r) = indicator_i(r); % convert into matrix structure for 

current_indicator shown in pseudo code 

    end 

end 

Calculate Future Indicator Values for each Scenario 

future_indicator = current_indicator x indicator_conversion 

future_indicator_internet_of_risk = zeros(nIndicators,nSSC); % predefine matrix sizes 

future_indicator_appetite_for_change = zeros(nIndicators,nSSC); 
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future_indicator_cynical_villagers = zeros(nIndicators,nSSC); 

future_indicator_silicon_hills = zeros(nIndicators,nSSC); 

future_indicator_ignorance_of_the_lambs = zeros(nIndicators,nSSC); 

 

for r = 1:nIndicators % future_indicator = current_indicator x indicator_conversion 

    for c = 1:nSSC 

        future_indicator_internet_of_risk(r,c) = 

current_indicator(r,c)*indicator_conversion_internet_of_risk_SSC(r,c); 

        future_indicator_appetite_for_change(r,c) = 

current_indicator(r,c)*indicator_conversion_appetite_for_change_SSC(r,c); 

        future_indicator_cynical_villagers(r,c) = 

current_indicator(r,c)*indicator_conversion_cynical_villagers_SSC(r,c); 

        future_indicator_silicon_hills(r,c) = 

current_indicator(r,c)*indicator_conversion_silicon_hills_SSC(r,c); 

        future_indicator_ignorance_of_the_lambs(r,c) = 

current_indicator(r,c)*indicator_conversion_ignorance_of_the_lambs_SSC(r,c); 

    end 

end 

Calculate Indicator Bounds (across now and all future scenarios) 

% Concatenate all indicator values into one matrix (rows -> indicator, 

% columns -> different councils under all scenarios) 

all_indicator_values = [ current_indicator future_indicator_internet_of_risk 

future_indicator_appetite_for_change future_indicator_cynical_villagers 

future_indicator_silicon_hills future_indicator_ignorance_of_the_lambs]; 

 

% Determine [20% 40% 60% and 80%] quartile bounds 

indicator_bounds = prctile(all_indicator_values,[20 40 60 80],2); 

Determine standardised consequence for each indicator based on indicator 

bounds 

for r = [ 2 3 4 5 6 7 9 11 13 14] % Higher indicator means bigger consequence 

    for c = 1:nSSC 

        % Standardise Current indicator 

        if current_indicator(r,c) <= indicator_bounds(r,1) 

            current_indicator(r,c) = 1; 

        elseif current_indicator(r,c) <= indicator_bounds(r,2) 

            current_indicator(r,c) = 2; 

        elseif current_indicator(r,c) <= indicator_bounds(r,3) 

            current_indicator(r,c) = 3; 

        elseif current_indicator(r,c) <= indicator_bounds(r,4) 

            current_indicator(r,c) = 4; 

        else 

            current_indicator(r,c) = 5; 

        end 

 

        % Standardise Internet of Risk Scenario Indicators 

        if future_indicator_internet_of_risk(r,c) <= indicator_bounds(r,1) 

            future_indicator_internet_of_risk(r,c) = 1; 

        elseif future_indicator_internet_of_risk(r,c) <= indicator_bounds(r,2) 

            future_indicator_internet_of_risk(r,c) = 2; 
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        elseif future_indicator_internet_of_risk(r,c) <= indicator_bounds(r,3) 

            future_indicator_internet_of_risk(r,c) = 3; 

        elseif future_indicator_internet_of_risk(r,c) <= indicator_bounds(r,4) 

            future_indicator_internet_of_risk(r,c) = 4; 

        else 

            future_indicator_internet_of_risk(r,c) = 5; 

        end 

 

        % Standardise Appetite for Change Scenario Indicators 

        if future_indicator_appetite_for_change(r,c) <= indicator_bounds(r,1) 

            future_indicator_appetite_for_change(r,c) = 1; 

        elseif future_indicator_appetite_for_change(r,c) <= indicator_bounds(r,2) 

            future_indicator_appetite_for_change(r,c) = 2; 

        elseif future_indicator_appetite_for_change(r,c) <= indicator_bounds(r,3) 

            future_indicator_appetite_for_change(r,c) = 3; 

        elseif future_indicator_appetite_for_change(r,c) <= indicator_bounds(r,4) 

            future_indicator_appetite_for_change(r,c) = 4; 

        else 

            future_indicator_appetite_for_change(r,c) = 5; 

        end 

 

        % Standardise Cynical Villagers Scenario Indicators 

        if future_indicator_cynical_villagers(r,c) <= indicator_bounds(r,1) 

            future_indicator_cynical_villagers(r,c) = 1; 

        elseif future_indicator_cynical_villagers(r,c) <= indicator_bounds(r,2) 

            future_indicator_cynical_villagers(r,c) = 2; 

        elseif future_indicator_cynical_villagers(r,c) <= indicator_bounds(r,3) 

            future_indicator_cynical_villagers(r,c) = 3; 

        elseif future_indicator_cynical_villagers(r,c) <= indicator_bounds(r,4) 

            future_indicator_cynical_villagers(r,c) = 4; 

        else 

            future_indicator_cynical_villagers(r,c) = 5; 

        end 

 

        % Standardise Silicon Hills Scenario Indicators 

        if future_indicator_silicon_hills(r,c) <= indicator_bounds(r,1) 

            future_indicator_silicon_hills(r,c) = 1; 

        elseif future_indicator_silicon_hills(r,c) <= indicator_bounds(r,2) 

            future_indicator_silicon_hills(r,c) = 2; 

        elseif future_indicator_silicon_hills(r,c) <= indicator_bounds(r,3) 

            future_indicator_silicon_hills(r,c) = 3; 

        elseif future_indicator_silicon_hills(r,c) <= indicator_bounds(r,4) 

            future_indicator_silicon_hills(r,c) = 4; 

        else 

            future_indicator_silicon_hills(r,c) = 5; 

        end 

 

        % Standardise Ignorance of the Lambs Scenario Indicators 

        if future_indicator_ignorance_of_the_lambs(r,c) <= indicator_bounds(r,1) 

            future_indicator_ignorance_of_the_lambs(r,c) = 1; 

        elseif future_indicator_ignorance_of_the_lambs(r,c) <= indicator_bounds(r,2) 

            future_indicator_ignorance_of_the_lambs(r,c) = 2; 

        elseif future_indicator_ignorance_of_the_lambs(r,c) <= indicator_bounds(r,3) 

            future_indicator_ignorance_of_the_lambs(r,c) = 3; 

        elseif future_indicator_ignorance_of_the_lambs(r,c) <= indicator_bounds(r,4) 

            future_indicator_ignorance_of_the_lambs(r,c) = 4; 

        else 

            future_indicator_ignorance_of_the_lambs(r,c) = 5; 
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        end 

    end 

end 

 

for r = [1 8 10 12] % Higher indicator means lower consequence, eg. median income 

    for c = 1:nSSC 

        % Standardise Current indicator 

        if current_indicator(r,c) <= indicator_bounds(r,1) 

            current_indicator(r,c) = 5; 

        elseif current_indicator(r,c) <= indicator_bounds(r,2) 

            current_indicator(r,c) = 4; 

        elseif current_indicator(r,c) <= indicator_bounds(r,3) 

            current_indicator(r,c) = 3; 

        elseif current_indicator(r,c) <= indicator_bounds(r,4) 

            current_indicator(r,c) = 2; 

        else 

            current_indicator(r,c) = 1; 

        end 

 

        % Standardise Internet of Risk Scenario Indicators 

        if future_indicator_internet_of_risk(r,c) <= indicator_bounds(r,1) 

            future_indicator_internet_of_risk(r,c) = 5; 

        elseif future_indicator_internet_of_risk(r,c) <= indicator_bounds(r,2) 

            future_indicator_internet_of_risk(r,c) = 4; 

        elseif future_indicator_internet_of_risk(r,c) <= indicator_bounds(r,3) 

            future_indicator_internet_of_risk(r,c) = 3; 

        elseif future_indicator_internet_of_risk(r,c) <= indicator_bounds(r,4) 

            future_indicator_internet_of_risk(r,c) = 2; 

        else 

            future_indicator_internet_of_risk(r,c) = 1; 

        end 

 

        % Standardise Appetite for Change Scenario Indicators 

        if future_indicator_appetite_for_change(r,c) <= indicator_bounds(r,1) 

            future_indicator_appetite_for_change(r,c) = 5; 

        elseif future_indicator_appetite_for_change(r,c) <= indicator_bounds(r,2) 

            future_indicator_appetite_for_change(r,c) = 4; 

        elseif future_indicator_appetite_for_change(r,c) <= indicator_bounds(r,3) 

            future_indicator_appetite_for_change(r,c) = 3; 

        elseif future_indicator_appetite_for_change(r,c) <= indicator_bounds(r,4) 

            future_indicator_appetite_for_change(r,c) = 2; 

        else 

            future_indicator_appetite_for_change(r,c) = 1; 

        end 

 

        % Standardise Cynical Villagers Scenario Indicators 

        if future_indicator_cynical_villagers(r,c) <= indicator_bounds(r,1) 

            future_indicator_cynical_villagers(r,c) = 5; 

        elseif future_indicator_cynical_villagers(r,c) <= indicator_bounds(r,2) 

            future_indicator_cynical_villagers(r,c) = 4; 

        elseif future_indicator_cynical_villagers(r,c) <= indicator_bounds(r,3) 

            future_indicator_cynical_villagers(r,c) = 3; 

        elseif future_indicator_cynical_villagers(r,c) <= indicator_bounds(r,4) 

            future_indicator_cynical_villagers(r,c) = 2; 

        else 

            future_indicator_cynical_villagers(r,c) = 1; 

        end 
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        % Standardise Silicon Hills Scenario Indicators 

        if future_indicator_silicon_hills(r,c) <= indicator_bounds(r,1) 

            future_indicator_silicon_hills(r,c) = 5; 

        elseif future_indicator_silicon_hills(r,c) <= indicator_bounds(r,2) 

            future_indicator_silicon_hills(r,c) = 4; 

        elseif future_indicator_silicon_hills(r,c) <= indicator_bounds(r,3) 

            future_indicator_silicon_hills(r,c) = 3; 

        elseif future_indicator_silicon_hills(r,c) <= indicator_bounds(r,4) 

            future_indicator_silicon_hills(r,c) = 2; 

        else 

            future_indicator_silicon_hills(r,c) = 1; 

        end 

 

        % Standardise Ignorance of the Lambs Scenario Indicators 

        if future_indicator_ignorance_of_the_lambs(r,c) <= indicator_bounds(r,1) 

            future_indicator_ignorance_of_the_lambs(r,c) = 5; 

        elseif future_indicator_ignorance_of_the_lambs(r,c) <= indicator_bounds(r,2) 

            future_indicator_ignorance_of_the_lambs(r,c) = 4; 

        elseif future_indicator_ignorance_of_the_lambs(r,c) <= indicator_bounds(r,3) 

            future_indicator_ignorance_of_the_lambs(r,c) = 3; 

        elseif future_indicator_ignorance_of_the_lambs(r,c) <= indicator_bounds(r,4) 

            future_indicator_ignorance_of_the_lambs(r,c) = 2; 

        else 

            future_indicator_ignorance_of_the_lambs(r,c) = 1; 

        end 

    end 

end 

Calculate overall consequence in each council for each scenario based on 

weightings 

Weightings: Median Income = 1 Proportion Young (0-14 years) (%) = 1 Proportion Elderly (65 and over) 

(%) = 1 Unemployment (%) = 1 Migrant English Proficiency (%) = 1 Indigenous population (%) = 1 Single 

Parent Families (%) = 1 Volunteer rates (%) = 1 Internal Migration/ Arrivals (%) = 1 Education (%) = 1 

Disabilities (%) = 1 Car Ownership = 1 Net Population Growth (%) = 1 Public Housing (%) 

weight = ones(1,nIndicators); % weighting for each indicator 

 

current_vuln = zeros(1,nSSC); % predefine matrix sizes 

future_vuln_internet_of_risk = zeros(1,nSSC); 

future_vuln_appetite_for_change = zeros(1,nSSC); 

future_vuln_cynical_villagers = zeros(1,nSSC); 

future_vuln_silicon_hills = zeros(1,nSSC); 

future_vuln_ignorance_of_the_lambs = zeros(1,nSSC); 

 

for c = 1:nSSC % cummulative addition of each indicator based on it's weighting 

    for r = 1:nIndicators 

        current_vuln(c) = current_indicator(r,c)*weight(r) + current_vuln(c); % add up 

consequence based on each indicator 

        future_vuln_internet_of_risk(c) = future_indicator_internet_of_risk(r,c)*weight(r) + 

future_vuln_internet_of_risk(c); 

        future_vuln_appetite_for_change(c) = 

future_indicator_appetite_for_change(r,c)*weight(r) + future_vuln_appetite_for_change(c); 
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        future_vuln_cynical_villagers(c) = future_indicator_cynical_villagers(r,c)*weight(r) 

+ future_vuln_cynical_villagers(c); 

        future_vuln_silicon_hills(c) = future_indicator_silicon_hills(r,c)*weight(r) + 

future_vuln_silicon_hills(c); 

        future_vuln_ignorance_of_the_lambs(c) = 

future_indicator_ignorance_of_the_lambs(r,c)*weight(r) + 

future_vuln_ignorance_of_the_lambs(c); 

    end 

end 

 

% concatenate future vulnerabilities into a single matrix 

all_future_vuln = [current_vuln future_vuln_internet_of_risk future_vuln_appetite_for_change 

future_vuln_cynical_villagers future_vuln_silicon_hills future_vuln_ignorance_of_the_lambs]; 

% Standardising to integers 1-5 

standardisingvalues = prctile(all_future_vuln,[20 40 60 80],2); % values used to standardise 

sum of vuln indicators 

 

%for current_vuln 

for c=1:nSSC 

if current_vuln(c)<=standardisingvalues(1) 

    current_vuln(c)=1; 

    elseif current_vuln(c)<=standardisingvalues(2) 

        current_vuln(c)=2; 

    elseif current_vuln(c)<=standardisingvalues(3) 

        current_vuln(c)=3; 

    elseif current_vuln(c)<=standardisingvalues(4) 

        current_vuln(c)=4; 

    else 

        current_vuln(c)=5; 

end 

end 

 

%for future_vuln_internet_of_risk 

for c=1:nSSC 

if future_vuln_internet_of_risk(c)<=standardisingvalues(1) 

        future_vuln_internet_of_risk(c)=1; 

    elseif future_vuln_internet_of_risk(c)<=standardisingvalues(2) 

        future_vuln_internet_of_risk(c)=2; 

    elseif future_vuln_internet_of_risk(c)<=standardisingvalues(3) 

        future_vuln_internet_of_risk(c)=3; 

    elseif future_vuln_internet_of_risk(c)<=standardisingvalues(4) 

        future_vuln_internet_of_risk(c)=4; 

    else 

        future_vuln_internet_of_risk(c)=5; 

end 

end 

 

%for future_vuln_appetite_for_change 

for c=1:nSSC 

if future_vuln_appetite_for_change(c)<=standardisingvalues(1) 

        future_vuln_appetite_for_change(c)=1; 

    elseif future_vuln_appetite_for_change(c)<=standardisingvalues(2) 

        future_vuln_appetite_for_change(c)=2; 

    elseif future_vuln_appetite_for_change(c)<=standardisingvalues(3) 

        future_vuln_appetite_for_change(c)=3; 

    elseif future_vuln_appetite_for_change(c)<=standardisingvalues(4) 

        future_vuln_appetite_for_change(c)=4; 

    else 
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        future_vuln_appetite_for_change(c)=5; 

end 

end 

 

%for future_vuln_cynical_villagers 

for c=1:nSSC 

if future_vuln_cynical_villagers(c)<=standardisingvalues(1) 

        future_vuln_cynical_villagers(c)=1; 

    elseif future_vuln_cynical_villagers(c)<=standardisingvalues(2) 

        future_vuln_cynical_villagers(c)=2; 

    elseif future_vuln_cynical_villagers(c)<=standardisingvalues(3) 

        future_vuln_cynical_villagers(c)=3; 

    elseif future_vuln_cynical_villagers(c)<=standardisingvalues(4) 

        future_vuln_cynical_villagers(c)=4; 

    else 

        future_vuln_cynical_villagers(c)=5; 

end 

end 

 

%for future_vuln_silicon_hills 

for c=1:nSSC 

if future_vuln_silicon_hills(c)<=standardisingvalues(1) 

        future_vuln_silicon_hills(c)=1; 

    elseif future_vuln_silicon_hills(c)<=standardisingvalues(2) 

        future_vuln_silicon_hills(c)=2; 

    elseif future_vuln_silicon_hills(c)<=standardisingvalues(3) 

        future_vuln_silicon_hills(c)=3; 

    elseif future_vuln_silicon_hills(c)<=standardisingvalues(4) 

        future_vuln_silicon_hills(c)=4; 

    else 

        future_vuln_silicon_hills(c)=5; 

end 

end 

 

%for future_vuln_ignorance_of_the_lambs 

for c=1:nSSC 

if future_vuln_ignorance_of_the_lambs(c)<=standardisingvalues(1) 

        future_vuln_ignorance_of_the_lambs(c)=1; 

    elseif future_vuln_ignorance_of_the_lambs(c)<=standardisingvalues(2) 

        future_vuln_ignorance_of_the_lambs(c)=2; 

    elseif future_vuln_ignorance_of_the_lambs(c)<=standardisingvalues(3) 

        future_vuln_ignorance_of_the_lambs(c)=3; 

    elseif future_vuln_ignorance_of_the_lambs(c)<=standardisingvalues(4) 

        future_vuln_ignorance_of_the_lambs(c)=4; 

    else 

        future_vuln_ignorance_of_the_lambs(c)=5; 

end 

end 

Output vulnerability matrices to .csv to be read into Vulnerability module in 

Bushfire Model main code 

csvwrite('Hazard_Con_Current.csv',current_vuln); 

csvwrite('Hazard_Con_Internet_of_risk.csv',future_vuln_internet_of_risk); 

csvwrite('Hazard_Con_Appetite_for_Change.csv',future_vuln_appetite_for_change); 
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csvwrite('Hazard_Con_Cynical_Villagers.csv',future_vuln_cynical_villagers); 

csvwrite('Hazard_Con_Silicon_Hills.csv',future_vuln_silicon_hills); 

csvwrite('Hazard_Con_Ignorance_of_the_Lambs.csv',future_vuln_ignorance_of_the_lambs); 

 

Plotting Modules 

SaveIndicatorCSVs; % Save individual maps as .asc files 

                   % Within this module is a MapComparison module that also 

                   % saves comparison maps for each indicator as .asc files 

Social Vulnerability Standardise Function 

assign vulnerability (consequence) index to each cell based on what council the cell lies in 

function [HazConsStd] = Vulnerability(LU,nrow,ncol,YearNum,ScenNum) 

 

 

% Define Council Boundaries 

LGA = dlmread('lga_100m.asc'); %read in council boundaries 

LGA = LGA + 1; %add 1 to each council area (as Adelaide is coded as 0) 

 

% Add council labels to coloured raster map 

CouncilLabels = importdata('Councils.txt'); %import list of councils 

nLGA = size(CouncilLabels); 

nLGA = nLGA(1); %add extra 'council area' to include ocean 

for i = 1:(nLGA) %convert struc matrix to array of text strings 

    LG(i) = CouncilLabels(i); 

end 

% Make Ocean 28 

for r = 1:1000 

    for c = 1:630 

        if LGA(r,c)==-9998 

            LGA(r,c) = 28; 

        end 

    end 

end 

nLGA = nLGA; %consider ocean as extra "council area" 

%LG(nLGA)={'Ocean'}; %add extra text label for ocean 

 

% LGA legend 

% figure 

%  colormap(colorcube(nLGA)); %define colour bar and corresponding text 

%  labels = LG; 

%  lcolorbar(labels); 

%  imagesc(LGA) 

 

 

% read in raster map of LGA 

for r = 1:1000 %change raster value for ocean to nLGA+1 to allow for colour map palette 

    for c = 1:630 

        if LGA(r,c)==-9998 

            LGA(r,c)=nLGA+1; 

        end 
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    end 

end 

 

% read in raster map of SSC 

SSC = imread('GA_SSC_2.tif'); %read in SSC boundaries 

SSC = SSC + 1; %add 1 to each council area (to make Aberfoyl Park 1) 

 

% Adelaide IN/OUT map 

AdelInOut = textread('reg100m.asc','','headerlines',6); 

% Assess nrows & ncols for use in loops 

NRowCol = textread('reg100m.asc','%s'); 

ncol = str2num(NRowCol{2}); 

nrow = str2num(NRowCol{4}); 

NRowCol = []; 

AdelInOut = AdelInOut(1:nrow,1:ncol);   % Removing excess rows/cols 

 

% Define number of SSCs 

SSC_importlist = importdata('SSC.csv'); % read in list of SSC considered in GA 

nSSC = size(SSC_importlist); 

nSSC = nSSC(1); % 511 SSCs 

 

% Make Outside Greater Adelaide 

for r = 1:1000 

    for c = 1:630 

        if AdelInOut(r,c) == 0 

            SSC(r,c) = 512; 

         elseif SSC(r,c) >= 1000 

             SSC(r,c) = 512; 

        end 

    end 

end 

 

%imagesc(LGA) %show map of council boundaries 

 

 

% Read in Vulnerability indicator for each council 

% vulnerability index of 1 to 5 already calculated for each council in HazardConsequence.m 

if YearNum == 2015 

    VulnIndex = csvread('Hazard_Con_Current.csv'); 

elseif YearNum == 2050 

    if ScenNum == 1 %cynical villagers 

        VulnIndex = csvread('Hazard_Con_Cynical_Villagers.csv'); 

    elseif ScenNum == 2 % ignorance of the lambs 

        VulnIndex = csvread('Hazard_Con_Ignorance_of_the_Lambs.csv'); 

    elseif ScenNum == 3 % internet of risk 

        VulnIndex = csvread('Hazard_Con_Internet_of_risk.csv'); 

    elseif ScenNum == 4 % silicon hills 

        VulnIndex = csvread('Hazard_Con_Silicon_Hills.csv'); 

    elseif ScenNum == 5 % appetite for change 

        VulnIndex = csvread('Hazard_Con_Appetite_for_Change.csv'); 

    end 

end 

 

 %VulnIndex = csvread('Hazard_Con_Council.csv'); % read in vulnerability indices 

 

 

% Assign vulnerability to each council area 

Vulnerability_Mat = zeros(1000,630); 
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for r = 1:1000 

    for c = 1:630 

        if (LU(r,c)== 0||LU(r,c)==1||LU(r,c)==15||LU(r,c)==16) % if vacant, forest, sea or 

outside GA, then vulnerability = 0 

            Vulnerability_Mat(r,c) = 0; 

        else % otherwise, calculate the vulnerability in that cell 

            for i = 1:nSSC %don't need to consider ocean, as this vulnerability is just 0 

                if SSC(r,c)== i 

                    Vulnerability_Mat(r,c) = VulnIndex(i); 

                end 

            end 

        end 

    end 

end 

 

 

% Convert vulnerability (0-1) to standardised vulnerability (1-5) 

HazConsStd = Vulnerability_Mat; 

 

 

% %  figure 

%  imagesc(Vulnerability_Mat); 

%  HMLcolourscale = [176/255 226/255 1; 0 204/255 0; 128/255 255/255 0; 1 1 0; 239/255 

175/255 27/255; 255/255 128/255 0; 1 0 0; 153/255 0 0]; 

%  colormap(HMLcolourscale); 

%  colorbar; 

Hazard Risk Standardise Function 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Hazard Risk - calculates the hazard risk from the hazard likelihood and social 

vulnerability 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [HazRiskMatrix] = HazardRisk(AdelInOut,LU,HazLikeStd,YearNum,nrow,ncol,HazConsStd); 

 

% Calculation of the Hazard Risk Matrix based on likelihood and consequence (Building Stock 

Risk) 

 

%The HazRiskMatrix is the matrix based on the consequence (Vulnerability) and likelihood of 

%a bushfire occurring 

 

%The HazRiskLevelMatrix follows this principle (1=Very Low, 2=Low 3=Medium, 4=High and 

5=Extreme) 

 

% Hazard Risk Level Matrix (will make CSV at some point!!!!!) 

HazRiskLevelMatrix= [1 1 2 3 3; 1 2 3 3 4; 2 3 3 4 4; 3 3 4 4 5; 3 4 4 5 5]; 

 

% HAZARD RISK = f( Hazard Consequence, Hazard Likelihood) 

 

for k=1:ncol %loop along columns of BSRisk and HazLike Matrix 

    for j=1:nrow %loop along columns of BSRisk and HazLike Matrix 

        if (AdelInOut(j,k) == 0); %if outside adelaide 

            HazRiskMatrix(j,k) = -1; 

        elseif (HazConsStd(j,k)==0); %if not vulnerable (i.e. forest) 

            HazRiskMatrix(j,k) = 0; 



 

138 
 

        elseif HazLikeStd(j,k)==0;      % if Likelihood zero then no risk 

            HazRiskMatrix(j,k)=0; 

        else 

            HazRiskMatrix(j,k)= HazRiskLevelMatrix((HazLikeStd(j,k)),(HazConsStd(j,k))); 

%calculates the value of cell of the Hazard Matrix based on the Hazard Likelikehood and 

Hazard Consequence in the Hazard Risk Matrix 

        end 

    end 

end 

 

end 
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APPENDIX B – REMAINING INDICATORS OF SOCIAL VULNERABILITY 

 

 
Changes in Social Vulnerability due to the proportion cars per person for (a) Cynical Villagers, (b) Ignorance of the Lambs, 
and (c) Silicon Hills scenarios 

 

 

Changes in Social Vulnerability due to the proportion of population with disabilities for (a) Cynical Villagers, (b) Ignorance 
of the Lambs, and (c) Silicon Hills scenarios 
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Changes in Social Vulnerability due to the family structure for (a) Cynical Villagers, (b) Ignorance of the Lambs, and (c) 
Silicon Hills scenarios 

 

 

 

Changes in Social Vulnerability due to the proportion of the population who are indigenous for (a) Cynical Villagers, (b) 
Ignorance of the Lambs, and (c) Silicon Hills scenarios 
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Changes in Social Vulnerability due to the net population growth for (a) Cynical Villagers, (b) Ignorance of the Lambs, and 
(c) Silicon Hills scenarios 

 

 

 

Changes in Social Vulnerability due to amount of public housing for (a) Cynical Villagers, (b) Ignorance of the Lambs, and (c) 
Silicon Hills scenarios 
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Changes in Social Vulnerability due to the proportion of population that volunteers for (a) Cynical Villagers, (b) Ignorance of 
the Lambs, and (c) Silicon Hills scenarios 

 

 

 

Changes in Social Vulnerability due to the personal wealth of the population for (a) Cynical Villagers, (b) Ignorance of the 
Lambs, and (c) Silicon Hills scenarios 
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Changes in Social Vulnerability due to the proportion of young people (0-14years) in the population for (a) Cynical Villagers, 
(b) Ignorance of the Lambs, and (c) Silicon Hills scenarios 
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APPENDIX C – LIST OF STATE SUBURB CODES (SSCS) IN GREATER 

ADELAIDE
Table 0-1 List of SSCs and their corresponding LGAs in 
Greater Adelaide 

SSC LGA 
Aberfoyle Park Onkaparinga 
Adelaide Adelaide 
Adelaide Airport West Torrens 
Albert Park Charles Sturt 
Alberton Port Adelaide Enfield 
Aldgate Adelaide Hills 
Aldinga Onkaparinga 
Aldinga Beach Onkaparinga 
Allenby Gardens Charles Sturt 
Andrews Farm Playford 
Angle Park Port Adelaide Enfield 
Angle Vale Playford 
Ascot Park Marion 
Ashford West Torrens 
Ashton Adelaide Hills 
Athelstone Campbelltown 
Athol Park Charles Sturt 
Auldana Burnside 
Balhannah Adelaide Hills 
Banksia Park Tea Tree Gully 
Barossa Goldfields Barossa 
Basket Range Adelaide Hills 
Beaumont Burnside 
Bedford Park Mitcham 
Belair Mitcham 
Bellevue Heights Mitcham 
Beulah Park Burnside 
Beverley Charles Sturt 
Bibaringa Playford 
Biggs Flat Mount Barker 
Birdwood Adelaide Hills 
Birkenhead Port Adelaide Enfield 
Black Forest Unley 
Blackwood Mitcham 
Blair Athol Port Adelaide Enfield 
Blakeview Playford 
Blakiston Mount Barker 

Blewitt Springs Onkaparinga 
Bolivar Salisbury 
Bowden Charles Sturt 
Bradbury Adelaide Hills 
Brahma Lodge Salisbury 
Bridgewater Adelaide Hills 
Brighton Holdfast Bay 
Broadview Port Adelaide Enfield 
Broadview Charles Sturt 
Brompton West Torrens 
Brooklyn Park Mitcham 
Brown Hill Creek Mount Barker 
Brukunga Mount Barker 
Buckland Park Playford 
Bugle Ranges Mount Barker 
Bull Creek Mount Barker 
Burnside Burnside 
Burton Salisbury 
Callington Mount Barker 
Camden Park West Torrens 
Campbelltown Campbelltown 
Carey Gully Adelaide Hills 
Castambul Adelaide Hills 
Cavan Salisbury 
Chain Of Ponds Adelaide Hills 
Chandlers Hill Onkaparinga 
Chapel Hill Mount Barker 
Charleston Adelaide Hills 
Cheltenham Charles Sturt 
Cherry Gardens Onkaparinga 
Cherryville Adelaide Hills 
Christie Downs Onkaparinga 
Christies Beach Onkaparinga 
Clapham Mitcham 
Clarence Gardens Mitcham 
Clarence Park Unley 
Clarendon Onkaparinga 
Clearview Port Adelaide Enfield 
Clovelly Park Adelaide Hills 
College Park Marion 
Collinswood Prospect 
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Colonel Light 
Gardens 

Prospect 

Coromandel East Mitcham 
Coromandel Valley Mitcham 
Coromandel Valley Onkaparinga 
Cowandilla Mitcham 
Crafers West Torrens 
Crafers West Adelaide Hills 
Crafers West Adelaide Hills 
Craigburn Farm Mitcham 
Craigmore Playford 
Cromer Adelaide Hills 
Croydon Charles Sturt 
Croydon Park Port Adelaide Enfield 
Cudlee Creek Adelaide Hills 
Cumberland Park Mitcham 
Darlington Onkaparinga 
Davoren Park Playford 
Daw Park Mitcham 
Dawesley Mount Barker 
Dernancourt Port Adelaide Enfield 
Devon Park Port Adelaide Enfield 
Direk Salisbury 
Dorset Vale Adelaide Hills 
Dover Gardens Marion 
Dry Creek Salisbury 
Dudley Park Port Adelaide Enfield 
Dulwich Burnside 
Eastwood Burnside 
Echunga Mount Barker 
Eden Hills Mitcham 
Edinburgh Salisbury 
Edinburgh North Playford 
Edwardstown Marion 
Elizabeth Playford 
Elizabeth Downs Playford 
Elizabeth East Playford 
Elizabeth Grove Playford 
Elizabeth North Playford 
Elizabeth Park Playford 
Elizabeth South Playford 
Elizabeth Vale Salisbury 
Enfield Port Adelaide Enfield 
Erindale Burnside 
Ethelton Port Adelaide Enfield 

Evandale Norwood Payneham St 
Peters 

Evanston Gawler 
Evanston Gardens Gawler 
Evanston Park Gawler 
Evanston Park Playford 
Everard Park Unley 
Exeter Port Adelaide Enfield 
Fairview Park Tea Tree Gully 
Felixstow Norwood Payneham St 

Peters 
Ferryden Park Port Adelaide Enfield 
Findon Charles Sturt 
Firle Norwood Payneham St 

Peters 
Fitzroy Prospect 
Flagstaff Hill Onkaparinga 
Flaxley Mount Barker 
Flinders Park Charles Sturt 
Forest Range Adelaide Hills 
Forestville Unley 
Forreston Adelaide Hills 
Freeling Light 
Frewville Burnside 
Fulham West Torrens 
Fulham Gardens Charles Sturt 
Fullarton Unley 
Gawler Gawler 
Gawler Belt Gawler 
Gawler East Gawler 
Gawler River Gawler 
Gawler South Gawler 
Gawler West Gawler 
Gemmells Mount Barker 
Gepps Cross Port Adelaide Enfield 
Gilberton Walkerville 
Gilles Plains Port Adelaide Enfield 
Gillman Port Adelaide Enfield 
Glandore West Torrens 
Glanville Port Adelaide Enfield 
Glen Osmond Burnside 
Glenalta Mitcham 
Glenelg Holdfast Bay 
Glenelg East Holdfast Bay 
Glenelg North Holdfast Bay 
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Glenelg South Holdfast Bay 
Glengowrie Marion 
Glenside Burnside 
Glenunga Burnside 
Globe Derby Park Salisbury 
Glynde Norwood Payneham St 

Peters 
Golden Grove Tea Tree Gully 
Goodwood Unley 
Gould Creek Playford 
Grange Charles Sturt 
Green Fields Salisbury 
Green Hills Range Mount Barker 
Greenacres Port Adelaide Enfield 
Greenhill Adelaide Hills 
Greenwith Tea Tree Gully 
Gulfview Heights Tea Tree Gully 
Gumeracha Adelaide Hills 
Hackham Onkaparinga 
Hackham West Onkaparinga 
Hackney Norwood Payneham St 

Peters 
Hahndorf Mount Barker 
Hallett Cove Marion 
Hampstead Gardens Port Adelaide Enfield 
Happy Valley Onkaparinga 
Harrogate Mount Barker 
Hawthorn Mitcham 
Hawthorndene Mitcham 
Hay Valley Mount Barker 
Hazelwood Park Burnside 
Heathfield Adelaide Hills 
Heathpool Norwood Payneham St 

Peters 
Hectorville Campbelltown 
Hendon Charles Sturt 
Henley Beach Charles Sturt 
Henley Beach South Charles Sturt 
Hewett Light 
Highbury Tea Tree Gully 
Highgate Unley 
Highland Valley Mount Barker 
Hillbank Playford 
Hillcrest Port Adelaide Enfield 
Hillier Gawler 

Hilton West Torrens 
Hindmarsh Charles Sturt 
Holden Hill Port Adelaide Enfield 
Hope Forest Mount Barker 
Hope Valley Tea Tree Gully 
Houghton Adelaide Hills 
Houghton Adelaide Hills 
Hove Holdfast Bay 
Humbug Scrub Playford 
Huntfield Heights Onkaparinga 
Hyde Park Unley 
Ingle Farm Salisbury 
Inglewood Adelaide Hills 
Ironbank Adelaide Hills 
Joslin Norwood Payneham St 

Peters 
Jupiter Creek Mount Barker 
Kalbeeba Barossa 
Kangarilla Onkaparinga 
Kangaroo Flat Light 
Kanmantoo Mount Barker 
Kensington Norwood Payneham St 

Peters 
Kensington Gardens Burnside 
Kensington Park Burnside 
Kent Town Norwood Payneham St 

Peters 
Kenton Valley Adelaide Hills 
Kersbrook Adelaide Hills 
Keswick West Torrens 
Keswick Terminal West Torrens 
Kidman Park Charles Sturt 
Kilburn Port Adelaide Enfield 
Kilkenny Charles Sturt 
Kings Park Unley 
Kingsford Light 
Kingston Park Holdfast Bay 
Kingswood Mitcham 
Klemzig Port Adelaide Enfield 
Korunye Mallala 
Kudla Gawler 
Kuitpo Onkaparinga 
Kurralta Park West Torrens 
Largs Bay Port Adelaide Enfield 
Largs North Port Adelaide Enfield 
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Leabrook Burnside 
Leawood Gardens Mitcham 
Lenswood Adelaide Hills 
Lewiston Mallala 
Linden Park Burnside 
Littlehampton Mount Barker 
Lobethal Adelaide Hills 
Lockleys West Torrens 
Longwood Adelaide Hills 
Lonsdale Onkaparinga 
Lower Hermitage Adelaide Hills 
Lower Mitcham Mitcham 
Lynton Mitcham 
Macclesfield Mount Barker 
MacDonald Park Playford 
Magill Campbelltown 
Malvern Unley 
Manningham Port Adelaide Enfield 
Mansfield Park Port Adelaide Enfield 
Marble Hill Adelaide Hills 
Marden Norwood Payneham St 

Peters 
Marino Marion 
Marion Marion 
Marleston West Torrens 
Marryatville Norwood Payneham St 

Peters 
Maslin Beach Onkaparinga 
Mawson Lakes Salisbury 
Maylands Norwood Payneham St 

Peters 
McLaren Flat Onkaparinga 
McLaren Vale Onkaparinga 
Meadows Mount Barker 
Medindie Walkerville 
Medindie Gardens Prospect 
Melrose Park Mitcham 
Middle Beach Mallala 
Mile End West Torrens 
Mile End South West Torrens 
Millbrook Adelaide Hills 
Millswood Unley 
Mitcham Mitcham 
Mitchell Park Marion 
Moana Onkaparinga 

Modbury Tea Tree Gully 
Modbury Heights Tea Tree Gully 
Modbury North Tea Tree Gully 
Montacute Adelaide Hills 
Morphett Vale Onkaparinga 
Morphettville Marion 
Mount Barker Mount Barker 
Mount Barker 
Junction 

Mount Barker 

Mount Barker 
Springs 

Mount Barker 

Mount Barker 
Summit 

Mount Barker 

Mount Crawford Adelaide Hills 
Mount George Adelaide Hills 
Mount Osmond Burnside 
Mount Pleasant Barossa 
Mount Torrens Adelaide Hills 
Munno Para Playford 
Munno Para Downs Playford 
Munno Para West Playford 
Mylor Adelaide Hills 
Myrtle Bank Unley 
Nailsworth Prospect 
Nairne Mount Barker 
Netherby Mitcham 
Netley West Torrens 
New Port Port Adelaide Enfield 
Newton Campbelltown 
Noarlunga Centre Onkaparinga 
Noarlunga Downs Onkaparinga 
North Adelaide Adelaide 
North Brighton Holdfast Bay 
North Haven Port Adelaide Enfield 
North Plympton West Torrens 
Northfield Port Adelaide Enfield 
Northgate Port Adelaide Enfield 
Norton Summit Adelaide Hills 
Norwood Norwood Payneham St 

Peters 
Novar Gardens West Torrens 
O'Halloran Hill Marion 
O'Sullivan Beach Onkaparinga 
Oakbank Adelaide Hills 
Oakden Port Adelaide Enfield 
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Oaklands Park Marion 
Old Noarlunga Onkaparinga 
Old Reynella Onkaparinga 
One Tree Hill Playford 
Onkaparinga Hills Onkaparinga 
Osborne Port Adelaide Enfield 
Ottoway Port Adelaide Enfield 
Outer Harbor Port Adelaide Enfield 
Ovingham Charles Sturt 
Paechtown Mount Barker 
Pages Flat Onkaparinga 
Panorama Mitcham 
Para Hills Salisbury 
Para Hills West Salisbury 
Para Vista Salisbury 
Paracombe Adelaide Hills 
Paradise Campbelltown 
Parafield Salisbury 
Parafield Gardens Salisbury 
Paralowie Salisbury 
Paris Creek Mount Barker 
Park Holme Marion 
Parkside Unley 
Pasadena Mitcham 
Payneham Norwood Payneham St 

Peters 
Payneham South Norwood Payneham St 

Peters 
Penfield Playford 
Penfield Gardens Playford 
Pennington Charles Sturt 
Peterhead Port Adelaide Enfield 
Petwood Mount Barker 
Piccadilly Adelaide Hills 
Plympton West Torrens 
Plympton Park Marion 
Pooraka Salisbury 
Port Adelaide Port Adelaide Enfield 
Port Gawler Mallala 
Port Noarlunga Onkaparinga 
Port Noarlunga 
South 

Onkaparinga 

Port Willunga Onkaparinga 
Prospect Prospect 
Prospect Hill Mount Barker 

Queenstown Port Adelaide Enfield 
Red Creek Alexandrina 
Redwood Park Tea Tree Gully 
Reeves Plains Mallala 
Regency Park Port Adelaide Enfield 
Reid Gawler 
Renown Park Charles Sturt 
Reynella Onkaparinga 
Reynella East Onkaparinga 
Richmond West Torrens 
Ridgehaven Tea Tree Gully 
Ridleyton Charles Sturt 
Rockleigh Adelaide Hills 
Rose Park Burnside 
Rosedale Barossa 
Rosewater Port Adelaide Enfield 
Roseworthy Light 
Rosslyn Park Burnside 
Rostrevor Campbelltown 
Royal Park Charles Sturt 
Royston Park Norwood Payneham St 

Peters 
Salisbury Salisbury 
Salisbury Downs Salisbury 
Salisbury East Salisbury 
Salisbury Heights Salisbury 
Salisbury North Salisbury 
Salisbury Park Salisbury 
Salisbury Plain Salisbury 
Salisbury South Salisbury 
Sampson Flat Playford 
Sandy Creek Barossa 
Scott Creek Adelaide Hills 
Seacliff Holdfast Bay 
Seacliff Park Holdfast Bay 
Seacombe Gardens Marion 
Seacombe Heights Marion 
Seaford Onkaparinga 
Seaford Heights Onkaparinga 
Seaford Meadows Onkaparinga 
Seaford Rise Onkaparinga 
Seaton Charles Sturt 
Seaview Downs Marion 
Sefton Park Port Adelaide Enfield 
Sellicks Beach Onkaparinga 
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Sellicks Hill Onkaparinga 
Semaphore Port Adelaide Enfield 
Semaphore Park Charles Sturt 
Semaphore South Port Adelaide Enfield 
Shea-Oak Log Mount Barker 
Sheidow Park Marion 
Skye Burnside 
Smithfield Playford 
Smithfield Plains Playford 
Somerton Park Holdfast Bay 
South Brighton Holdfast Bay 
South Plympton Marion 
Springfield Mitcham 
St Agnes Tea Tree Gully 
St Clair Charles Sturt 
St Georges Burnside 
St Ives Mount Barker 
St Kilda Salisbury 
St Marys Mitcham 
St Morris Norwood Payneham St 

Peters 
St Peters Norwood Payneham St 

Peters 
Stepney Norwood Payneham St 

Peters 
Stirling Adelaide Hills 
Stonyfell Burnside 
Sturt Marion 
Summertown Adelaide Hills 
Surrey Downs Tea Tree Gully 
Taperoo Port Adelaide Enfield 
Tatachilla Onkaparinga 
Tea Tree Gully Tea Tree Gully 
Tennyson Charles Sturt 
Teringie Adelaide Hills 
The Range Onkaparinga 
Thebarton West Torrens 
Thorngate Prospect 
Toorak Gardens Burnside 
Torrens Park Mitcham 
Torrensville West Torrens 
Totness Mount Barker 
Tranmere Campbelltown 
Trinity Gardens Norwood Payneham St 

Peters 

Trott Park Marion 
Tusmore Burnside 
Two Wells Mallala 
Uleybury Playford 
Underdale West Torrens 
Unley Unley 
Unley Park Unley 
Upper Hermitage Adelaide Hills 
Upper Sturt Adelaide Hills 
Uraidla Adelaide Hills 
Urrbrae Mitcham 
Vale Park Walkerville 
Valley View Tea Tree Gully 
Verdun Adelaide Hills 
Virginia Playford 
Vista Tea Tree Gully 
Walkerville Walkerville 
Walkley Heights Salisbury 
Ward Belt Light 
Warradale Marion 
Wasleys Light 
Waterfall Gully Burnside 
Waterloo Corner Salisbury 
Wattle Park Burnside 
Wayville Unley 
Welland Charles Sturt 
West Beach West Torrens 
West Croydon Charles Sturt 
West Hindmarsh Charles Sturt 
West Lakes Charles Sturt 
West Lakes Shore Charles Sturt 
West Richmond West Torrens 
Westbourne Park Mitcham 
Whites Valley Onkaparinga 
Willaston Gawler 
Williamstown Barossa 
Willunga Onkaparinga 
Willunga South Onkaparinga 
Windsor Gardens Port Adelaide Enfield 
Wingfield Port Adelaide Enfield 
Wistow Mount Barker 
Woodcroft Onkaparinga 
Woodforde Adelaide Hills 
Woodside Adelaide Hills 
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Woodville Charles Sturt 
Woodville Gardens Port Adelaide Enfield 
Woodville North Charles Sturt 
Woodville Park Charles Sturt 
Woodville South Charles Sturt 
Woodville West Charles Sturt 
Wynn Vale Tea Tree Gully 
Yatala Vale Tea Tree Gully 
Yattalunga Playford 
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APPENDIX D – FUTURE VULNERABILITY INDICATOR MULTIPLIERS 
Table 0-1 Social Vulnerability future multipliers for each indicator and the five Greater Adelaide regions for the Ignorance 
of the Lambs socio-economic scenario. 

Indicator 
Region 

East West South North Hills 
Proportion of Young People 0.95 0.95 1.1 1.1 1.1 
Proportion of Old People 1.1 1.1 1.02 1.02 1.02 
Education 0.95 0.95 0.95 0.95 0.95 
Personal Wealth 0.8 0.8 0.8 0.8 0.8 
Unemployment 1.05 1.05 1.1 1.1 1.1 
Net population growth 1.3 1.3 2.1 2.1 2.7 
Migrant English 1 1 1.15 1.15 1.15 
Volunteers 0.95 0.95 0.95 0.95 0.95 
Recently moved to area 0.98 0.98 1.1 1.1 1.1 
Indigenous  1 1 1 1 1 
Family Structure 1 1 1 1 1 
Disabilities 1 1 1 1 1 
Car Ownership 1 1 1 1 1 

 

Table 0-2 Social Vulnerability future multipliers for each indicator and the five Greater Adelaide regions for the Cynical 
Villagers socio-economic scenario. 

Indicator 
Region 

East West South North Hills 
Proportion of Young People 0.98 0.98 0.98 0.98 0.98 
Proportion of Old People 1.05 1.05 1.1 1.1 1.1 
Education 1 1 1 1 1 
Personal Wealth 0.8 0.8 0.8 0.8 0.8 
Unemployment 1 1 1 1 1 
Net population growth 1.1 1.1 1.15 1.15 1.25 
Migrant English 1.02 1.02 1.02 1.02 1.02 
Volunteers 1 1 1 1 1 
Recently moved to area 1 1 1 1 1.05 
Indigenous  1 1 1 1 1 
Family Structure 1 1 1 1 1 
Disabilities 1 1 1 1 1 
Car Ownership 1 1 1 1 1 
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Table 0-3 Social Vulnerability future multipliers for each indicator and the five Greater Adelaide regions for the Silicon Hills 
socio-economic scenario. 

Indicator 
Region 

East West South North Hills 
Proportion of Young People 1 1 1 1 1 
Proportion of Old People 1.02 1.02 1.05 1.05 1.1 
Education 1.1 1.1 1.1 1.1 1.1 
Personal Wealth 1.2 1.2 1.2 1.2 1.2 
Unemployment 0.95 0.95 0.98 0.98 0.98 
Net population growth 1.6 1.6 1.4 1.4 1.5 
Migrant English 0.9 0.9 0.95 0.95 0.95 
Volunteers 1.02 1.02 1.02 1.02 1.02 
Recently moved to area 1.02 1.02 1.02 1.05 1.02 
Indigenous  1 1 1 1 1 
Family Structure 1 1 1 1 1 
Disabilities 1 1 1 1 1 
Car Ownership 1 1 1 1 1 
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APPENDIX E – CONTACT DETAILS 

 

Professor Holger Maier 

School of Civil, Environmental & Mining Engineering, The University of Adelaide 

holger.maier@adelaide.edu.au 

 

Graeme Riddell 

Research Associate 

School of Civil, Environmental & Mining Engineering, The University of Adelaide 

graeme.riddell@adelaide.edu.au 

 

Mike Wouters 

Senior Fire Ecologist 

Department of Environment, Water and Natural Resources (DEWNR) 

mike.wouters@sa.gov.au 

 

Hedwig Van Delden 

Director 

 Research Institute for Knowledge Systems (RIKS) 
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